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Abstract

In this paper, we study the centroid of a symplectic ternary algebra
and find some elementary properties. In particular, some further results
concerning centroid for nilpotent and simple symplectic ternary algebras
are obtained. At the same time, we discuss the central derivation of the
symplectic ternary algebras.
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1 Introduction

The algebras studied here are a generalization of the class of ternary alge-
bras , a variation of Freudenthal triple systems[1]. The advantage of the
latest algebras, which we call Symplectic ternary algebras, is that they are
defined by identities and hence admit direct sums. JOHN.R.FAULKENER
and JOSEPH .C.FERRAR study the structure of this algebra, discussed the
semisimple Symplectic ternary algebras and give a classification of the simple
algebras over algebraically closed fields of characteristic 0. They construct a
good connection between Lie triple systems and Symplectic ternary algebras,
so it is naturally that we can generalize the conclusion from Lie triple system
to Symplectic ternary algebras.

A centroid is closely related to the derivation algerba [2-5]. It can be used
to character the properties of algebras. Naturally we consider the centriod
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of symplectic ternary algebras. We then In section 3 give the definition of
centroid and establish some elementary properties for centroid, give the rela-
tionship between the decomposition and the centroid and some further results
concerning centroid for solvable Symplectic ternary algebras. Section 4 is de-
voted to investigate the central derivations of a Symplectic ternary algebra.

We claim that Lie triple systems, Symplectic ternary algebras and Lie
algebras considered will be finite dimensional over a field K of characteristic
zero.

We recall some definitions, notations and facts which can be found in [6] .
A symplectic ternary algebra U is a vector space with a trilinear

product < x, y, z > and satisfies the following identities:

S(x, y) = L(x, y)− L(y, x) = R(x, y)−R(y, x), (1)

S(x, y)R(z, w) = R(z, w)S(x, y) = R(zS(x, y), w) = R(z, wS(x, y)), (2)

[R(x, y), R(z, w)] = R(xR(z, w), y) = R(x, yR(w, z)), (3)

where x, y, z, u, v ∈ U . Define L(x, y), R(x, y)by < x, y, z >= L(x, y)z =
R(y, z)x.

Define L(x, y), U(x, y) ∈ EndU by < x, y, z >= L(x, y)z = R(y, z)x =
U(x, z)y.

Example Let U be a vector space with non-degenerate skew form <,>
with product defined by

< x, y, z >=
1

2
(< x, y > z+ < y, z > x+ < x, z > y), x, y, z ∈ U.

We can verify U is a symplectic ternary algebra by direct calculation.
An ideal of a symplectic ternary algebra U is a subspace I satisfying <

U, I, U >⊆ S and < I, U, U >⊆ S or < U,U, I >⊆ I. An ideal I of U is called
nilpotent if there is a positive integer k for which Ik 6= 0, Ik+1 = 0, where
I0 = I, · · · , Is+1 =< Is, I, I > + < I, Is, I > + < I, I, Is > .

We define

Z(U) = {x ∈ U | < x,U, U >=< U, x, U >= 0}

the center of U ,clearly if x ∈ Z(U) , we have < U,U, x >= 0 and It is easy
to see that Z(U) is an ideal of U .

If a symplectic ternary algebra can be decomposed into some nonzero ideals
Ii such that U = I1 ⊕ I2 ⊕ . . .⊕ It,we call it decomposable.

A derivation of U is a linear transformation D of U into U such that

D < x, y, z >=< D(x), y, z > + < x,D(y), z > + < x, y,D(z) > .
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A isomorphism σ of U → U is called automorphism, if it satisfied

σ < x, y, z >=< σ(x), σ(y), σ(z) > .

