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Abstract

We examine the asymptotic expansion of the Touchard polynomi-
als Tn(z) (also known as the exponential polynomials) for large n and
complex values of the variable z. In our treatment |z| may be finite
or allowed to be large like O(n). We employ the method of steepest
descents to a suitable integral representation of Tn(z) and find that the
number of saddle points that contribute to the expansion depends on
the values of n and z. Numerical results are given to illustrate the
accuracy of the various expansions.
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1. Introduction The Touchard polynomials Tn(z), also known as expo-
nential polynomials, are defined by

Tn(z) = e−z
∞
∑

k=0

knzk

k!
= e−z

(

z
d

dz

)n

ez (1.1)

and were first introduced in a probabilistic context in 1939 by J. Touchard [6].
The first few Tn(z) are given by

T0(z) = 1, T1(z) = z, T2(z) = z2 + z,

T3(z) = z3 + 3z2 + z, T4(z) = z4 + 6z3 + 7z2 + z,

T5(z) = z5 + 10z4 + 25z3 + 15z2 + z, . . . .

They are also a special case of the Bell polynomials Bn(x1, x2, . . . , xn) when
all the xj (1 ≤ j ≤ n) are equal, namely

Tn(z) = Bn(z, z, . . . , z)
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and possess the generating function

exp [z(et − 1)] =
∞
∑

n=0

Tn(z)
tn

n!
. (1.2)

An alternative representation for the Touchard polynomials is given by

Tn(z) =
n
∑

k=0

S(n, k)zk = zn
n
∑

k=0

S(n, n− k)z−k, (1.3)

where S(n, k) is the Stirling number of the second kind [3, p. 624]. The second
form of this representation immediately produces the expansion of Tn(z) for
|z| → ∞ with n finite. With the values S(n, n) = 1 and

S(n, n−1) =
(

n
2

)

, S(n, n−2) =
3n− 5

4

(

n
3

)

, S(n, n−3) =
(

n
4

)(

n− 2
2

)

,

we obtain

z−nTn(z) = 1+ n(n− 1)
{

1

2z
+

(3n− 5)(n− 2)

24z2
+

(n− 2)2(n− 3)2

48z3
+O(z−4)

}

(1.4)
as |z| → ∞ in the sector −π ≤ arg z ≤ π.

In this note we consider the asymptotic expansion of Tn(z) for large n and
complex values of the variable z by an application of the method of steepest
descents applied to a contour integral representation. In our treatment |z|
may be finite or allowed to be large like O(n). It is sufficient to consider only
0 ≤ arg z ≤ π since, from (1.3), it is seen that

Tn(z) = Tn(z),

where the bar denotes the complex conjugate. We shall find that there is an
infinite number of saddle points of the integrand but that the precise number
that contribute to the expansion of Tn(z) depends on the values of n and
|z|. In addition, when arg z = π there is a coalescence of two contributory
saddle points where the neighbouring Poincaré-type expansions break down.
Some numerical examples are given to illustrate the accuracy of the various
expansions.

2. An integral representation and discussion of the saddle points

From (1.2) we obtain the integral representation

Tn(z) =
n! e−z

2πi

∮

eze
t

tn+1
dt,
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where the integration path is a closed circuit described in the positive sense
surrounding the origin. Since | exp(zet)| → 1 as t → ∞ in ℜ(t) < 0, it follows
that when n ≥ 1 the closed path above may be opened up into a loop, which
commences at −∞, encircles the origin and returns to −∞. We now consider
n→ ∞ with the variable |z| = x either finite or large like O(n). We set

µ :=
n

x
, θ := arg z,

where θ ∈ [0, π]. Then we have

Tn−1(z) =
Γ(n)e−z

2πi

∫ (0+)

−∞

enψ(t)dt, ψ(t) ≡ ψ(t;µ, θ) :=
et+iθ

µ
− log t. (2.1)

Saddle points of the integrand occur when ψ′(t) = 0; that is when

tet = µe−iθ. (2.2)

When z is real and θ = 0, there is a saddle situated on the positive real
axis given by t0 = W (µ), where W here denotes the positive part of the
principal branch of the Lambert-W function; see [3, p. 111]. When θ = π
and 0 < µ < 1/e, there are two saddles on the negative real axis given by the
negative values of the Lambert function. When µ = 1/e, these two saddles
coalesce to form a double saddle point and when µ > 1/e the saddles move off
the real axis to form a complex conjugate pair; see Section 2.1.

