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Abstract
The aim of the paper is to study the existence, multiplicity, and
nonexistence of symmetric positive solutions for integral boundary value
problems with ¢-Laplacian operator. We generalize and improve some
previous results. Moreover, examples are given to illustrate the appli-
cability of our results. Our analysis mainly relies on the fixed point
theorem of cone expansion and compression of norm type.
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1 Introduction

The existence of symmetric positive solutions of boundary value problems has
been studied by several authors in the literature, see [1-3,5-7,10] and the ref-
erences therein.

In [8], Luo consider the boundary value problem

(6" (1)) = WD f(tu(®) (1), ¢ € (0.1)
u(0) = u(1) = [ gls)u(s)ds. (L.1)
o(u'(0)) = 6(u'(1) = [ h(s)ou’(s))ds.

where 0 < [} g(s)ds < 2
In this paper, we still study (1.1), where % <[4 g(s)ds < 1. By applying
the fixed point theorem (Lemma 1.1), we establish sufficient conditions for

the existence, multiplicity and nonexistence of symmetric positive solutions of
(1.1).
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Lemma 1.1([4]). Let P be a cone of real Banach space E, €y and $y be
two bounded open sets in E such that 0 € € C Q; C €. Let operator
T:PN(Q\ Q) — P be completely continuous. Suppose that one of the two
conditions
(i) |[Tul| < JJul|, Vue PNoQ and ||Tul| > ||ul|, ¥V u € PN oQy,
(i) |[Tul] > ||ul|, YV ue PNOQy and ||Tul| < |Jull, YV u e PN oQy
is satisfied. Then T has at least one fived point in PN (Qy\ Q).

Throughout the paper, we assume the following conditions hold.
(H1) ¢ is an odd, increasing homeomorphism from R onto R and there exist
two increasing homeomorphisms 1, and 1, of (0,00) onto (0, c0) such that

1 (u)p(v) < p(uv) < ho(u)o(v) for all u, v > 0.

Moreover, ¢, ¢~! € C*(R), where ¢! denotes the inverse of ¢.
(H2) w € L'[0,1] is nonnegative, symmetric on [0,1] and w(t) # 0 on any
subinterval of [0, 1].
(H3) f:1]0,1] x D — R* is continuous with D = R* x R, R™ = [0, 00). For
(t,u,v) € [0,1] x D, f(t,u,v) is symmetric in ¢ and even in v, i.e., f satisfies
f(—=tu,v) = f(t,u,v) and f(t,u, —v) = f(t,u,v).
(H4) g, h € L'[0,1] are nonnegative, symmetric on [0,1], and % < p =
Jig(s)ds < 1,0 <v = [y h(s)ds < 1.
Remark 1.1. Zhang [12] and Ma [9] discussed ¢(u) = |ulP~?u (p > 1) and
¢(u) = u, respectively, so our paper improves and generalizes the results of
[12, 9] to some degree.

2 Preliminary Notes

Let the space E = C'[0,1] endowed with the norm ||u|| = max{||u|lo, ||v[o},
where ||u|lo = maxcjo1y |u(t)|, be our Banach space. Define P to be a cone in
E by P={u€ E:u(t) >0, uis concave, symmetric on [0, 1]}. Also, define,
for 0 < r < R two positive numbers, Q, and Q. g by Q, = {u € F : |Ju]| <
r}, Qr={u € E:r <|ul]| < R}. Note that 9Q, = {u € E : |u|]| =r}.

We introduce the integral operator 17" : ' — E by

Tu(t) = /0 H(t, 56! ( /0 " Hy (s, ) () (), u’(f))df) ds,  (2.1)

where
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From Lemma 2.1, 2.2 and 2.4 in [8], we have the following result.
Lemma 2.1. Assume (H1)-(H4) hold. Then u € E is a solution of (1.1) if
and only if u is a fized point of the operator T

The operator T': P — P is completely continuous, the proof can be found
in [8], Lemma 2.6.
Lemma 2.2([12]). If (H4) holds, then ¥ t, s € [0,1], the following results are
true.
(i) G(t,s) >0, H(t,s) >0, Hy(t,s) > 0;
(i) G(1—t,1—s) = G(t,s), H(1—t,1—s) = H(t,s), Hi(1—t,1—s) = Hy(t, s);
(iil) pe(s) < H(t,s) < ve(s), pre(s) < Hi(t, s) < vie(s)
with

