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Abstract

For each of the two and three-dimensional indecomposable Lie alge-

bras the geodesic equations of the associated canonical Lie group con-

nection are given. In each case a basis for the associated Lie algebra

of symmetries is constructed and the corresponding Lie brackets are

written down.
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1 Introduction

Any Lie group comes equipped with a natural linear torsion-free connection
and consequently a canonical system of geodesic equations. This connection
was introduced as long ago as 1926 [2]: it is in fact E. Cartan’s “0”-connection
[4]. More recently, it has appeared in the context of the inverse problem of
Lagrangian mechanics [6,3,9]. In this paper we embark on a study of the Lie
symmetry properties of the canonical geodesic system and it is confined to the
case of indecomposable Lie groups in dimensions two and three.
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In the main body of this paper we provide systematically the Lie symmetry
algebras for each of the three-dimensional Lie algebras. For each such algebra
we provide a group matrix S, the left and right-invariant vector fields and one-
forms and the associated system of geodesics. We list in each case a basis for
the Lie symmetries and the corresponding Lie brackets. Of course constructing
these symmetry algebras is a labor intensive albeit routine process [7] that
is aided considerably by symbolic programs such as MAPLE, which is what
was used in this paper. Nonetheless we forgo completely all the elementary
calculations and simply present the results.

The notation for the Lie groups in dimension three and their associated
Lie algebras is taken from [8]. However, in the interests of efficiency, we prefer
to consolidate cases 3.3, 3.4 and 3.5 into a single case and likewise for cases
3.6 and 3.7. It is also useful to consult Jacobson’s approach at the end of the
first chapter of his book [5]. In the future we hope to investigate Lie symmetry
properties of canonical geodesic systems in dimension four and higher. We will
use R

m
⋊R

n to denote a semi-direct product of abelian Lie algebras in which
R

m is a subalgebra and R
n an ideal.

2 The canonical Lie group connection

On right invariant vector fields X and Y the canonical symmetric connection
∇ on a Lie group G is defined by

∇XY =
1

2
[X, Y ] (1)

and then extended to arbitrary vector fields using linearity and the Leibnitz
rule. One could just as well use left-invariant vector fields to define ∇ but one
must check that the definition is well defined. Some properties of the canonical
connection have been derived in [3,9]. Here we shall be content to review them
as follows:

• The connection has torsion zero

• The curvature is given by R(X, Y )Z = 1

4
[[X, Y ], Z]

• The curvature tensor R is covariantly constant

• The curvature tensor R is zero if and only if the Lie algebra is two-step
nilpotent

• The Ricci tensor is symmetric and in fact a multiple of the Killing form

• The Ricci tensor is bi-invariant
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• Any left or right invariant vector field is a symmetry of the connection

• Any left or right invariant one-form defines a linear first integral of the
geodesics

• Geodesic curves are translates of one-parameter subgroups

• Any vector field in the center of the Lie algebra is bi-invariant

3 Free particle systems

In this Section we shall review the Lie symmetries of a free particle system,
being the most extreme case of a flat connection. However, this case of course
transcends issues of any Lie group structure. The same results have been
rediscovered many times but we shall refer to [1] as one source. The geodesic
equations will be written as

ẍi = 0 (2)

where (xi) are a system of local coordinates on some manifold M . It will be
helpful to define the dilation vector field ∆ on M by

∆ = tDt + xiDi (3)

where Di denotes the partial derivative operator with respect to xi and there
is a sum over i from 1 to n, the latter being the dimension of M . Then the
following vector fields comprise a basis for the space of Lie symmetries of eq(2):

Dt, Di, tDt, x
iDt, tDi, x

iDj , t∆, xi∆. (4)

Adding up we obtain a space of dimension n2 + 4n + 3 = (n + 2)2 − 1 and
indeed we obtain a representation of the simple Lie algebra sl(n + 2,R).

4 2-dimensional Lie group, geodesics and sym-

metry algebra

2.1: [e1, e2] = e1:

S =

[

ey x

0 1

]

.

Left-invariant vector fields eyDx,−Dy

Left-invariant one forms e−ydx, dy

Right-invariant vector fields Dx, Dy + xDx

Right-invariant one forms dx− xdy, dy.
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Geodesics:

ẍ = ẋẏ, ÿ = 0. (5)

Symmetry algebra basis and brackets:

e1 = Dt, e2 = Dx, e3 = yDt, e4 = eyDx, e5 = tDt, e6 = xDx, e7 = −Dy. (6)

[e1, e5] = e1, [e2, e6] = e6, [e3, e5] = e3, [e3, e7] = e1, [e4, e6] = e4, [e4, e7] = e4.

The corresponding symmetry algebra is seven-dimensional indecomposable:
the nilradical is abelian spanned by e1, e2, e3, e4 and there is an abelian com-
plement spanned by e5, e6, e7 so the symmetry algebra is R3

⋊ R
4.