There is an infinite number of complex roots to (2.2) given by

t + log t = log µ+ (2πk − θ)i, (2.3)

where k is an integer. With M := (log µ)2 + (2πk − θ)2, we find that the
complex saddles tk are given approximately by

tk ≃ log µ− 1
2
logM + i(2πk − θ − arctanφk), φk :=

2πk − θ

log µ
. (2.4)

Then for large k and finite µ we see that the distribution of the complex saddles
is asymptotically described by

tk ≃ log µ− log(2π|k| ∓ θ) + i(2πk − θ ∓ 1
2
π) (k → ±∞).

This last result indicates that a complex saddle occurs in horizontal strips
of width 2π with the real part progressively becoming more negative as k
increases; see Table 1. It follows from the definition of ψ(t) in (2.1) and from
(2.2), (2.3) that

ψ(tk) =
1

tk
− log tk =

1

tk
+ tk − log µ− (2πk − θ)i,
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whence, with ωk := arg tk,

ℜ(ψ(tk)) =
(

1

|tk|
+ |tk|

)

cosωk − log µ.

From this last result we can deduce that the complex saddles are increasingly
subdominant as the index |k| increases.

Table 1: The location of the complex saddles tk for different k and their approximate
values from (2.4) when µ = 2, θ = 0. The saddles t

−k = tk, where the bar denotes the
complex conjugate.

k tk Approximate tk

1 −0.83431 + 4.53027i −1.15078 + 4.82226i
2 −1.70226 + 10.83981i −1.83940 + 11.05068i
3 −2.15691 + 17.15368i −2.24402 + 17.31552i
5 −2.70395 + 29.75450i −2.75441 + 29.86719i
10 −3.42265 + 61.20519i −3.44738 + 61.27209i
15 −3.83638 + 92.63559i −3.85281 + 92.68434i

2.1 Topology of the steepest descent paths

The paths of steepest descent, which we denote by Ck, and ascent through the
saddles tk are given by the paths on which

ℑ{ψ(t)− ψ(tk)} = 0.

The steepest descent paths terminate either in the left half-plane ℜ(t) < 0
or asymptotically approach the horizontal lines ℑ(t) = (2k + 1)π − θ, k =
0,±1,±2, . . . in the right half-plane. The steepest ascent paths terminate
either at t = 0 or asymptotically approach the intervening horizontal lines
ℑ(t) = 2kπ − θ also in the right half-plane.

A typical example of the topology of the saddles and paths of steepest
descent and ascent is shown in Fig. 1 for the case µ = 4 and different values of
θ. The t-plane is cut along the negative real axis. When θ = 0, the real saddle
t0 is given by the Lambert function W (4)

.
= 1.20217, with the complex saddles

t±k (k ≥ 1) forming conjugate pairs. The steepest descent paths through
t±1 pass to infinity in ℜ(t) < 0 and so are disconnected from the remaining
saddles with index k ≥ 2. It then follows by Cauchy’s theorem that the loop
path in (2.1) commencing at −∞ and encircling the origin can be deformed
to pass over the three saddles t0 and t±1; the remaining saddles of the infinite
string are non-contributory. When θ = 1

2
π, the saddle t0 has moved into the
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lower half-plane and t±1 are no longer a conjugate pair; again the integration
path can be deformed to pass over these three saddles. The appearance of the
fourth saddle t2 occurs via a Stokes phenomenon when, at the critical value
θ
.
= 0.76994π, the steepest descent path through t1 connects with the saddle

t2; see Fig. 1(c). Finally, when θ = π, there are two pairs of conjugate saddles
t0, t1 and t−1, t2 with the steepest descent paths through t2 and t−1 passing to
infinity in ℜ(t) < 0; the integration path can now be made to pass over these
four saddles.
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Figure 1: Typical paths of steepest descent and ascent through the saddles for
µ = 4 when (a) θ = 0, (b) θ = 1

2π (c) θ = 0.76994π and (d) θ = π. The saddles are
denoted by heavy dots; the arrows indicate the direction of integration taken along
steepest descent paths. There is a branch cut along (−∞, 0].

In Fig. 2 we present an example of the steepest paths through the con-
tributory saddles for a higher value of µ. Because of the symmetry of these
paths when θ = 0 and θ = π we only show the upper half-plane; a conjugate
set of paths lies in the lower half-plane. It is seen that with µ = 12 there are
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five contributory saddles when θ = 0 and six saddles when θ = π. It is also
plainly visible how the steepest descent path through the last saddle “peels
away” from the string of remaining saddles and passes to infinity in ℜ(t) < 0.
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Figure 2: Paths of steepest descent and ascent in the upper half-plane through the
contributory saddles for µ = 12 when (a) θ = 0 and (b) θ = π; a conjugate set of
paths lies in the lower half-plane. The saddles are denoted by heavy dots; the arrows
indicate the direction of integration taken along steepest descent paths.