1 e(s)g(s)ds 1 e(s)h(s)ds
_/0— :/0—, e(s) = s(1—s), Vzﬁ, 1

where H(t,s), G(t,s) and Hy(t,s) are defined by (2.2) and (2.3), respectively.
Lemma 2.3([11]). Assume (H1) holds. Then, ¥V u, v € (0,00),

by (v < @7 ud(v)) < Y (w,

where Y7 and 15 denote the inverse of 11 and 1o, respectively.
So, now we have

(Tu)'(t) = /tl(l — ) (/01 Hy(s,m)w(r)f(r,u(r), U,(T))d7'>ds
_/Ot sqﬁ—l(/ol Hl(s,T)w(T)f(T,u(T),u’(T))d7->dS7

() (1) = =07 ([ Hult.9)uwls) f(s,uls), w(5))ds ).

For u € P, (Tu)"(t) < 0, which implies (T'w)'(t) is non-increasing on [0, 1].
Thus,

|(Tu)' ()] < max{—(Tu)'(1), (Tu)(0)}

< max{/ sds, / (1—s ds}¢ 1</0 me(r f(r, u(7’),u'(7))d7>

—/ sds¢™ (/ ye(T)w(T) f(r, u( T),u(T))dT).
(2.4)
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3 The existence of one symmetric positive so-
lution

In order to state the following results we need to introduce the new notations:

t t
f?= limsup max f(tu,v) fs = liminf in f(tuv)
lullo+lwllo—+8 *€0:1] @ ([[ullo + [[v]lo)’ lullo+livllo— t€[0.1] ¢([[ullo + [[v[|o)’

- oy (/1 pre(T)w T)dT) |
Y (/ Te(r )d7'>

o= 7/ s)dsipy </ ye(T )dT), £ = /0 sdsiyy! </01 yle(T)w(T)dT),

where [ denotes 0 or oo, and p, v, p1, 71 are defined in Lemma 2.2.
Remark 3.1. According to (H1), (H4) and the definitions of 7, J§, we have
~v > 3 which implies 0 < £ <o, 0< 0 < 1.
Theorem 3.1. Assume (H1)-(H4) hold. In addition, suppose one of the
following conditions is satisfied:
(i) There ezist two constantsr, R with0 < r < JR such that f(t, v) > ¢(57)
for (t,u,v) € [0,1] x [0,r] x [=r,r], and f(t,u,v) < H(LR) f07’ (t,u,v) €
[0,1] x [0, R] x [-R, R];
(i) fo > Ua((f; pe(s)ds) ) (2 pre(r(r)dr) ™ and £ < (2 fi ve(s)ds) ™)
(Ji yre(r)w(r)dr)~" (particularly, fo = oo and f* =0).
Then problem (1.1) has at least one symmetric positive solution.
Proof. Let the operator T" be defined by (2.1).

(i) For w € PN 0%Q,, we obtain u € [0,7r] and v’ € [—r,r], which implies
f(t,u,u') > ¢(557). Hence for ¢ € [0,1], by Lemma 2.2 and Lemma 2.3,

Tult >/ pe (/ pre(r qub(—O_r))ds

1 1

els)dsisy! (/0 premyu(r)dr) =1 = dosr = |l

ie., u € PNoL,. implies
[Tull > fluf. (3.1)

Next, for u € PN IQg, u € [0,R] and v € [—R,R], which implies
fltu,u') < qﬁ(%R) Thus for ¢ € [0, 1], by Lemma 2.2, Lemma 2.3,

R
o

el)dsur ([ me(ryu(r)ir) ZR=o R = ul,
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ie., u € PNOQg implies
[Tuflo < [lul]- (3.2)

From (2.4), and noting that 0 < ¢ < o,

(Tuy (@) < / 1 sds¢—1( [ Ce(r g

o
< [ sasur ([ netryoir)ir) SR =2 <
which implies that for u € P N 0Qxg
1(Tw)'[lo < [[ull. (3.3)
By (3.2) and (3.3), we obtain that
| Tul| < ||u||, for u € PN OQR. (3.4)

(ii) Considering fo > ¥o((fy pe(s)ds)™)(fy pre(T)w(r)dr) ™", there exists
r > 0 such that f(t,u,v) 2 (fo—el)@(|[ullo+ lv]o), for ¢ € (0, 1], lullo-+lollo €
[0,2r], where &, > 0 satisfies p [y e(s)dsty *(fy pre(T)w(r)dr(fo — €1)) > 1.
Then, for t € [0,1], u € PN IS, which implies ||ul|op + ||v||o < 2r, we have

