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Abstract

The contests are usually “unfair” in the sense that outperforming all
rivals may not be enough to be the winner, because some contestants are
favored by the allocation rule, while others are handicapped. However,
the roles of the contestants can have a transform. In other words, the
contestant who is favored by the allocation rule at beginning of the
contest is possibly handicapped with the passage of time. An unfair,
two-player discriminatory contest (all pay auction) where the roles of the
contestants have a transform, is analyzed. We characterize equilibrium
strategies and provide closed form solutions to unfair contests.
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1 Introduction

It is well-known that unfair contests are strategically equivalent to all-pay auc-
tions. In all-pay auctions, each bidder has to pay his bid regardless of whether
he wins the auctions or not. In unfair contest, each contestant bears his effort
costs no matter if he wins or not. Baye et al.[1] provided a comprehensive
analysis of the all-pay auction under complete information. Lizzer and Persico
[3] analyzed conditions that there existed a unique pure strategy equilibrium
in general auction games, including the all-pay auction. Maskin and Riley [4]
considered auctions in which contestants are asymmetric in the sense that the
valuations of each bidder were drawn from different distributions. This also
implies that the bidder with the highest valuation does no longer win the object
with certainty. Feess, Muehlheusser, and Walzla [2] extended several known
approaches for determining the equilibrium bidding strategies from a system
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of differential equations for analyzing contests with handicaps, and provided a
closed form solution to the equilibrium strategies.

Our paper is related to Feess, Muehlheusser, and Walzla [2] as they analyze
the unfair contests. We extend and modify their contest model for determining
the equilibrium bidding strategies. Exactly, we consider a two-player discrim-
inatory contest (all pay auction) where contestants have private information
concerning the value of the prize to them and their roles can have a transform
with the passage of time. We define the discriminatory level l is the function
of time t while l is a constant in [2]. For any time t, we show that there exists a
unique pure strategy Bayesian Nash Equilibrium (BNE) and provide a closed
form solution for the equilibrium strategies.

The remainder of the paper is organized as follows. In Section 2, the basic
model is presented. We analyze the equilibrium and derive our main theoretical
results for the unfair contests in Section 3. A conclusion is given in Section 4.

2 The Model

We consider an unfair contest (all-pay auction) where two risk-neutral contes-
tants indexed i=1,2 compete for a single prize to be awarded. Each contestant
has valuation vi ∈ [0, 1] for the prize which is drawn from a common distribu-
tion function F (v) ∈ C1 satisfying F (0) = 0 where the density function F ′(v)
is positively valued. The realization of vi (contestant i’s “type”) is private
information to contestant i. Each contestant can influence his chances of win-
ning the prize by exerting effort which is denoted by bi. In what follows, we
analyze equilibria in which the effort strategy of contestant is a function of his
type, i.e., bi : [0, 1] → R+

0 .
The specific feature of this contest is the allocation rule. Denoting the

identity of the winner by W = 1 or W = 2 and the discriminatory level be
defined by l(t) which is the function of time t, l(t) ∈ (0,+∞), we have

W = 1 ⇔ b1 > l(t) · b2;W = 2 ⇔ b2 >
1

l(t)
· b1, (1)

where a coin is flipped in the case where b1 = l(t) · b2 holds so that each
contestant wins with probability 1

2
. Thus, contestant 1 wins the contest only

if he exerts at least l(t)-times as much effort as contestant 2, while contestant
2 wins if he exerts at least 1

l(t)
-times as much effort as contestant 1. We define

the value of l(t) is

l(t)


∈ (0, 1), t ∈ (0, α),

= 1, t = α,

∈ (1,+∞), t ∈ (α,+∞),

(2)
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where α ∈ (0,+∞), and the value of α may be different due to the different
forms of function l(t). For simplifying the following analysis, we assume l(t) is
a continuous and strictly increasing function of t. When l(t) ∈ (1,+∞), (t ∈
(α,+∞)), we can find that contestants 1 and 2 will be referred to as the
“handicapped” and the “favored” contestant, respectively. However, when
l(t) ∈ (0, 1), (t ∈ (0, α)), contestant 1 will be referred to as the “favored”
contestant and the contestant 2 will be the “handicapped”. We will refer to the
case l(t) = 1, (t = α) as a “fair” contest and the roles of the contestants begin
to have a transform at that time. In other words, from the time t = α where
l(t) = 1, the role of the contestant 1 will be transferred from “handicapped”
to “favored” with the passage of time, and the role of the contestant 2 will
have a opposite transform.