5 3-dimensional Lie groups, geodesics and sym-

metry algebras

3.1: [e2, e3] = e1:

S =





1 x z

0 1 y

0 0 1



 .

Left-invariant vector fields Dz, Dx, Dy + xDz

Left-invariant one forms dz − xdy, dy, dx

Right-invariant vector fields Dz, Dy, Dx + yDz

Right-invariant one forms dz − ydx, dx, dy.

Geodesics:
z̈ = ẋẏ, ẍ = 0, ÿ = 0. (7)

By making the change of variable z = z − xy

2
, the geodesic equations can be

changed to the “free particle” system

z̈ = 0, ẍ = 0, ÿ = 0. (8)

Hence the symmetry Lie Algebra is sl(5,R) as was explained in Section 3. We
shall forgo the irksome task of transforming the generators of the free particle
into generators for the Heisenberg group under the transformation induced by
the variable z introduced above.

3.2: [e1, e3] = e1, [e2, e3] = e1 + e2:
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S =





ez zez x

0 ez y

0 0 1



 .

Left-invariant vector fields ezDx, e
z(Dy + zDx),−Dz

Left-invariant one forms e−z(dx− zdy), e−zdy, dz

Right-invariant vector fields Dx, Dy, Dz + (x+ y)Dx + yDy

Right-invariant one forms dx− (x+ y)dz, dy − ydz, dz.

Geodesics:
ẍ = (ẋ+ ẏ)ż, ÿ = ẏż, z̈ = 0. (9)

Symmetry algebra basis and brackets:

e1 = Dz, e2 = −(xDx + yDy), e3 = −tDt, e4 = −yDx, e5 = Dy,

e6 = ez(Dy + zDx), e7 = Dx, e8 = ezDx, e9 = Dt, e10 = zDt.
(10)

[e1, e6] = e6 + e8, [e1, e8] = e8, [e1, e10] = e9, [e2, e5] = e5, [e2, e6] = e6, [e2, e7] =
e7, [e2, e8] = e8, [e3, e9] = e9, [e3, e10] = e10, [e4, e5] = e7, [e4, e6] = e8.

It is a 10-dimensional indecomposable, solvable Lie algebra with a 7-dimensional
nilradical. In fact the nilradical is R

2 ⊕ A5.1 where R
2 and A5.1 are spanned

by e9, e10 and e4, e5, e6, e7, e8 and the 3-dimensional abelian complement is
spanned by e1, e2, e3, respectively. The algebra as a whole is isomorphic to
R

3
⋊ (R2 ⊕A5.1).

3.3(a = 1), 3.4(a = −1), 3.5(a 6= 0,±1): [e1, e3] = e1, [e2, e3] = ae2:

S =





ez 0 x

0 ez y

0 0 1



 .

Left-invariant vector fields ezDx, e
azDy, Dz

Left-invariant one forms e−zdx, e−azdy, dz

Right-invariant vector fields Dx, Dy, Dz + xDx + ayDy

Right-invariant one forms dx− xdz, dy − aydz, dz

Geodesics:
ẍ = ẋż, ÿ = aẏż, z̈ = 0. (11)
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Symmetry algebra basis and brackets 3.3:

e1 = tDt, e2 = Dz, e3 = xDx + yDy, e4 = Dt, e5 = Dx, e6 = Dy

e7 = zDt, e8 = ezDx, e9 = ezDy, e10 = xDx − yDy, e11 = yDx, e12 = xDy.

(12)

[e1, e4] = −e4, [e1, e7] = −e7, [e2, e7] = e4, [e2, e8] = e8, [e2, e9] = e9,

[e3, e5] = −e5, [e3, e6] = −e6, [e3, e8] = −e8, [e3, e9] = −e9, [e5, e10] = e5,

[e5, e12] = e6, [e6, e10] = −e6, [e6, e11] = e5, [e8, e10] = e8, [e8, e12] = e9,

[e9, e10] = −e9, [e9, e11] = e8, [e10, e11] = −2e11, [e10, e12] = 2e12,
[e11, e12] = −e10.

The symmetry algebra has a non-trivial Levi decomposition in which e10, e11, e12
span the semi-simple part sl(2,R); the radical is a semi-direct sum consisting
of an abelian nilradical spanned by e4, e5, e6, e7, e8, e9 and abelian complement
spanned by e1, e2, e3. The algebra as a whole is isomorphic to sl(2,R)⋊ (R3

⋊

R
4).

Symmetry algebra basis and brackets 3.4:

e1 = tDt, e2 = Dz − yDy, e3 = xDx + yDy, e4 = Dt, e5 = Dx, e6 = Dy

e7 = zDt, e8 = ezDx, e9 = e−zDy, e10 = xDx − yDy, e11 = yezDx, e12 = xe−zDy.