1

Tu) > [ pel)om ([ pre@w)o = e0ollul + ulo)dr ) ds
> [ pets) ([ meryu(par (o~ 0ol s

0

1 1 1
> p [ ets)sir ([ pre(mu(r)dr(fo — en))ull > Jull
0 0
which implies for v € P N 0fY,
ITull = Jull. (35

Next, turning to £ < ¢, ((2 fy ve(s)ds)™)(fy ye(r)w(r)dr)~", there exist
R > 0such that f(t,u,v) < (f®+e2)o(||ullo+]|v]o), for t € [0,1], ||ullo+]|v]o €
(R, 00), where g5 > 0 satisfies 11 ((2 3 ve(s)ds) ™) ( [y yie(T)w(r)dr) ™t — f> —
g2 > 0. Set M = max|, 4 1vo<k, tepo1 /(¢ u,v). Then f(t,u,v) < M+ (f>*+
e2)é(||ullo + [[v]lo). Choose R > max{r, R, ¢~ (M [1)1((2 Jy ve(s)ds)™)

(Jy ”yle(T)w(T)dT)_l — [ —&9]™1)}. Hence for u € P N ONg, we have

< Jy e(s)dsd” (/ oG 5 2ot
< (s)dswy (/ Ye(T )d7<¢(];4R) +foo+€2))2R§ %2R: Jul,

Tu(t) < [ 2e(s)o™ ([ melmhwM + (5 + ol -+ lu'lo))dr )ds




994 Yan Luo

ie., u € PNOQg implies

[Tuflo < [lul]- (3.6)
By (2.4), and noting that 0 < £ < o,
1 1 M
0] < [ siso( (52 =2 )otzm)
(Tuy()] < g odst / e (G + e #(2R)
* ol (5w 7 +=))
< a/o ve(s)dsiy /0 me(T)w(r)dr S2R) + fC+e2) )2R < ||u],
which implies that for u € P N 0Qg
(Tw)'[lo < flul]- (3.7)
By (3.6) and (3.7), we obtain that
| Tu|| < JJul|, for u e PN OQg. (3.8)

Applying Lemma 1.1 to (3.1) and (3.4), or (3.5) and (3.8) yields that T
has a fixed point u € PN Q, g with 0 <7 < ||u|| < R. It follows from Lemma

2.1 that problem (1.1) has at least one symmetric positive solution w.
Theorem 3.2. Assume (H1)-(H4) hold. And suppose f© < 11 ((2 [} ve(s)ds

) (o me(nw(rT)dr)™, foo > Ua((fy pe(s)ds) ) (Jy pre(r)w(r)dr) ™" ( partic-
ularly, f° =0 and f. = 0o) are satisfied, then problem (1.1) has at least one
symmetric positive solution.

4 The existence of multiple symmetric posi-
tive solutions

Theorem 4.1. Assume (H1)-(H4) hold, as do the following two conditions:
(©) fo > va((fo pe(s)ds) ") (Jy pre(r)w(r)dr)™" and

foo > 0l pe(s)ds) ) (J2 pre(r)uu(r)dr)
(ii) There exists b > 0 satisfying f(t,u,v) < ¢(Lb), (¢, u,v) € [0,1] x [0,b] x
(b, b].
Then problem (1.1) has at least two symmetric positive solutions uy(t), us(t),
which satisfy 0 < |Juq|| < b < ||uz]|-
Proof. Consider (i). If fo > 1o((fy pe(s)ds)~™)(fy pre(T)w(r)dr) ™", it follows
from the proof of (3.5) that we can choose r with 0 < r < b such that

| Tul|| > ||u||, for u e PNo,. (4.1)

If foo > Ua((fy pe(s)ds)™)(fy pre(T)w(r)dr)~", then like in the proof of (3.5),
we can choose R with b < R such that

| Tu|| > |Jul|, for u e PN OQg. (4.2)
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Next, for u € P N 0, we have u € [0,b] and «' € [—b,b], then from (ii),
we obtain f(¢,u,u’) < ¢(1b). Thus for ¢t € [0,1], like in the proof of (3.4), we
have

|Tu|| < ||u|l, for u e PN oY. (4.3)

Applying Lemma 1.1 to (4.1) and (4.3), or (4.2) and (4.3) yields that 7" has a
fixed point u; € PNQ, 4, and a fixed point ug € PNQy g. It follows from Lemma
2.1 that problem (1.1) has at least two symmetric positive solutions u; and wus.
Noticing (4.3), we have [|u;]| # b and [|us|| # b, s0 0 < ||u1|| < b < [Jus]|.
Theorem 4.2. Assume (H1)-(H4) hold, as do the following two conditions:
() 12 < 6a((2 JEre(s)ds) ) me(r)w(r)dr) ™ and

7 < Uy J vels)ds) DU melryw(r)dr)
(i) There exists d > 0 satisfying f(t,u,v) > ¢(5=d), (t,u,v) € [0,1] x [0,d] x
[—d, d].
Then problem (1.1) has at least two symmetric positive solutions uy(t), us(t),
which satisfy 0 < ||u1|| < d < ||uz]|.