We find that the payoffs at time t for given effort levels b1 and b2 are

π1(b1, b2, v1; l(t)) =


v1 − b1, b1 > l(t) · b2,
1

2
v1 − b1, b1 = l(t) · b2,

− b1, b1 < l(t) · b2,

(3)

and

π2(b1, b2, v2; l(t)) =



v2 − b2, b2 >
1

l(t)
· b1,

1

2
v2 − b2, b2 =

1

l(t)
· b1,

− b2, b2 <
1

l(t)
· b1.

(4)

Therefore, at time t, the expected payoffs are

Π1(·) = v1 · Pr(b1 > l(t) · b2(v2))− b1, (5)

Π2(·) = v2 · Pr(b2 >
1

l(t)
· b1(v1))− b2. (6)

3 Equilibrium analysis

Provided that l(t) is a function of t, for any identified time t = t0, t0 ∈ (0,+∞),
the unfair contest we analyze is a static game with incomplete information and
the equilibrium concept is BNE. A vector of effort level (b∗1(v1), b

∗
2(v2)) is a BNE

if the following set of conditions holds

Πi(b
∗
i (vi), b

∗
j(vj); l(t)) ≥ Πi(bi, b

∗
j(vj); l(t)) (7)

for all vi ∈ [0, 1] and bi ∈ R+
0 . In equilibrium, no contestant can increase his

expected payoff by choosing an effort strategy other than b∗i , given that the
opponent adheres to his equilibrium strategy. We cite a definition given in [1].
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Definition 3.1 Consider a set A ⊂ ℜ and a function z: A → ℜ. Then
define Dz := {a ∈ A : z(a) ∈ ℜ+}.

Lemma 3.2 (Equilibrium effort strategies) b∗i : Dbi → (0, bi(1)) where
i = 1, 2 is an increasing bijection between non-empty subsets of [0,1] and dif-
ferentiable almost everywhere.

Proof: Firstly, we show that the structure of the payoff function induces non-
decreasing strategies. For any v′i, vi ∈ [0, 1] with v′i > vi, From Eq.(7), the
incentive compatibility requires

Πi(bi(vi), vi, l(t)) ≥ Πi(bi(v
′
i), vi, l(t)),

Πi(bi(v
′
i), v

′
i, l(t)) ≥ Πi(bi(vi), v

′
i, l(t)).

Taking the sum of both conditions yields

Πi(bi(v
′
i), v

′
i, l(t))− Πi(bi(v

′
i), vi, l(t)) ≥ Πi(bi(vi), v

′
i, l(t))− Πi(bi(vi), vi, l(t)).

From (5) and (6), we get

(v′1 − v1)Pr(b1(v
′
1) > l(t) · b2) ≥ (v′1 − v1)Pr(b1(v1) > l(t) · b2),

(v′2 − v2)Pr(b2(v
′
2) >

1

l(t)
· b1) ≥ (v′2 − v2)Pr(b2(v2) >

1

l(t)
· b1).

This only holds if bi(v
′
i) ≥ bi(vi) which proves monotonicity.