A Lie triple system (LTS) is a vector space T over a field K with a
ternary composition [ , , ] which is trilinear and satisfies the following identi-
ties:

[x, y, z] = −[x, z, y], (4)
[x, y, z]+[y, z, x]+[z, x, y] = 0, (5)
and
[u, v, [x, y, z]] = [[u, v, x], y, z]+[x, [u, v, y], z]+[x, y, [u, v, z]], (6)

for all x, y, z, u, v ∈ T .
A derivation of T is a linear transformation D of T to T such that

D[xyz] = [(Dx)yz] + [x(Dy)z] + [xy(Dz)].

Define L(x, y), R(x, y) ∈ EndKT by [x, y, z] = L(x, y)z = R(z, y)x, we can
see that (4),(5),(6) shows that all L(x, y) are derivations. A derivation D of
the form D =

∑
L(xi, yi), ∀xi, yi ∈ T , is called an inner derivation. The set,

DerT , of all derivation of T is a Lie algebra of linear transformation acting in
T , the so-called derivation algebra of T .

Note that for the ternary composition in T and the binary bracket in
L(T ),we have [x, y, z] = [[x, y], z] for x, y, z ∈ T .

A subspace I of T is called a subsystem if [I, I, I] ⊆ I. A subspace I of
T is called an ideal (denoted by I / T ) if [I, T, T ] ⊆ I. For the same reason ,
a subspace I is an ideal if and only if [I, T, T ] + [T, T, I] + [T, I, T ] ⊆ I. T is
called simple if [T, T, T ] 6= 0 and T has no proper ideals.

An ideal I of T is called solvable [8] if there is a positive integer k for which
I(k) = 0, where I(0) = I, I(1) = [I, I, I], · · · , I(n+1) = [T, I(n), I(n)]. Notice that,
for each n, I(n) is an ideal of T and I ⊇ I(1) ⊇ · · · ⊇ I(n). T is called semi-
simple if the radical R(T ) (the unique maximal solvable ideal) of T is zero.
T is called nilpotent if there is a positive integer k such that T k = 0, where
T 0 = T, T 1 = [T, T, T ], · · · , T n+1 = [T n, T, T ].

T is called abelian if T 1 = T (1) = [T, T, T ] = 0.
For a subsystem I of T ,define the centralizer of I in T ,ZT (I) := {x ∈ T |

[x, I, T ] = [x, T, I] = 0}.In particular, Z(T ) := ZT (T ) := {x ∈ T | [x, T, T ] =
0} is the center of T .

A Lie triple system T is said to be decomposable if there are nonzero ideals
A1, A2 such that

A = A1 ⊕ A2

and [A1, A2, T ] =0. Otherwise we say that T is indecomposable. Clearly if T
is a simple Lie triple system then T is indecomposable.
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To conclude this section, we record the following facts which will be needed
in sequel.

Theorem 1.1 Let T be an indecomposable, nilpotent, non-abelian LTS,
then Z(T ) ⊆ T 1.

Proof For T is a nilpotent LTS,obviously,Z(T ) 6= 0, T 1 6= T . If Z(T ) is
not contain in T 1, denoteM = Z(T )∩T 1, Let u1, u2, · · · , ut is a basis of M ,and
extend it to a basis of T 1:u1, u2, · · · , ut, ut+1, · · · , um, and u1, u2, · · · , ut, v1, · · · , vl.
then u1, u2, · · · , ut, ut+1, · · · , um, v1, · · · , vl is a basis of Z(T ) + T 1, extend it to
a basis of T :

u1, u2, · · · , ut, ut+1, · · · , um, , um+1, · · · , us, v1, · · · , vl,

then T = L(v1, · · · , vl) ⊕ L(u1, u2, ·, us) = I + J ,where I, J are ideals of T ,
which leads a contradiction.

2 The centroid Symplectic ternary algebra

We define, in this section, the centroid of a Symplectic ternary algebra U , and
enumerate several elementary results concerning the centroid.