In Fig. 3 we show examples of the steepest paths through the contributory
saddles when θ = π and (i) 1/e < µ < µ1, (ii) 0 < µ < 1/e and (iii) µ = 1/e,
where µ1 is specified below. In case (i), the saddle t0 (which is on the positive
axis when θ = 0) has rotated round the origin in the lower half-plane to form
a conjugate pair with the saddle t1. The integration path is the path labelled
ABCD in Fig. 3(a). When µ ≥ µ1, there are additional conjugate pairs of
(subdominant) contributory saddles; see below. In case (ii), the saddles t0 and
t1 have rotated onto the negative real axis with t0 ∈ (0,−1) and t1 ∈ (−1,−∞).
The paths of steepest descent emanating from t0 pass to +∞ and the paths
of steepest ascent from t1 asymptotically approach the lines ℑ(t) = ±π as
ℜ(t) → +∞. The integration path in (2.1) can then be deformed to pass
along the lower side of the branch cut to t0 and thence out to +∞ along the
path labelled ASB in Fig. 3(b); the return path CSD is the symmetrical image
of that in the lower half-plane, passing to −∞ along the upper side of the cut.
Since n is an integer, the contribution to Tn−1(−x) from the portions of the
paths along [t0,−∞) on both sides of the cut cancel to leave1 the two halves of
the steepest descent paths emanating from t0. In case (iii), the saddles coalesce

1The fact that, when z < 0, the integration path can be replaced by a loop starting and
ending at +∞ and encircling the origin in the positive sense can be seen from (2.1) since
| exp(−xet)| → 0 as ℜ(t) → +∞ when |ℑ(t)| < 1

2
π.
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Figure 3: Paths of steepest descent and ascent through the saddles when (a) 1/e <
µ < µ1, (b) 0 < µ < 1/e and (c) µ = 1/e. The saddles are denoted by heavy dots;
the arrows indicate the direction of integration taken along steepest descent paths.
In (b) and (c) the paths AS and SD lie below and above the branch cut along
(−∞, 0].

to form a double saddle at t = −1; the integration path then becomes the path
CSB in Fig. 3(c), since the contributions from [−1,−∞) on the upper and
lower sides of the cut cancel.

As µ increases an increasing number of saddles contributes to the integral
in (2.1). It is evident that, since Tn(z) is real-valued when θ = 0 and θ = π,
the complex saddles must occur in conjugate pairs with the result that there is
always an odd number of contributory saddles when θ = 0 and an even number
when θ = π. In Tables 2 and 3 we show the number of contributory saddles
when θ = 0 and θ = π for different intervals of µ. The increase (or decrease)
in the number of contributory saddles in a given µ-interval is associated with
a Stokes phenomenon that takes place at a critical value of the phase θ. Table
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4 shows the values θ = θs at which a Stokes phenomenon takes place as a
function of µ.

Table 2: Values of the interval boundaries µk (1 ≤ k ≤ 8).

k µk k µk

1 3.11179 5 17.02935
2 6.87877 6 20.13877
3 10.25555 7 23.49898
4 13.56411 8 26.43594

Table 3: The number of contributory saddles when θ = 0 and θ = π for different ranges of
the parameter µ. The end column indicates the saddle that undergoes a Stokes phenomenon.

µ interval θ = 0 θ = π Saddle µ interval θ = 0 θ = π Saddle

(0, µ1) 3 2 t−1 (µ4, µ5) 7 6 t−3

(µ1, µ2) 3 4 t2 (µ5, µ6) 7 8 t4
(µ2, µ3) 5 4 t−2 (µ6, µ7) 9 8 t−4

(µ3, µ4) 5 6 t3 (µ7, µ8) 9 10 t5

Table 4: The values of θs at which a Stokes phenomenon occurs for different µ.

µ θs/π µ θs/π

0.5 0.26352 3.5 0.89984
1.0 0.43458 4.0 0.76994
1.5 0.57971 4.5 0.63821
2.0 0.71391 5.0 0.50446
3.0 0.97162 6.0 0.23093
µ1 1.00000 µ2 0.00000

3. The expansion of Tn−1(z) for large n and |z| We denote the con-
tribution arising from the steepest descent path Ck through the saddle tk by
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Jk(z), where
Jk(z) =

Γ(n)e−z

2πi

∫

Ck

enψ(t)dt.