Now we prove continuity by contradiction. We firstly consider t ∈ (α,+∞)
where l(t) ∈ (1,+∞), assuming that b1 is not continuous at v1 ∈ (0, 1). Stated
differently b1(x) > lim

ε→0
b1(v1−ε) ≡ b−1(v1), which means that contestant 2 will

not choose any effort level that b2 ∈ (b−1(v1)/l(t), b1(v1)/l(t)) as he can always
reduce costs while the probability of winning the contest remains unchanged.
Anticipating this, there is no reason for contestant 1 to increase effort from
b−1(v1) to b1(v1). Hence, we end up with a contradiction. Furthermore, as
F ′(v) ̸= 0 ∀v ̸= 0, this result holds for all v1 ∈ (0, 1].

Considering t ∈ (α,+∞) where l(t) ∈ (1,+∞), we assume that bi(vi) is
not strictly increasing on Dbi . Therefore, we can find an interval I ⊆ (0, 1]
of finite length with bi(vi) ≡ b > 0,∀vi ∈ I. Given such a strategy profile of
contestant i, contestant j maximizes his expected payoff as given in(4) or (5).
We set i = 1 and j = 2. Now assuming that contestant 2 chooses (b− ε)/l(t)
for some valuation v2, his pay-off is

v2Pr(b− ε > b1)− (b− ε)/l(t).

If contestant 2 chooses (b+ ε)/l(t), his expected pay-off is

v2Pr(b+ ε > b1)− (b+ ε)/l(t).
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Contestant 2 profits from such a deviation as can be seen when ε → 0

lim
ε→0

(v2Pr(b1 > b+ ε)− b+ ε

l(t)
− (v2Pr(b1 > b− ε)− b− ε

l(t)
))

= lim
ε→0

(v2 · Pr(b1 ∈ [b− ε, b+ ε])− 2
ε

l(t)
)

= v2Pr(b1 = b) > 0.

Therefore contestant 2 will always exert effort slightly above b/l(t) instead
of slightly below. This contradicts continuity. Analogously, a gap in effort
strategies of contestant 1 can be deduced from a plateau in contestant 2’s
equilibrium strategy. This proves strict monotonicity on Dbi . Therefore effort
strategies are differentiable almost everywhere and a bijection from Dbi onto
(0, bi(1)].

If t ∈ (0, α) where l(t) ∈ (0, 1), we identify g(t) = 1
l(t)

and can find that

W = 2 ⇔ b2 > g(t) · b1;W = 1 ⇔ b1 >
1

g(t)
· b2, whose form is identical to the

form of Eq.(1). Thus the Lemma 1 is proved when t ∈ (0, α)
If l(t) ∈ (1,+∞), the contestant 1 is “handicapped” and the contestant 2

is “favored”. W = 1 ⇔ b1 > l(t) · b2;W = 2 ⇔ b2 > 1
l(t)

· b1, where the W

means the winner. When l(t) ∈ (0, 1), the contestant 1 is “favored” and the
contestant 2 is “handicapped”. At this time, we define g(t) = 1

l(t)
. Then we

find that W = 2 ⇔ b2 > g(t) ·b1;W = 1 ⇔ b1 >
1

g(t)
·b2, whose form is identical

to the form of Eq.(1). By the same approach used before, we conclude that
this Lemma is correct if l(t) ∈ (1,+∞). It completes the proof.

We will show that an equilibrium is unique when it exists. Lemma 3.2 en-
sures existence of the inverse mapping ρi : (0, b

∗
i (1)) → Dbi , and ρi(b) = b−1

i (b).
The maximization problem for contestant 1 when contestant 2 is playing some
strategy b2(v2) is given by

max
b1

v1 · Pr(b1 > l(t) · b2(v2))− b1 = max
b1

v1 · F (ρ2(
b1
l(t)

))− b1, (8)

while for contestant 2, when contestant 1 is playing strategy b1(v1), we have

max
b2

v2 · Pr(b2 >
1

l(t)
· b1(v1))− b2 = max

b2
v2 · F (ρ1(l(t) · b2))− b2. (9)