Definition 2.1 Let U be a Symplectic ternary algebra, and

Γ(U) = {φ ∈ End(U)|φL(x, y) = L(x, y)φ, φU(x, y) = U(x, y)φ,∀x, y, z ∈ U}.

we call Γ(U) the centroid of Symplectic ternary algebra U . If φ ∈ Γ(U),by def
(1)and (1.1), the following is easily to proved.i.e.φ < x, y, z >=< φx, y, z > .

If φ ∈ Γ(U),and φ is isomorphism, we have

φ−1 < x, y, z >= φ−1 < φφ−1x, y, z >= φ−1φ[φ−1 < x, y, z >=< φ−1x, y, z >

similarly we have φ−1 < x, y, z >=< x, φ−1y, z >, which means that φ−1 ∈
Γ(U).

Example 2.1 If Symplectic ternary algebra U has the decomposition
U = U1 ⊕ U2 ⊕ . . . ⊕ Us, where Ui are ideals of U . Let πi be the canonical
projection of U on Ui, then πi, i = 1, 2 ∈ Γ(U), and π1 + π2 = id.

By direct calculation,the following theorem can de easily got:
Theorem 2.1 Γ(U) is an associative algebra and a Lie algebra.
Theorem 2.2 Let U be a Symplectic ternary algebra, then U is inde-

composable if and only if ∀φ ∈ Γ(U), the eigenvablues φ are equal.
Proof When dimU > 1, suppose U is the direct sum of the root space for

such :U = ΣλUλ,where

Uλ = {x ∈ U |(φ− λId)m = 0}.

For λId ∈ Γ(U), so (φ − λId)m ∈ Γ(U), So (φ − λId)m < Uλ, U, U >= 0,
which means that < Uλ, U, U >⊆ Uλ, similarly < U,Uλ, U >⊆ Uλ, i.e. Uλ is
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an ideal of U . Since Uλ1 ∩ Uλ2 = 0, then U is decomposable, which leads a
contradiction.

Conversely, if the eigenvalues of φ ∈ Γ(U) are equal. Suppose U is decom-
posable and U = U1 ⊕ U2, where U1, U2 are nonzero ideals of U . Thanks to
example 2.1, π1 is in Γ(U) and π1 is a idempotents 6= 0, Id, which completes
the proof.

The following two propositions have proved in [7], which gave the relation-
ship between the decomposition and the centroid.

Proposition 2.1 let U be a Symplectic ternary algebra, φ ∈ Γ(U), then
there exists a natural number k such that U = Kerφk ⊕ Imφk .

Proposition 2.2 Let U be an indecomposable Symplectic ternary alge-
bra, and

φ1 + φ2 + · · ·+ φm = Id.

where φ1, φ2, · · · , φm ∈ Γ(U), Then φi ∈ Aut(U) for some i.
Theorem 2.3 Let U be an indecomposable Symplectic ternary algebra,

N is the nilradical of Lie algebra Γ(U),then

Γ(U) = FId+̇N,

where N is constituted by the nilpotent elements.
Proof ∀φ ∈ Γ(U), the Jordan decomposition is φ = φs + φn, where

φs, φn are semisimple and nilpotent rspectively. Thanks to theorem 2.2, φs =
kId, so φs ∈ Γ(U), then φ − φs = φn ∈ Γ(U) too. Denote N the set of
nilpotent elements of Γ(U), for φn1 , φn2 ∈ N and φmn1

= φln2
= 0, then we have

(φn1 + φn2)
k = 0, where k = max(m, l), which shows that N is a subspace of

Γ(U).
For any φ ∈ Γ(U), φn ∈ N , since det(φφn) = det(φnφ) = 0, which leads to

φφn, φnφ ∈ N , so[φ, φn] = φφn − φnφ ∈ N , hence N is a nilpotent ideals in
Γ(U). By the definition of N, N is the nilradical of Lie algebra Γ(U).

Theorem 2.4 Let T be an indecomposable and semisimple LTS, then
Γ(T ) = FId.