Then since

ψ(tk) =
1

tk
− log tk, ψ′′(tk) =

1 + tk
t2k

,

application of the method of steepest descents [3, p. 48] produces

Jk(z) ∼
Γ(n)e−z+n/tk

√

2π(1 + tk) t
n−1
k

∞
∑

s=0

c2s(tk)Γ(s+
1
2
)

ns+
1
2Γ(1

2
)

(3.1)

as n→ ∞.
The coefficients c2s(tk) (with s ≤ 2) are given by [1, p. 119], [4, p. 13]

c0(tk) = 1, c2(tk) =
−1

12ψ′′(tk)
{5Ψ2

3 − 3Ψ4},

c4(tk) =
1

864(ψ′′(tk))2
{385Ψ4

3 − 35(6Ψ2
3 −Ψ4)Ψ4 + 168Ψ3Ψ5 − 24Ψ6},

where, for convenience in presentation, we have defined

Ψr :=
ψ(r)(tk)

ψ′′(tk)
(r ≥ 3).

Insertion of the derivatives of ψ(t) evaluated at tk then yields after some
straightforward algebra the coefficients expressed in the form

c2(tk) = − P2(tk)

12(1 + tk)3
, c4(tk) =

P4(tk)

864(1 + tk)6
, (3.2)

where
P2(t) = 2t4 − 3t3 − 20t2 − 18t+ 2,

P4(t) = 4t8 − 156t7 − 695t6 − 696t5 + 1092t4 + 2916t3 + 1972t2 − 72t+ 4.

Higher-order coefficients can be obtained by an inversion process similar
to that outlined in the double saddle case discussed in [5]. Alternatively, they
can be obtained by an expansion process to yield Wojdylo’s formula [8] given
by

c2s(tk) =
(−)s

as0

2s
∑

j=0

(−)j(s+ 1
2
)j

j! aj0
Bkj . (3.3)

Here Bkj ≡ Bkj(a1, a2, . . . , ak−j+1) are the partial ordinary Bell polynomials
generated by the recursion2

Bkj =
k−j+1
∑

r=1

arBk−r,j−1, Bk0 = δk0,

2For example, this generates the values B41 = a4, B42 = a2
2
+ 2a1a3, B43 = 3a2

1
a2 and

B44 = a41.
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where δmn is the Kronecker symbol and the coefficients ar appear in the ex-
pansion

ψ(t)− ψ(tk) =
∞
∑

r=0

ar(t− tk)
r+2

valid in a neighbourhood of the saddle tk.

3.1 The expansion of Tn−1(z) for z > 0

From the discussion of the saddle points in Section 2.1 we then have for x > 0

Tn−1(x) = J0(x) + 2ℜ
K
∑

k=1

Jk(x), (3.4)

where the index K depends on the value of the parameter µ; see Table 3.
The series Jk(x) (1 ≤ k ≤ K) are subdominant with respect to Jo(x) in
the limit n → ∞; a correct inclusion of these contributions would necessitate
the evaluation of the dominant series J0(x) at optimal truncation (that is,
truncation at, or near, the smallest term in the asymptotic series). This in
turn would require the computation of the coefficients c2s(t0) for large values
of s. An example with K = 1 is considered in Section 4.

For the moment, we neglect the subdominant contributions to yield the
following result:

Theorem 1. Let x > 0 be either finite or at most O(n). Then, neglecting
exponentially smaller contributions, we have the expansion3

Tn−1(x) ∼
Γ(n)e−x+n/t0

√

2π(1 + t0) t
n−1
0

∞
∑

s=0

c2s(t0)Γ(s+
1
2
)

ns+
1
2Γ(1

2
)

(3.5)

as n → ∞, where t0 = W (µ) is the positive root of the equation tet = µ. The
coefficients c2s(t0) are specified in (3.2) for s ≤ 2.

A result equivalent to the leading term of (3.5) has been given for the asymp-
totic approximation of the probability in a Neyman type A distribution by
Douglas [2, p. 294]. The relation of the leading-order approximation to the
Lambert-W function was pointed out by V. Vinogradov; see Remark 5.1 of [7].