The following system of first order differential equations gives the first order
conditions of these maximization problems

v1 · F ′(ρ2(
b1(v1)

l(t)
)) · ρ′2(

b1(v1)

l(t)
) · 1

l(t)
= 1, (10)

v2 · F ′(ρ1(l(t) · b2(v2))) · ρ′1(l(t) · b2(v2)) · l(t) = 1. (11)
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For a given set of initial conditions, Eqs(10) and (11) determine a unique
trajectory of effort strategies [3]. Namely, there is a single pair of initial con-
ditions, such that a solution to Eqs.(10) and (11) is unique. Additionally, the
initial conditions follow from the subsequent results concerning the properties
of the equilibrium effort distributions Gi=1,2 = F (ρi(b

∗
i )) which is the mapping

from DGi
to (0,1].

Lemma 3.3 (Equilibrium effort distribution) In any BNE, the effort dis-
tributions G1 and G2 have the following properties
(i) DG1 = (0, b∗1(1)] and DG2 = (0, b∗2(1)] where b∗1(1) = l(t) · b∗2(1).
(ii) Gi is continuous and strictly monotone increasing for any time t, i = 1, 2.
(iii) If Gi(0) > 0, then Gj ̸=i(0) = 0.
(iv) There is a single set of admissible initial conditions.

Proof: Part(i): bi(0) = 0 determines the lower bound of DGi
. Contestant 1

can never be better off by exerting effort excessively than l(t) · bmax
2 . Thus

b1 ≤ l(t) · bmax
2 holds. Analogously, neither will contestant 2 exert more effort

than necessary to win the contest with probability 1. Thus b2 ≤ 1
l(t)

·bmax
1 holds.

Of course, this must also be true for bmax
1 and bmax

2 where bmax
1 ≤ l(t) · bmax

2

and bmax
2 ≤ 1

l(t)
· bmax

1 . Rearranging yields

bmax
2 ≤ 1

l(t)
· bmax

1 ≤ bmax
2 ,

from which we can deduce that bmax
2 = 1

l(t)
· bmax

1 or bmax
1 = l(t) · bmax

2 .

Part(ii): It follows from our assumptions on F (v) and Lemma 3.2.
Part(iii): Suppose Gj(0) = g > 0, for all vi ∈ [0, 1], there is some positive
effort level x > 0 for contestant i such that he is strictly better off than with
choosing bi = 0. If bi = 0, contestant i loses when bj > 0 (which happens with
probability 1−g, and wins with probability 1

2
when bj = 0 (which happens with

probability g) so that his expected payoff is Πi = 0 ·(1−g)+ vi
2
·g = vi·g

2
. When

choosing a positive effort level x > 0, he wins with certainty when bj = 0. We
have

Πi(x, l(t)) = vi ·Gj(l(t) · x)− x ≥ vi · g − x > vi ·
g

2
= Πi(0, l(t))

or
Πi(x, l(t)) = vi ·Gj(

x

l(t)
)− x ≥ vi · g − x > vi ·

g

2
= Πi(0, l(t)),

which holds if x < g
2
· vi. Thus, we arrive at the desired result.

Part(iv): As the first order conditions consist of two first order ordinary differ-
ential equations which are Lipschitz continuous for vi > 0. Any set of initial
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conditions (bi(vi) = ci, i = 1, 2) determines unique trajectories bi(vi). Using
parts(i) and (iii) together with the so-called no-crossing property of equilib-
rium effort levels [3] implies that there is only one admissible set of initial
conditions[3]. The proof is completed.

For given time t, the following analyzed method is appropriate whether
0 < l(t) < 1 or 1 ≤ l(t) < +∞.

Considering a bijection k(v1, t) which maps every type of contestant 1 onto
the type of contestant 2 whose equilibrium effort level is 1

l(t)
-times as much as

contestant 1’s, we get

k(v1, l(t)) = ρ2(
b∗1(v1)

l(t)
) (12)

Analogously, k−1(v2, l(t)) = ρ1(l(t) · b∗2(v2)) gives that type of contestant 1
who will choose l(t)-times as much effort as contestant 2 when his type is v2.
Note that Definition 1, Eq.(12) defines a bijection between the domains Db1

and Db2 of the two equilibrium strategies. We can rewrite the first-order con-
ditions with k(v1, l(t)) and separate the dependent and independent variables
to draw a closed form solution for k(·).