Proof By theorem above, Γ(T ) = FId+̇N . If N 6= 0, we have a φ ∈ Γ(T )
is nilpotent, suppose φ(T ) = I. Firstly, by the definition of centroid, it is
obvious that I 6= 0 is an ideal of T .

By induction on n,we get I(n+1) = [T, I(n), I(n)] ⊆ φ1+2+···+n−1I.For φ is
nilpotent, then there exists k ∈ Z such that φk = 0, then we have I(k) = 0,
which shows I is a solvable ideal of T , a contradiction.

Since U be an indecomposable and semi-simple Symplectic ternary algebra
only and only if T (U) is an indecomposable and semi-simple LTS and the
relationship between the centroid of U and T (U), it is easy to get this corollary.

corollary 2.1 Let U be an indecomposable and semi-simple Symplectic
ternary algebra, then Γ(U) = FId.
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For Symplectic ternary algebra U and it’s associative Lie triple system
T (U), by the same method, we can obtain the following theorem.

Proposition 2.3 Let U be a sovalble non-abelian and indecomposable,
then Z(U) ⊆ U1.

Proof Because a Symplectic ternary algebra U is solvable non-abelian
and indecomposable if and only if the lie triple system associated with it T (U)
is solvable non-abelian and indecomposable, so Z(T (U) ⊆ T (U)1 by theo-
rem2.1. And Z(T (U)) = T (Z(U)) [7], T (U)1 ⊆ T (U1), so T (Z(U)) ⊆ T (U1),
which means that Z(U) ⊆ U1.

Theorem 2.5 Let U be an indecomposable nilpotent Sympectic ternary
algebra, then Γ(U) 6= FId.

Proof If U is abelian, then Γ(U) = gl(U) 6= FId.
If U is not abelian, By Z(U) 6= 0, Z(U) ⊆ U1,Let u1, u2, · · · , uk, uk+1, · · · , ulis

a basis of U1,and u1, u2, · · · , uk is a basis of Z(U). Extend it to a basis of U :

u1, u2, · · · , uk, uk+1, · · · , ul, v1, · · · , vt.

Define an endomorphism φ as follows :φ(uj) = 0, φ(vj) = u1, obviously,φ2 =
0,and φ ∈ Γ(U),then there is a φ ∈ Γ(U) and φ is nilpotent which means that
Γ(U) = gl(U) 6= FId.

3 Central derivation

Proposition 3.1 let U be a Symplectic ternary algebra and B a subset of
U ,then

(1) ZU(B) is invariant under Γ(U).
(2) Every perfect ideal of U is invariant under Γ(U).
Proof Suppose x ∈ ZU(B) and φ ∈ Γ(U), then < φ(x), B, U >= φ <

x,B, U >= 0,and < φ(x), U,B >= φ < x, U,B >= 0, and < B, φ(x), U >=
φ < B, x, U >= 0. therefore φ(x) ∈ ZU(B), so (1) is proved.

Let B be a perfect ideal of U , then B =< B,B,B >. For x ∈ B, there exsit
yi1, y

i
2, y

i
3 ∈ B such that x =

∑
< yi1, y

i
2, y

i
3 >. For φ(x) = φ(

∑
< yi1, y

i
2, y

i
3 >

) =
∑

(< φ(yi1), y
i
2, y

i
3 >) ∈ B,which implies that B is invariant under Γ(U).

Definition 3.1 let U be a Symplectic ternary algebra, and φ ∈ End(U),
if φ(U) ⊆ Z(U),φ < U,U, U >= 0, then φ is called central derivation.If U is
indecopsable Symplectic ternary algebra,we call it small if Γ(U) is generated
by central derivations and scalars.

Example 3.1 Let U be an abelian Symplectic ternary algebra,the cen-
troid of U is small and moreover Γ(U) = gl(U).

The set of all central derivations of U is denoted by C(U). By direct
calculation, it is easy to see that C(U) ⊆ Γ(U). and C(U) is an ideal of Γ(U).
A more precise relationship is summarized as follows.
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Proposition 3.2 let U be a Symplectic ternary algebra, then C(U) =
Γ(U) ∩DerU .