(13)

[e1, e4] = −e4, [e1, e7] = −e7, [e2, e6] = e6, [e2, e7] = e4, [e2, e8] = e8,

[e3, e5] = −e5, [e3, e6] = −e6, [e3, e8] = −e8, [e3, e9] = −e9, [e5, e10] = e5,

[e5, e12] = e9, [e6, e10] = −e6, [e6, e11] = e8, [e8, e10] = e8, [e8, e12] = e6,

[e9, e10] = −e9, [e9, e11] = e5, [e10, e11] = −2e11, [e10, e12] = 2e12, [e11, e12] = −e10.

The symmetry algebra has a non-trivial Levi decomposition in which e10, e11, e12
span the semi-simple part sl(2,R); the radical is a semi-direct sum consist-
ing of an abelian nilradical spanned by e4, e5, e6, e7, e8, e9 and abelian com-
plement spanned by e1, e2, e3. Again the algebra as a whole is isomorphic to
sl(2,R)⋊ (R3

⋊R
4).

Symmetry algebra basis and brackets 3.5:
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e1 = Dz, e2 = tDt e3 = xDx, e4 = yDy, e5 = Dt,

e6 = Dx, e7 = Dy, e8 = zDt, e9 = ezDx, e10 = eazDy.
(14)

[e1, e8] = e5, [e1, e9] = e9, [e1, e10] = ae10, [e2, e5] = −e5, [e2, e8] = −e8, [e3, e6] =
−e6, [e3, e9] = −e9, [e4, e7] = −e7, [e4, e10] = −e10.

It is a 10-dimensional indecomposable solvable Lie algebra. It has a 6-dimensional
abelian nilradical spanned by e5, e6, e7, e8, e9, e10 and a 4-dimensional abelian
complement spanned by e1, e2, e3, e4. Hence, the symmetry algebra is isomor-
phic to R

4
⋊ R

6.

3.6(a = 0), 3.7a(a 6= 0) : [e1, e3] = ae1 − e2, [e2, e3] = e1 + ae2:

S =





eaz cos z eaz sin z x

−eaz sin z eaz cos z y

0 0 1



 .

Left-invariant vector fields eaz(cos z Dx − sin zDy), e
az(sin z Dx + cos z Dy), Dz

Left-invariant one-forms e−az(cos z dx− sin z dy), e−az(sin z dx+ cos z dy), dz
Right-invariant vector fields Dx, Dy, Dz + (ax+ y)Dx − (x− ay)Dy

Right-invariant one forms dx− (ax+ y)dz, dy − (ay − x)dz, dz.

Geodesics:

ẍ = (aẋ+ ẏ)ż, ÿ = (aẏ − ẋ)ż, z̈ = 0. (15)

Symmetry algebra basis and brackets 3.6:

e1 = Dz −
1

2
(− cos z Dx + sin z Dy), e2 = xDx + yDx , e3 = tDt, e4 = Dt

e5 = Dy, e6 = zDt, e7 = Dx, e8 = −yDx + xDy, e9 = sin z Dx + cos z Dy,

e10 = − cos z Dx + sin z Dy,

e11 = (−x cos z + y sin z )Dx + (y cos z + x sin z )Dy,

e12 = (y cos z + x sin z )Dx + (x cos z − y sin z )Dy.

(16)
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[e1, e5] = −1

2
e7, [e1, e6] = e4, [e1, e7] =

1

2
e5, [e1, e8] =

1

2
e9, [e1, e9] = −1

2
e8,

[e2, e5] = −e5, [e2, e7] = −e7, [e2, e8] = −e8, [e2, e9] = −e9, [e3, e4] = −e4,

[e3, e6] = −e6, [e5, e10] = −e7, [e5, e11] = e9, [e5, e12] = −e8, [e7, e10] = e5,

[e7, e11] = e8, [e7, e12] = e9, [e8, e10] = −e9, [e8, e11] = e7, [e8, e12] = −e5,

[e9, e10] = e8, [e9, e11] = e5, [e9, e12] = e7, [e10, e11] = 2e12, [e10, e12] = −2e11,
[e11, e12] = −2e10.

The symmetry algebra has a non-trivial Levi decomposition in which e10, e11, e12
span the semi-simple part sl(2,R); the radical is a semi-direct sum consist-
ing of an abelian nilradical spanned by e4, e5, e6, e7, e8, e9 and abelian com-
plement spanned by e1, e2, e3. Hence, the symmetry algebra is isomorphic to
sl(2,R)⋊ (R3

⋊R
6).