For complex z with θ ∈ [0, π) the result in (3.4) is modified to

Tn−1(z) =
K
∑

k=−K ′

Jk(z), (3.6)

where the indicesK, K ′ depend on µ according to Table 3 and satisfyK−K ′ ≤
1. If we neglect the subdominant contributions we have

Tn−1(z) ∼ J0(z) + J1(z) (θ ∈ [0, π)). (3.7)

3The expansion of Tn(x) is obtained from (3.5) by replacing n by n+ 1.



Touchard polynomials 775

For most of the θ-range, J1(z) is negligible compared to the dominant series
J0(z), except near θ = π where both series become comparable in importance.

3.2 The expansion of Tn−1(z) for z < 0

When z < 0 (θ = π) there are three cases to consider. First, when 1/e <
µ < µ1 only the saddles t0 and t1, which form a conjugate pair, contribute to
the integral (2.1); see Fig. 2(a). When µ ≥ µ1 there are additional pairs of
conjugate saddles (see Table 3) which are subdominant as n → ∞. It follows
from (3.1) and (3.7) that the expansion of Tn−1(−x) when 1/e < µ < µ1 is
given by

Tn−1(−x) ∼ ℜ
√
2Γ(n)ex+n/t0

√

π(1 + t0) t
n−1
0

∞
∑

k=0

c2s(t0)Γ(s+
1
2
)

ns+
1
2Γ(1

2
)

(n→ ∞). (3.8)

When µ ≥ µ1, (3.8) is the dominant expansion.
When 0 < µ < 1/e, the saddles t0 and t1 are real with t1 < t0 < 0 given by

the negative roots of the Lambert-W function; see Fig. 2(b). As explained in
Section 2.1, only the saddle t0 contributes to the integral in this case, so that

Tn−1(−x) ∼
Γ(n)ex+n/t0

√

2π(1 + t0) t
n−1
0

∞
∑

s=0

c2s(t0)Γ(s+
1
2
)

ns+
1
2Γ(1

2
)

(n→ ∞), (3.9)

where t0 is the smaller (negative) root of tet = −µ.
Thus we have the following theorem.

Theorem 2. Let x > 0 be either finite or at most O(n). Then, we have the
expansions

Tn−1(−x) ∼







































ℜ
√
2Γ(n)ex+n/t0

√

π(1 + t0) t
n−1
0

∞
∑

s=0

c2s(t0)Γ(s+
1
2
)

ns+
1
2Γ(1

2
)

(µ > 1/e)

Γ(n)ex+n/t0
√

2π(1 + t0) t
n−1
0

∞
∑

s=0

c2s(t0)Γ(s+
1
2
)

ns+
1
2Γ(1

2
)

(0 < µ < 1/e)

as n → ∞, where t0 is one of the conjugate pair of roots of tet = −µ with
smallest modulus in the first expression and the smaller (negative) root in the
second expression. The upper expansion represents the dominant contribution
when µ ≥ µ1.

Both the above expansions break down in the neighbourhood of µ = 1/e
where there is a double saddle at t = −1; see Fig. 2(c). A uniform asymptotic
approximation valid for µ ∼ 1/e and an expansion when µ = 1/e as n → ∞
are discussed in [5].
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4. Numerical examples and concluding remarks We present some
numerical results to illustrate the accuracy of the expansions developed in
Section 3. To keep the values from becoming too large we scale out the factor
n! and define

T̂n(z) =
1

n!

n
∑

k=0

S(n, k)zk; (4.1)

the series Jk(z) in (3.1) with a similar removal of the factor Γ(n) are denoted
by Ĵk(z).

In Table 5 we present the the values4 of T̂n−1(x) and the absolute relative
error in the expansion resulting from (3.5) for different n and x. In Table 6
we show the same when z < 0 (θ = π). In the first set of results with n = 20,
the values of x ≤ 50 correspond to µ > 1/e

.
= 0.3679 and the expansion

(3.8) applies; the remaining values x ≥ 80 correspond to µ < 1/e and so (3.9)
applies. Both these expansions break down in the neighbourhood of the critical
value µ = 1/e, which explains why the cases n = 20, x = 50 (µ = 0.4) and
n = 50, x = 150 (µ = 0.3) are associated with relatively large errors.

