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Abstract 
Machine Learning is considered as a subfield of Artificial Intelligence and it is concerned with the development of 

techniques and methods which enable the computer to learn. Hence, the goal of learning was to output a hypothesis that 

performed the correct classification of the training data and early learning algorithms were designed to find such an 

accurate fit to the data. Since then SVMs have been successfully applied to real-world data analysis problems, often 

providing improved results compared with other techniques. It gives the clear idea for the advantage of the support vector 

approach is that sparse solutions to classification and regression problems in misclassified data. This fact facilitates the 

application of SVMs to problems that involve a large amount of data. 
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1. Introduction 
The SVMs provide a compromise between the parametric and the nonparametric approaches: As in linear classifiers, 

SVMs estimate a linear decision function; mapping of the data into a higher-dimensional feature space may be needed. 

This mapping is characterized by the choice of a class of functions known as kernels. The foundations of Support Vector 

Machines (SVM) have been developed by Vapnik. Classification in SVM is an example of Supervised Learning. This 

information points to a desired response, validating the accuracy of the system, or be used to help the system learn to act 

correctly. A step in SVM classification involves identification as which are intimately connected to the known classes. 

This is called feature selection or feature extraction. Support Vector Machine (SVM) is a classification and regression 

prediction tool that uses machine learning theory to maximize predictive accuracy while automatically avoiding over-fit 

to the data. Each instance in the training set contains one target values and several attributes. The goal of SVM is to 

produce a model which predicts target value of data instances in the testing set which are given only the attributes. 

 

2. SVM Margin 
Geometric margin (distance to the hyperplane): 

This is related to the norm of the weight vector, so that maximizing the margin corresponds to minimizing the norm. 

Numerical margin: 

The main reason to maximize this margin is because the hinge loss is a convex non increasing upper bound of the 

classification loss, so that making yif(xi) large will ensure that the loss is small and thus that we minimize the number of 

misclassification errors, but does not guarantee that the expected misclassification error will be minimized as well. For 

instance, if one minimizes the loss over linear combinations of kernels and if there exist a combination such that the total 

loss on the training set is zero, then this combination is not unique: we can multiply it by an arbitrary positive scale 

factor. It introduces a coupling between the numerical and the geometric margins: maximizing the geometric margin 

leads to regularization which prevents over fitting by complex functions, while maximizing the numerical margin leads to 

minimization of the empirical error. 

 

2.1. SVM –Linear-Nonlinear-Regression 

The goal of learning was to output a hypothesis that performed the correct classification of the training data and 

early learning algorithms were designed to find such an accurate fit to the data. The ability of a hypothesis to correctly 

classify data not in the training set is known as its generalization.   
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The point that lies closest to the separating hyper plane, i.e. the Support Vectors, then the two planes H1 and H2 that 

these points lie on can be states as follows 

xi. w + b = +1 for H1 

xi. w + b = -1 for H2 

Plus plane = xi. w + b = +1  

Minus plane = xi. w + b = -1 

Classify as: -1< xi. w + b < 1 

We define d1 as being the distance from H1 to the hyperplane and d2 from H2 to it. The hyper plane’s equidistance from 

H1 and H2 means that d1 = d2 - a quantity known as the SVM's margin.  
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Fig: 1 SVM Linear Regression 

 

 

2.2. Primal Problem 

Letx1=1,    x2=2   y = [-1, 1]
T
 

Min ½(w
2
) 

Subject to 

1(w.1+b) ≥1; -1(w.2+b) ≥1 

 
Fig: 2 Optimal Solution of Primal Problem 

 

W ≥ -1;   b ≥ 1 – w ≥ 2;    b ≥ 2 

Smallest possibility b = 2 

Optimal solution is (w, b) = (-1, 2) 

The separating hyper plane - x +2 =0 →x - 2 =0 

 

2.3. Non Separable case 

Introduce slack variables 0i  
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Objective Function: Soft Margin 
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Constant C controls the tradeoff between margin and errors 

Similar Dual Optimization Problem: 
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Extended to non linear Boundary: 
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The solution has to be a linear combination of the training instance.  

Multiclass SVMs: One-versus-all 
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Train n binary classifiers, one for each class against all other classes. Predicted class is the class of the most confident 

classifier. 

One-versus-one 

Train n (n-1)/2 classifiers, each discriminating between a pair of classes. Several strategies for selecting the final 

classification based on the output of the binary SVMs. 

 

3. Relation Between Kernel function 
Kernel Trick Assumption 

IDEA: Map to higher dimension so the boundary is linear in that space but non linear in current space separation 

may be easier in higher dimensions. 

Find (w1, w2, w3,…,wn, b) 
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Higher dimensional (may be infinite) feature space 

ϕ(x) = (ϕ1(x), ϕ2(x)…) 
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Fig: 3 Linear and Non linear Separation of low and high Dimension 

Square in the norm of w has been introduced to make the problem quadratic. Given its convexity this optimization 

problem has no local minima. Consider this solution of the problem w* and b*. This solution determines the hyperplane 

in the feature space D
*
(x) = (w

*
) 

T
ϕ (xi) +b = 0 points ϕ (xi) that satisfy the equalities yi (w

*
)

T
ϕ(xi)+b

*
= 1 are called 

support vectors, the SV can be automatically determined from the solution of the optimization problem. SV represents a 

small fraction of the sample, and the solution is said to be sparse. The hyperplane D
*
(x) = 0 is completely determined by 

the subsample made up of the SV, the evaluation of the decision function D
*
(x) is computationally efficient, allowing the 

use of SVMs on large data sets. We have divided the data set into a training set (80% of the data points) and a test set 

(20% of the data points).  

