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Abstract

Surfaces of arbitrary constant negative Gaussian curvature are in-
vestigated using the fundamental equations of surface theory and the
notion of line congruences. It is shown that such surfaces can be gener-
ated by means of solutions to a particular form of sine-Gordon equation.
A Bäcklund transformation is found for this equation and it is shown
how this can be used to construct nontrivial solutions to it. The theorem
of permutability is formulated for the system as well.
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1 Introduction

A great deal of the evolution of ideas pertaining to nonlinear equations, sur-

faces and solitons had their origins in investigations concerning the sine-Gordon

equation [1, 2]. The study of surfaces with constant Gaussian curvature dates

back to E. Bour [3], who in 1862 generated the particular form

ωuv =
1

ρ2
sin(ω), (1.1)

where K = −1/ρ2. Although much has been written with regard to this

system, it seems to invariably return to the case in which K = −1. Surfaces

with constant Gaussian curvature are of great interest [4, 5]. The intention

here is to develop an equation similar in form to (1.1) of sine-Gordon type

such that K for the corresponding surface is negative but arbitrary. Such

an equation will be referred to as a deformed sine-Gordon equation and the

discussion can be thought to pertain to any two-dimensional manifold which

can be embedded in R3. In fact, any compact, smooth two-manifold can be

embedded smoothly in R3. This enables the use of the natural metric 〈, 〉 on

R3 so that lengths can be calculated as well as angles between normals in order

that the formalism of a line congruence can be invoked. A two parameter family

of lines in R3 or R2+1 forms a line congruence, and all normal lines of a surface

form a line congruence called a normal line congruence. A line congruence

can be expressed by writing Y = X(u, v) + λq(u, v), 〈q ,q〉 = 1. For fixed

parameters u, v, this represents a straight line passing through X(u, v) in the

direction q(u, v). This then is a two parameter family of straight lines, or a

line congruence. This idea appears in a formulation of Bäcklund’s theorem

which will be invoked to aid in establishing the claims which are formulated,

as well as the fundamental equations for a two-manifold or surface.
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Suppose that S and S∗ are two focal surfaces of a line congruence, and PP ∗

is the line in the congruence and the common tangent line of the two surfaces,

so P ∈ S and P ∗ ∈ S∗. Suppose that e3, e
∗
3 are the normal vectors at points

P and P ∗ to S and S∗, respectively. Finally, let τ be the angle between e3

and e∗3, so 〈e3, e∗3〉 = cos τ , and let l be the distance between P and P ∗. The

following result will be invoked when required.

Theorem 1.1 (Bäcklund’s Theorem ) Suppose that S and S∗ are two

focal surfaces of a pseudo-spherical congruence in R3, the distance between

the corresponding points is constant and denoted l. The angle between the

corresponding normals is a constant τ . Then these two focal surfaces S and

S∗ have the same negative constant Gaussian curvature

K = −sin2 τ

l2
. (1.2)

Thus, from any solution of the sine-Gordon or deformed sine-Gordon equa-

tion, a corresponding surface of negative constant curvature can be obtained.

It is the latter case that is elucidated here.

On the other hand, from the Bäcklund theorem, it is known that two focal

surfaces of a pseudospherical congruence are surfaces with the same negative

constant curvature. These two focal surfaces will correspond to two solu-

tions of the deformed sine-Gordon equation to appear. It will be seen that

a relation can be established between the two solutions from the Bäcklund

theorem, or equivalently, from the correspondence between two focal surfaces

of a pseudo-spherical line congruence. This will be enough to give a Bäcklund

transformation for this new deformed sine-Gordon equation.
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2 Development of the Equation and Bäcklund

Transformation.

Suppose S and S∗ are two focal surfaces with arbitrary constant negative

curvature K such that {P, e1, e2, e3} is a frame corresponding to coordinates

of surface S with

ω1 = cos
α

2
du ω2 = sin

α

2
dv,

ω13 = sin
α

2
du ω23 = − cos

α

2
du,

(2.1)

ω12 =
1

2
(αv du+ αu du) = −ω21.

These forms completely specify the set dr, de1, de2, de3 in the fundamental

equations given that ωij + ωji = 0.

Suppose

x∗ = x+ le = x+ l(cosϑe1 + sinϑe2), (2.2)

form a pseudo-spherical line congruence and ϑ is to be specified. In (2.2), x

and x∗ correspond to the surfaces S and S∗, l is the distance between the

corresponding points P and P ∗ on the surfaces S and S∗, e is in the direction

of PP ∗ and ϑ is the angle between e and e1. Suppose S corresponds to a

solution α of the deformed sine-Gordon equation to be obtained and α′ a

second solution. The fundamental equations for S are given by

dx = ω1e1 + ω2e2, de1 = ω12e2 + ω13e3, de2 = ω21e1 + ω23e3, (2.3)

de3 = ω31e1 + ω32e2, ω3 = 0.