Table 5: Values of T̂n−1(x) and the absolute relative error in the asymptotic expansion
(3.5) for different n and x > 0 with truncation index s = 2.

x = 5 x = 20

n T̂n−1(x) Error T̂n−1(x) Error

20 2.07765(+02) 6.152(−06) 1.46396(+10) 3.146(−06)
30 1.17615(+01) 3.119(−06) 1.10997(+12) 5.524(−07)
50 8.87071(−04) 1.059(−06) 2.97967(+13) 8.697(−08)
80 2,99336(−12) 3.469(−07) 2.38019(+12) 8.859(−08)
100 7.50809(−19) 1.987(−07) 2.04887(+10) 6.442(−08)

Table 7 presents values of T̂n−1(z) for n = 50 and complex z = 5eiθ. Here
the value of µ = 10, so that from Table 3 there are 5 contributory saddles when
θ = 0, which reduce to 4 saddles (via a Stokes phenomenon) when θ = π. In the
asymptotic approximation we use (3.7), which retains only the dominant series
Ĵ0(z) together with the series Ĵ1(z). This latter series becomes comparable
with Ĵ0(z) as θ → π. The last column indicates the relative importance of the
contribution of Ĵ1(z) as θ varies.

We provide one example to demonstrate that optimal truncation of the
dominant series Ĵ0(x) yields an error comparable to the next subdominant

4In Tables 5–8 we have adopted the convention of writing x(y) for x× 10y.
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Table 6: Values of T̂n−1(−x) and the absolute relative error in the asymptotic expansions
(3.8) and (3.9) for different n and x > 0 with truncation index s = 2.

n = 20 n = 50

x T̂n−1(−x) Error T̂n−1(−x) Error

20 +1.72015(+03) 2.144(−04) +3.98563(−04) 2.275(−05)
50 −1.11431(+13) 1.762(−01) +4.62064(+09) 1.520(−05)
80 −9.07949(+17) 8.459(−04) −1.59622(+20) 5.736(−06)
100 −1.15125(+20) 1.205(−04) −1.56025(+26) 6.223(−05)
150 −5.25213(+23) 1.064(−05) −1.58180(+39) 1.341(−01)

Table 7: Values of T̂n−1(z) and its asymptotic approximation Ĵ0(z) + Ĵ1(z) for different
θ when n = 50 and z = 5eiθ with truncation index s = 2. The final column indicates the
relative importance of the two asymptotic series.

θ/π T̂n−1(z) Ĵ0(z) + Ĵ1(z) |Ĵ1(z)/Ĵ0(z)|

0.25 +1.42492(−04) +1.42492(−04) 1.157(−29)
−9.15007(−05)i −9.15008(−05)i

0.50 −2.13808(−07) −2.13810(−07) 9.472(−22)
−1.12648(−06)i −1.12648(−06)i

0.80 +7.58489(−12) +7.58481(−12) 1.399(−09)
−3.34872(−11)i −3.34873(−11)i

0.90 −1.49068(−13) −1.49070(−13) 3.395(−05)
−3.53028(−13)i −3.53028(−13)i

0.95 +2.67406(−14) +2.67407(−14) 5.773(−03)
+2.13515(−14)i +2.13515(−14)i

0.98 −4.92976(−15) −4.92974(−15) 1.271(−01)
+6.94349(−15)i +6.94352(−15)i

1.00 −5.42627(−15) −5.42628(−15) 1.000(+00)

series. In the case n = 16, x = 4 (θ = 0) we have µ = 4, so that

T̂n−1(x) = Ĵ0(x) + 2ℜ Ĵ1(x),

since from Table 3 there are no other contributory saddles for this value of
µ. The coefficients c2s(t0), where t0 = W (4)

.
= 1.2021679, appearing in the

expansion (3.1) have been determined by means of (3.3) for s ≤ 30; see Table
8. The optimal truncation index was found to be so = 26 for the above values
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Table 8: Values of the coefficients c2s(t0) for 1 ≤ s ≤ 10 when µ = 4 and t0 = W (4).

s c2s(t0) s c2s(t0)

1 −3.8686291792(−01) 6 −2.6842320622(−04)
2 +5.8050222467(−02) 7 −2.9436829689(−04)
3 +2.3540750889(−02) 8 +1.6066779690(−04)
4 −1.5978602246(−02) 9 −4.6043216840(−05)
5 +4.2654445898(−03) 10 +5.7487568453(−06)

of n and x. The value of T̂n−1(x) was computed to high precision from (4.1)

and the optimally truncated dominant series, Ĵ opt
0 (x), was subtracted from it

to yield the value

T̂n−1(x)− Ĵ opt
0 (x) = −1.344850× 10−13. (4.2)

The value of 2ℜ Ĵ1(x), with t1
.
= −0.1573079+4.6787801i and with truncation

index s = 2, yields −1.344958 × 10−13, which is close to the value in (4.2),
thereby confirming that the subdominant contribution is comparable to the
error resulting from the optimally truncated dominant series.
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