Proof If φ ∈ C(U), then φ < x, y, z >=< φ(x), y, z >=< x, φ(y), z >=<
x, y, φ(z) >= 0,so φ ∈ DerU ∩Γ(U), which means that C(U) ⊆ Γ(U)∩DerU .

On the other hand, forallx, y, z ∈ U , if φ ∈ Γ(U)∩DerU ,φ < x, y, z >=<
φ(x), y, z > + < x, φ(y), z > + < x, y, φ(z) >= 3 < φ(x), y, z >= 3φ <
x, y, z >, so φ < x, y, z >=< φ(x), y, z >= 0. It implies Γ(U)∩DerU ⊆ C(U).

Let B be a Γ(U)-invariant ideal of U , denote V (B) = {φ ∈ Γ(U)|φ(B) = 0}
its vanishing ideal.It is easily senn that V (B) is an ideal of Γ(U).

Similar proof yields the following conclusion.
Corollary 3.1 let U be a Symplectic ternary algebra, then C(U) =

V (U1) = {Φ ∈ DerU |Imφ ⊆ Z(U)}.
Theorem 3.1 Let U be a Symplectic ternary algebra, then φD is a deriva-

tion for φ ∈ Γ(U), D ∈ DerU .
Proof If x, y, z ∈ U ,then

φD < x, y, z > = φ(< D(x), y, z > + < x,D(y), z > + < x, y,D(z) >

= < φD(x), y, z > + < x, φD(y), z > + < x, y, φD(z) > .

the proof is finished.
Theorem 3.2 Let U be a Symplectic ternary algebra, then for any D ∈

DerU, φ ∈ Γ(U),
(1) DerU is contained in the normalizer of Γ(U) in gl(U).
(2) Dφ is contained in Γ(U)) if and only if Dφ is a central derivation of U .
(3) Dφ is a derivation of L if and only if [D,φ] is a central derivation of U .
Proof For any D ∈ DerU ,φ ∈ Γ(U)and x, y, z ∈ U

Dφ < x, y, z > = < Dφ((x), y, z > + < φ(x), D(y), z > + < φ(x), y,D(z) >

= < Dφ(x), y, z > + < x, φD(y), z > + < x, y, φD(z) >

= < Dφ(x), y, z > +φD < x, y, z > − < φD(x), y, (z) > .

, then we have (Dφ− φD) < x, y, z >=< (Dφ− φD)(x), y, (z) >, this proves
(1).By theorem 3.1 and proposition 3.2, φD(< x, y, z >=< φD(x), y, z > if and
any if φD ∈ Γ(U) ∩DerU , so(2)holds. Thanks to theorem 3.1 and (2),(1),we
get the result (3).

Theorem 3.3 If U is a Symplectic ternary algebra and and U = U1⊕U2

is a decomposition of U , then

Γ(U) = Γ(U1)⊕ Γ(U2)⊕ C1 ⊕ C2

where

Ci = {φi ∈ hom(Ui, Uj) | φi(Ui) ⊆ ZU(Uj), φi(U
1
i ) = 0, for1 ≤ i, j ≤ 2, i 6= j}.
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Proof By example3.1, we have for ϕ ∈ Γ(U),

ϕ = (π1 + π2)ϕ(π1 + π2) = π1ϕπ1 + π1ϕπ2 + π2ϕπ1 + π2ϕπ2.