The fundamental equations for S∗ are the same as (2.3), but with star on each

quantity. By exterior differentiation of (2.2), it is found that

dx∗ = dx+ l(cosϑ de1 + sinϑ de2) + l(− sinϑ e1 + cosϑ e2) dϑ. (2.4)



Negative Gaussian Curvature 5

Using (2.1) in (2.3) and then substituting this into (2.4), there results,

dx∗ = [cos
α

2
du− l sinϑ dϑ− 1

2
l sinϑ(αv du+ αu dv)]e1

+[sin
α

2
dv+

1

2
l cosϑ(αv du+αu dv)+l cosϑ dϑ]e2+[l sin

α

2
cosϑ du−l cos

α

2
sinϑ dv]e3.

(2.5)

Due to the fact that e∗3 has to be perpendicular to e1 with respect to 〈 , 〉 and

have a constant angle τ with respect to e3, the unit normal of S∗ at P ∗ takes

the form

e∗3 = sin τ sinϑ e1 − sin τ cosϑ e2 + cosϑ e3. (2.6)

Since e∗3 is the normal vector of S∗, with respect to the usual metric on R3

〈dx∗, e∗3〉 = 0. (2.7)

Calculating the left-hand side of (2.7) and simplifying, the following result is

obtained

l sin τ dϑ+
1

2
l sin τ(αv du+ αu dv)

− sin τ(cos
α

2
sin θ du−sin

α

2
cosϑ dv)−l cos τ(sin

α

2
cosϑ du−cos

α

2
sinϑ dv) = 0.

(2.8)

Now ϑ is specified by considering the case in which

ϑ =
α′

2
,

and since the orthogonality condition holds and du, dv are independent differ-

entials, the coefficients in (2.8) can be equated to zero giving

1
2
l sin τ (α′u + αv) = sin τ cos(

α

2
) sin(

α′

2
) + l cos τ sin(

α

2
) cos(

α′

2
),

1
2
l sin τ(α′v + αu) = − sin τ sin(

α

2
) cos(

α′

2
)− l cos τ cos(

α

2
) sin(

α′

2
).

(2.9)



6 Paul Bracken

No restrictions have been placed on the value of K up to this point. To give

system (2.9) in another form, let us introduce a set of new variables σ, η defined

to be

σ =
1

2
(u+ v), η =

1

2
(u− v). (2.10)

In terms of the variables (2.10), upon adding and subtracting the pair of equa-

tions in (2.9) and using standard trigonometric identities , they simplify to

1
2
l sin τ(α + α′)σ = sin τ sin(

α′ − α
2

) + l cos τ sin(
α− α′

2
),

1
2
l sin τ(α′ − α)η = sin τ sin(

α′ + α

2
) + l cos τ sin(

α + α′

2
).

(2.11)

Introducing constants C1 and C2 to denote the pair of constants

C1 =
sin τ − l cos τ

l sin τ
, C2 =

sin τ + l cos τ

l sin τ
, (2.12)

it is clear that (2.11) can be expressed in the equivalent form

(α′ + α)σ = 2C1 sin(
α′ − α

2
), (α′ − α)η = 2C2 sin(

α′ + α

2
). (2.13)

System (2.13) will be compatible provided that the quantities α and α′ sat-

isfy a specific nonlinear equation. To obtain this equation, the compatibility

condition for system (2.13) must be worked out. Differentiating, we obtain

(α + α′)ση = 2C1C2 cos(
α′ − α

2
) sin(

α′ + α

2
),

(α′ − α)ησ = 2C1C2 cos(
α′ + α

2
) sin(

α′ − α
2

). (2.14)

Adding and subtracting the two in (2.14) and invoking trigonometric identi-

ties, it is found that both α and α′ satisfy an identical deformed sine-Gordon

equation, namely,

ψησ = C1C2 sin(ψ), ψ = α, α′. (2.15)



Negative Gaussian Curvature 7

Equation (2.15) can be expressed in terms of the u, v variables as follows

ψuu − ψvv =
1

2
C1C2 sin(ψ). (2.16)

It should be remarked that, based on (2.12), the combination C1C2 is not in

general related in a straightforward way to K. The case in which sin τ/l = 1

can be considered separately. This corresponds to the case in which K = −1

so that

C1 =
1− cos τ

sin τ
, C2 =

1 + cos τ

sin τ
.