Lemma 3.4 Define H(x) =
∫ 1

x
F ′(y)
y

dy such that d
dx
H(·) = −F ′(x)

x
< 0.

Then we have

(i). k(v1, l(t)) = H−1(l(t) ·H(v1)) satisfying

d

d(l(t))
k(v1, l(t))

{
> 0, l(t) ∈ (0, 1),

< 0, l(t) ∈ (1,+∞),

and k(v1, 1) = v1.

(ii). k−1(v2, t) = H−1( 1
l(t)

·H(v2)) satisfying

d

d(l(t))
k−1(v2, l(t))

{
< 0, l(t) ∈ (0, 1),

> 0, l(t) ∈ (1,+∞),

and k−1(v2, 1) = v2.

(iii).

 lim
t→0

k(v1, l(t)) = 1

lim
t→0

k−1(v2, l(t)) = 0
implies that contestant 1’s (contestant 2’s) prob-

ability of winning tends to 1 (0) as t → 0.
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(iv).

 lim
t→+∞

k(v1, l(t)) = 0

lim
t→+∞

k−1(v2, l(t)) = 1
implies that contestant 1’s (contestant 2’s) prob-

ability of winning tends to 0 (1) as t → +∞.

Proof: Using k(v1, l(t)), the conditions (10) and (11) can be transformed
into a set of differential equations expressed in a single variable v1. Substituting
k(v1) for v2 in Eq.(11) yields

v1 · F ′(ρ2(
b1(v1)

l(t)
)) · ρ′2(

b1(v1)

l(t)
) = 1, (13)

k(v1) · F ′(ρ1(l(t)b2(k(v1)))) · ρ′1(l(t) · b2(k(v1))) · l(t) = 1. (14)

From (13) and (14), we get

v1·F ′(ρ2(
b1
l(t)

))·ρ′2(
b1
l(t)

)· 1

l(t)
= k(v1)·F ′(ρ1(l(t)·b2(k(v1)))·ρ′1(l(t)·b2(k(v1)))·l(t)

(15)
Moreover, it follows from the definition of k(·) that

dk(v1, l(t))

dv1
= ρ′2(

b1(v1)

l(t)
) · db1(v1)

dv1
· 1

l(t)
. (16)

Thus, we can rewrite Eq.(15) as

v1 · F ′(k(v1, l(t))) ·
dk(v1l(t))

dv1
· 1

db1(v1)
dv1

= k(v1) · F ′(ρ1(l(t)b2(ρ2(
b1(v1)

l(t)
)))) · ρ′1(l(t)b2(ρ2(

b1(v1)

l(t)
))) · l(t)

⇔ v1 · F ′(k(v1, l(t))) ·
dk(v1, l(t))

dv1
· 1

db1(v1)
dv1

= k(v1) · F ′(ρ1(b1)) · ρ′1(b1) · l(t)

⇔ v1 · F ′(k(v1, l(t)) ·
dk(v1, l(t))

dv1
= k(v1) · F ′(v1) · ρ′1(b1) ·

db1(v1)

dv1
· l(t).

(17)

Finally, as ρ1(b1(v1)) = v1, it follows that ρ′1(b1) = dv1
db1

which implies that

ρ′1(b1) ·
db1(v1)
dv1

= 1. Hence, we end up with a single differential equation

dk(v1, l(t))

dv1
=

l(t) · k(v1, l(t)) · F ′(v1)

v1 · F ′(k(v1, l(t)))
, (18)

where the boundary condition k(1, l(t)) ≡ 1 and our assumptions on F (v)
guarantee a unique solution for k(·). Analogously, we get

dk−1(v2, l(t))

dv2
=

k−1(v2, l(t)) · F ′(v2)

l(t) · v2 · F ′(k−1(v2, l(t)))
. (19)
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To derive a solution in closed form, we separate dependent and independent
variables of differential equations (18) and (19) to yield

dk

k
F ′(k) = l(t)

dv1
v1

F ′(v1), (20)

dk−1

k−1
F ′(k−1) =

dv2
l(t) · v2

F ′(v2). (21)