Then Γ(U) = π1Γ(U)π1 + π1Γ(U)π2 + π2Γ(U)π1 + π2Γ(U)π2. Denote Γ(U)ij =
πiΓ(U)πj, then Γ(U) = Σ2

i,j=1Γ(U)ij. It is easy to see that Γ(U)1i∩Γ(U)2j = 0,
by U1 ∩ U2 = 0 So the result Γ(U) = ⊕2

i,j=1Γ(U)ij is suffice to show that
Γ(U)i1 ∩ Γ(U)i2 = 0(other case is similar). Suppose ϕ ∈ π1ϕπ2 ∩ π1ϕπ1, then
there exist f1, f2 ∈ Γ(U) such that ϕ = π1f1π2 = π2f2π1. For all x ∈ U ,
ϕ(x) = π1f1π2(x) = π1f1π2(π2(x)) = π2f2π1(π2(x)) = 0, so ϕ = 0.

Now we prove that Γ(U)11 ∼= Γ(U1). Since ϕ(U1) ⊆ U1, ϕ(U2) = 0, forϕ ∈
Γ(U)11, On the other hand ,one can regard Γ(U1) as a subalgebra of Γ(U) by
extending any ϕ0 ∈ Γ(U1) by zero:

ϕ0(x1) = ϕ0(x1), ϕ0(x2) = 0, forallxi ∈ Ui, i = 1, 2.

Then Γ(U)11 ∼= Γ(U1). Similarly, we have Γ(U)22 ∼= Γ(U2).
Next, we prove Γ(U12) ∼= C2. For any ϕ ∈ Γ(U12), there is a ϕ0 ∈ Γ(U)

such that ϕ = π1ϕ0π2.For any xi = x1ix
2
i ∈ U , where xi ∈ Ui, and i = 1, 2, we

have

ϕ < x1, x2, x3 > = π1ϕ0π2 < x1, x2, x3 >

= π1ϕ0 < x21, x
2
2, x

2
3 >

= π1 < ϕ0(x
2
1), x

2
2, x

2
3 >

= 0.

and
< ϕ(x1), x2, x3 >= ϕ < x1, x2, x3 >= 0,

then ϕ(U) ⊆ Z(U) and ϕ(U1) = 0. It follows that ϕ |U2 (U2) ⊆ Z(U1) and
ϕ |U2 (U1

2 ) = 0, so ϕ |U2 in C2. Conversely ,for ϕ0 ∈ C2 , we can extend it in
a natural way :ϕ0(x1) = 0, ϕ0(x2) = ϕ0(x2), for xi ∈ Ui. then ϕ0 ∈ Γ(U)12 and
Γ(U)12 ∼= C2.

Similarly, we can prove Γ(U)21 ∼= C1, from the isomorphism of the algebra
above , we get

Γ(U) = Γ(U) = ⊕2
i,j=1Γ(U)ij ∼= Γ(U1)⊕ Γ(U2)⊕ C1 ⊕ C2.

Corollary 3.2 Let Symplectic ternary algebra U be the direct sum of
two indecomposable ideals of U ,i.e. U = U1 ⊕ U2, then Γ(U) is small if and
only if ϕ < Ui, i = 1, 2 is small.

Theorem 3.4 Let U be a symplectic ternary algebra and its center
Z(U) =< U,U, U > with dimension 1, then U is small.

Proof Firstly, we prove the symplectic ternary algebra U is indecompos-
able. Suppose U is decomposable such that U = U1 ⊕ U2, since < U,U, U >=
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Z(U) with dimension 1, so either < U1, U1, U1 >= 0 or < U2, U2, U2 >= 0, now
we suppose < U2, U2, U2 >= 0, so U2 = Z(U), furthermore we have U1 = Z(U),
which leads to a contradiction. Then Γ(U) = FId+̇N thanks to theorem 2.3.

If ϕ ∈ N , then there exists a natural number k such that ϕk = 0. It is suffice
to prove that ϕ is a central derivation. Because < U,U, U >= Z(U) = Fc, so

ϕ < x1, x2, x3 >= ϕ(lc) =< ϕ(x1), x2, x3 >= hc,

so we get that ϕ(c) = λc. Since ϕ is nilpotent, we have λ = 0 and ϕ <
U,U, U >= 0. Then ϕ(U) ⊆ Z(U). This proves that Γ(U) is small.
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