In this case, it is easy to determine that

C1C2 =
1− cos2 τ

sin2 τ
= 1. (2.17)

Therefore, corresponding to the case K = −1, upon setting β = C1 and using

(2.17) to get C2, it is useful to note that system (2.13) assumes the usual form,

(α′ + α)σ = 2β sin(
α′ − α

2
), (α′ − α)η =

2

β
sin(

α′ + α

2
). (2.18)

Let us make a summary of what has been done up to now. It has been seen

Bäcklund’s theorem has the following implications. Suppose S is a surface

in R3 with negative, constant Gaussian curvature (1.2) such that l > 0 and

τ 6= nπ are constants. Let e0 ∈ TP0M be a unit vector which is not in

the principle direction. Then there exists a unique surface S∗ and a pseudo-

spherical line congruence {PP ∗} where P ∈ S and P ∗ ∈ S∗ satisfy PP ∗0 = le0,

and τ is the angle between the normal direction of S at P and S∗ at P ∗. The

content of the new results is the next result.

Theorem 2.1 A surface of arbitrary constant negative curvature (1.2) is

determined by any nontrivial solution to (2.15)-(2.16) combined with the fun-

damental surface equations (2.3).
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3 Calculation of Solutions and Formulation

of the Theorem of Permutability.

The system described by (2.13) is in fact a Bäcklund transformation for

the equation (2.16). Given a particular solution to (2.16), it will be shown

that (2.13) can be used to obtain a new solution to (2.16). Since α = 0 is a

solution to (2.15)-(2.16) for any C1, C2, substituting into (2.13) with α′ = α1,

we have

∂σα1 = 2C1 sin(
α1

2
), ∂ηα1 = 2C2 sin(

α1

2
). (3.1)

Introduce two new variables s, t which are defined such that s = C1σ and

t = C2η so that system (3.1) takes the form

∂α1

∂s
= 2 sin

α1

2
,

∂α1

∂t
= 2 sin

α1

2
. (3.2)

Since the derivatives in (3.2) are the same, it follows that α1 must have the form

α1 = α1(s + t). To determine the form of the new solution α1 corresponding

to α = 0 explicitly, let us write the first equation in (3.2) as

∂α1

∂s
= 2 sin(

α1

2
) = 4 sin

α1

4
cos

α1

4
= 4 tan

α1

4
cos

α1

4
. (3.3)

This equation is equivalent to the form,

∂

∂s
tan

α1

4
= tan

α1

4
. (3.4)

In this form, the equation may be easily integrated with the help of (3.2) to

give the solution

tan
α1

4
= C exp(s+ t), (3.5)

where C is an arbitrary real constant. It is now straightforward to transform

back to the (u, v) variables from the (s, t) variables to yield

tan
α1

4
= C exp[C1σ + C2η] = C exp[

1

2
C1(u+ v) +

1

2
C2(u− v)]. (3.6)
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Therefore a new solution to deformed sine-Gordon equation (2.15) has been

found starting with the α = 0 solution applying (2.13) and integrating. Let us

summarize it in the form,

α1 = 4 tan−1{C exp[
1

2
(C1 + C2)u+

1

2
(C1 − C2)v]}.

Other solutions to (2.15) can be constructed along similar lines.

According to the theorem of permutability, the application of two successive

Bäcklund transformations commutes. To express it more quantitatively, if two

successive Bäcklund transformations with distinct parameters λ1 and λ2 map a

given solution α0 through intermediate solutions to either α12 or α21, the order

in which this is done is irrelevant and in fact α12 = α21. If the intermediate

solutions are denoted α1 and α2, then making use of the η equation in (2.13)

and identifying the Bäcklund parameter as the constant which appears on the

right, the scheme described can be expressed in the form

(α1 − α0)η = 2λ1 sin(
α1 + α0

2
),

(α12 − α1)η = 2λ2 sin(
α12 + α1

2
),

(α2 − α0)η = 2λ2 sin(
α2 + α0

2
),

(α12 − α2)η = 2λ1 sin(
α12 + α2

2
).

In fact, all the derivative terms can be eliminated from these equations. Sub-

tracting the first two and the last two pairwise, and then subtracting these

two resulting equations produces the result,

λ2(sin(
α12 + α1

2
)− sin(

α2 + α0

2
)) + λ1(sin(

α1 + α0

2
)− sin(

α12 + α2

2
)) = 0.

(3.7)
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By making use of standard trigonometric identities, it is possible to render this

in the following concise form,

(λ2 − λ1) tan(
α12 − α0

4
) = (λ1 + λ2) tan(

α2 − α0

4
). (3.8)

The usual result for the sine-Gordon equation is obtained. The theorem of

permutability allows the construction algebraically of a second order solution,

and the procedure can be carried out order by order.

To conclude, it has been seen here that the sine-Gordon equation has

been generalized to accommodate cases of arbitrary Gaussian curvature, and a

Bäcklund transformation has been calculated as well as applying it to generate

a solution. Further solutions can be produced from it using the theorem of

permutability.
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