Table: 1 Test Error in various Method 

Method Test error 

FLDA 3.123 

kNN 1.423 

Linear SVM 0.03 

Since the sample is relatively small with respect to the space dimension, it should be easy for any method to find a 

criterion that separates the training set into two classes, but this does not necessarily imply the ability to correctly classify 

the test data. The construction depends on inner products → we will have to evaluate inner products in the feature space. 

This can be computationally intractable, if the dimensions become too large. It is apparent that the three methods have 

been able to find a method that perfectly separates the training data set into two classes, but only the linear SVM shows 

good performance when classifying new data points. 

 

3.1. Algorithm of Classification and Regression 

The basics of a classification algorithm which has the following features: 

1. Reduction of the classification problem to the computation of a linear decision function. 

2. Absence of local minima in the SVM optimization problem. 

3. A computationally efficient decision function (sparse solution). 

 

 

Complex in low dimensions nonlinear 

separation between vectors using 

kernel function 

Simple in higher dimension linear separation 

between vectors in feature space using inner 

product 
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Algorithm of Classification 

Step: 1 Create H 

Step: 2 select the parameters C, to find the large insensitive loss region 

Step: 3 find α
 
Objective function is maximized 
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Step: 5Determine the set of support vectors S by finding the indices i Ci 0  
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Step: 7 Each new point x' is classified be evaluating y'= sign (w.ϕ(x')+b) 

Algorithm of Regression 

Step: 1 select the parameters C and ɛ, to find the large insensitive loss region 

Step: 2 find α
+
, α

-
 Objective function is maximized 
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Step: 4 

Determine the set of support vectors S by finding the indices i 
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Step: 6 Each new point x' is classified be evaluating y'=   bxxi
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3.2. Percentage of misclassified data 

We have considered three kernels: 

zxzxKKernalsLinearzxKKernalsGaussian

zxzxKnalspolynomial
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SVM is solving a classification or regression problem on data that is not linearly separable. We will compare SVMs 

using these kernels with the AV combination method and a semi definite programming (SDP) technique for building 

linear combinations of kernels. The data set has been randomly partitioned ten times into a training set and a test set, and 

for each method, a run of the experiment has been done over each partition.  The AV method provides the best results (a 

test error of 3%), using significantly less support vectors than the other methods. The SDP method improves only the 

results of the Gaussian and the polynomial kernel. 

Table: 2 Percentage of misclassified data and 

SV for the cancer 

data 

 

Method Percentage of SV 

Polynomial 8.435 

Gaussian 66.711 

Linear 7.875 

Absolute value 2.999 

Standard deviations 

in parentheses 

66.231 

Get the objective function 

X1
T
X1 =0, X1

T
X2=0 

X2
T
X1=0, X2

T
X2=0 

Objective function 
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Constraints 

α1 - α2 =0; α2 = α1 

1/2α1
2
-2α2 

Smallest value α1=2 

Considerations for supervised machine learning: 

Prediction accuracy 

Interpretability of the resulting model 

Fitness of data to assumptions behind the method 

Computation time 

Accessibility of software to implement 

Transform xi to a higher dimensional space to “make classes linearly separable” Input space: the space xi; Feature space: 

the space of f (xi) after transformation. Linear operation in the feature space is equivalent to non-linear operation in input 

space. 

 

4. One Class SVM 
With this aim, the one-class SVM algorithm solves quadratic optimization problem 
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Where ξi are slack variables, v belongs to [0, and 1] is an a priori fixed constant which represents the fraction of 

outside points and b is the decision value which determines whether a given point belongs to the estimated high density 

region. The decision function will take the form h(x) = sign (w*
T
ϕ(x) - b

*
), where w

*
 and b

*
 are the values of w and b at 

the solution of problem. The hyperplane w*
T
 ϕ (x) - b

*
 = 0 separates from the origin the mapped data for which the 

decision function h(x) = +1. Problem is smooth and convex, and follows the SVM idea of building a hyperplane in a 

feature space. 

 

5.  Conclusion 
They allow easy construction of a nonlinear algorithm from a linear one. In a different direction, one could try to 

extend the notion of kernel so as to handle higher level similarities, such as analogies (which can be considered as 

similarities between pairs of examples). In classification problems generalization control is obtained by maximizing the 

margin, which corresponds to minimization of the weight vector in a canonical framework. The minimization of the 

weight vector can be used as a criterion in regression problems, with a modified loss function. The hyperplane w*T F(x) 

- b* = 0 separates from the origin the mapped data for which the decision function h(x) = +1. We will compare SVMs 

using kernels with the AV combination method and a semi definite programming (SDP) technique for building linear 

combinations of kernels. The differentiable formulation of the SVM problem allows its solution by the use of standard 

Newton-type methods for convex optimization. 
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