5 The nonexistence of positive solution

Theorem 5.1. Assume (H1)-(H4) hold. If f(t,u,v) < ¢(5=(|lullo + [|v]lo)) for
all (t,u,v) € [0,1] x D, then problem (1.1) has no positive solution.

Proof. Assume u(t) is a positive solution of (1.1), we have ||u|| = ||Tu||. From
(2.1) and (2.4), it is easy to prove that ||Tullo < ||u|| and ||(Tu)||o < [|u]|. So
|Tu|| < ||u||, which is a contradiction.

Theorem 5.2. Assume (H1)-(H4) hold. If f(t,u,v) > ¢(5=([lullo + [lv]lo)) for
all (t,u,v) € [0,1] x D, then problem (1.1) has no positive solution.

6 Applications

Example 6.1 Let ¢(u) = |ulu, g(t) =3, h(t) = 1 in (1.1). Now we consider
the boundary value problems

(o(u"(1)))" = 3(15){(%%@)7“'(15))7 te(0,1),
u(0) = u(1) = 5 /0 u(s)ds, 6.1)
1 /1

¢(u"(0)) = o(u"(1)) = 5/0 ¢(u”(s))ds,
where w(t) = 6, f(t,u,v) = (1 + sin7t)(12% + u)(6 + cosv) for (t,u,v) €
[0,1] x [0, 00) X (—o0, 00).

Let 91 (u) = ¢2(u) = u?, w > 0. Then, by calculations we obtain that

M:Za V:%> pzéa plzéa 7:4> 71:2a 6:\4/—83’ UZ%) 5:?
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Clearly, the conditions (H1)-(H4) hold.
Corollary 6.1 The problem (6.1) has at least one symmetric positive solution.
R =

m
In fact, choosing r = 1, 50, we have r = 1 < % = 0R. For
(t,u,v) € [0,1] 0,1] x [-1,1],

fltu,v) = (14 sinmt)(122 + u)(6 + cosv) > 12° x 6 = ¢($T),

and for (¢,u,v) € [0,1] x [0,50] x [—50, 50],
1
fltuv) <2 (122 +50) x 7= 2716 < 2812.5 = 6(=R).

So, it follows from the condition (i) of Theorem 3.1 that (6.1) has at least one
symmetric positive solution.
Example 6.2 Let ¢(u) = u, g(t) = 3, h(t) = 1 in (1.1). Now we consider the
boundary value problems

(6 ()" = w(®)f (. u(t). /(1)) 1 € (0.1),

3
u(0) =u(1) = = [ uls
0

¢(u"(0)) = o(u"(1)) =

)ds (6.2)
%/wwmm

where w(t) =6, f(t,u,v) = [1+t(1 —)](1 +u)(55 + v})[1 + (|lullo + [|v]l0)?]
for (t,u,v) € [0,1] x [0, 00) x ( 00, 00).
Let ¢ (u) = ¥a(u) = u, u > 0. Then, by calculations we obtain that
3 1 1 1 1 4
= — =_ p=— == =1 =2, 0=—= =—, (=1,
K 4’ v 9’ P 2’ P1 6’ Y » N ) 96’ o 3’ 5

Clearly, the conditions (H1)-(H4) hold.
Corollary 6.2 The problem (6.2) has at least two symmetric positive solutions.
In fact,

fo= fu =00 > Ua(( [ pels)ds) ([ pe(ru(ryan ! =72

and choosing b = £, for (t,u,v) € [0,1] % [0, £] X [—1%, 2], we have that

fltue) =[5+t 0)(0+ )5 + AL+ (o + o]l
< TR 5) x (35 + 52) X (14 50) = 1ot < o = 9(20)
=7 ) 10~ 25 25 12500 20 o

So, it follows from Theorem 4.1 that (6.2) has at least two symmetric positive
solutions wuy(t), us(t) satisfying
1
0 < flur]] < 2 < fluz].
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