Using H(x) =
∫ 1

x
F ′(y)
y

dy gives rise to

H(k) = l(t) ·H(v1), (22)

H(k−1) =
1

l(t)
H(v2), (23)

which are equivalent to

k(v1, l(t)) = H−1(l(t)H(v1))

and

k−1(v2, l(t)) = H−1(
1

l(t)
H(v2)).

As stated in the Lemma. The contestant 2 wins when v1 ≤ k−1(v2, l(t)
which occurs with probability F (k−1(v2, l(t))) and contestant 1 wins when
v2 ≤ k(v1, l(t)) which occurs with probability F (k(v1, l(t))). Therefore, the
results (i),(ii),(iii) and (iv) are valid by using the definition of k(v1, l(t)) and
k−1(v2, l(t)). It completes the proof.

With the closed form solution for k(·) and its inverse, we obtain the main
result.

Theorem 3.5 There exists a unique pure-strategy BNE in which contestant
1 chooses

b∗1(v1) =

∫ v1

max⌊0,k−1(0,l(t))⌋
l(t) · k(V, l(t))F ′(V )dV (24)

and in which contestant 2 chooses

b∗2(v2) =
b∗1(k

−1(v2, l(t))

l(t)
. (25)

Proof: The derivative of the equilibrium effort strategy with respect to v1
must satisfy db1(v1)

dv1
= 1

ρ′1(b1)
. Moreover, using the definition of k(·), we have
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ρ′1(b1) = ρ′1(l(t)·b2(k(v1, l(t)))) such that db1(v1)
dv1

= 1
ρ′1(l(t)·b2(k(v1,l(t))))

holds. From

Eq.(24) it has

1

ρ′1(l(t) · b2(k(v1, l(t))))
= l(t) · k(v1, l(t)) · F ′(v1). (26)

Thus, we have
db1(v1)

dv1
= l(t) · k(v1, l(t)) · F ′(v1). (27)

Together with b1(max[0, k−1(0, l(t))]) = 0 and the definition of k(v1, l(t)),
closed form solution for the equilibrium effort strategies are given by

b∗1(v1) =

∫ v1

max[0,k−1(0)]

l(t) · k(V, l(t)) · dF (V ), (28)

b∗2 =
b1 ∗ (k−1(v2))

l(t)
. (29)

This completes the proof.

From Theorem 3,5, we find that there exists a unique pure-strategy BNE
whether 0 < l(t) < 1 or 1 ≤ l(t) < +∞. Considering an extreme situation
where the auction is taken continuously in the context of the unfair contest, in
the period t ∈ (0, T ), the total efforts B1(v1) and B2(v2) exerted by contestants
1 and 2, respectively, are expressed by

B1(v1) =

∫ T

0

∫ v1

max⌊0,k−1(0,l(t))⌋
l(t) · k(V, l(t))F ′(V )dV dt, (30)

and

B2(v2) =

∫ T

0

b∗1(k
−1(v2, l(t))

l(t)
dt. (31)

4 Conclusion

We have analyzed a two-player unfair contest where the roles of the contes-
tants can have a transform. In the discriminatory contest we discussed, the
allocation rule is asymmetric. The discriminatory level l(t) we defined is the
function of time t, whose change can make the roles of the contestants have
a transform with the passage of time. We show that for a given time t, there
exists a unique pure strategy equilibrium. As a result, inefficiencies based
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on inefficient allocation arise only from the possibility that the favored player
wins the contest although his value is lower. We conclude that the rational and
reasonable expectation to the discriminatory level l(t) is the most important
factor to decision-making process.
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