Symmetry algebra basis and brackets 3.7:

e1 = tDt, e2 = xDx + yDy, e3 = −yDx + xDy, e4 = Dz, e5 = Dy, e6 = zDt,

e7 = Dx, e8 = Dt, e9 = eaz(sin z Dx + cos z Dy), e10 = −eaz(cos z Dx − sin z Dy).
(17)

[e1, e6] = −e6, [e1, e8] = −e8, [e2, e5] = −e5, [e2, e7] = −e7, [e2, e9] = −e9, [e2, e10] =
−e10, [e3, e5] = e7, [e3, e7] = −e5, [e3, e9] = −e10, [e3, e10] = e9, [e4, e6] = e8, [e4, e9] =
ae9 − e10, [e4, e10] = ae10 + e9.

It is a 10-dimensional indecomposable solvable Lie algebra. It has a 6-dimensional
abelian nilradical spanned by e5, e6, e7, e8, e9, e10 and a 4-dimensional abelian
complement spanned by e1, e2, e3, e4. Hence, the symmetry algebra is isomor-
phic to R

4
⋊ R

6.

3.8 (simple sl(2,R)) [e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1:

S =









e2z(1 + xy)2 2xe2z(1 + xy) e2 zx2

y(1 + xy) 1 + 2 xy x

e−2 zy2 2 e−2 zy e−2 z









.

Left-invariant vector fields: −2xDx+2yDy+Dz, (1+2xy)Dx−y2Dy−yDz, Dy

Left-invariant one forms: ydx+(1+2xy)dz, dx+2xdz,−y2dx+dy−2y(1+xy)dz
Right-invariant vector fields Dz, e

2z(x2Dx +Dy − xDz), e
−2zDz

Right-invariant one forms dz + xdy, e−2zdy, e2z(dx− x2dy).
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Geodesics:

ẍ = 4x2ẏż + 2xẋẏ − 2ẋż, ÿ = 2ẏż, z̈ = −2xẏż − ẋẏ. (18)

Symmetry algebra basis and brackets:

e1 = Dy, e2 = Dz + 2(x2Dx +Dy − xDz), e3 = (−xy − 1

2
)Dx +

y2

2
Dy +

y

2
Dz,

e4 = Dz, e5 = e−2zDx, e6 = e2z(x2Dx +Dy − xDz), e7 = tDt, e8 = Dt.

(19)

[e1, e2] = 2e1, [e1, e3] =
1

2
e2, [e2, e3] = 2e3, [e4, e5] = −2e5, [e4, e6] = 2e6, [e5, e6] =

−e4, [e7, e8] = −e8

The symmetry Lie algebra is an 8-dimensional decomposable algebra. It has
two copies of sl(2,R) spanned by e1, e2, e3 and e4, e5, e7 and a non-abelian 2-
dimensional algebra A2,1 spanned by e7, e8. Hence, the algebra is isomorphic
to sl(2,R)⊕ sl(2,R)⊕A2,1.

3.9 (simple so(3)) [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2:

S =









cosx cos y cos z − sin x sin z sin x cos y cos z + cosx sin z − sin y cos z

− cosx cos y sin z − sin x cos z − sin x sin z cos y + cos x cos z sin y sin z

cosx sin y sin x sin y cos y









.

Left-invariant vector fields Dx,−
sinx cos y

sin y
Dx+cosxDy+

sinx

sin y
Dz,−

cos x cos y

sin y
Dz−

sin xDy +
cos x
sin y

Dz

Left-invariant one forms dx+cos y dz, cosx dy+sin x sin y dz,− sin xdy+cosx sin y dz.
Right-invariant vector fields: Dz,

sin z

sin y
Dx+cos z Dy−

cos y sin z

sin y
Dz,

cos z

sin y
Dx−sin z Dy−

cos y cos z

sin y
Dz Right-invariant one-forms dz+cos y dx, sin y sin z dx+cos z dy, sin y cos z dx−

sin z dy.

Geodesics:

ẍ = csc y(ż − cos yẋ)ẏ, ÿ = − sin y ẋż, z̈ = csc y (ẋ− cos y ż)ẏ (20)

Symmetry algebra basis and brackets:
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e1 = Dz, e2 =
sin z

sin y
Dx + cos z Dy −

cos y sin z

sin y
Dz,

e3 =
cos z

sin y
Dx − sin z Dy −

cos y cos z

sin y
Dz, e4 = Dx,

e5 =
cos y cos x

sin y
Dx + sin xDy −

cos x

sin y
Dz, e6 =

cos y sinx

sin y
Dx − cosxDy −

sinx

sin y
Dz,

e7 = tDt, e8 = Dt.

(21)
[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1, [e4, e5] = −e6, [e4, e6] = e5, [e5, e6] =
−e4, [e7, e8] = −e8.

The symmetry Lie algebra is an 8-dimensional decomposable algebra. It
contains two copies of so(3) spanned by e1, e2, e3 and e4, e5, e6 and a non-
abelian 2-dimensional algebra A2,1 spanned by e7, e8. Hence, the algebra is
so(3)⊕ so(3)⊕ A2,1.
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