Supplements to a class of logarithmically completely monotonic functions related to the q-gamma function

Khaled Mehrez

Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisia.

Abstract

In this paper, we investigate necessary and sufficient conditions for logarithmic complete monotonicity of a class of functions related to q-gamma function. Some results of the paper generalize those due to Guo, Qi, and Srivastava [1]. As consequences of these results, supplements to the recent investigation by the author [2] are provided and the q-version of Kěckić-Vasić type inequality is established.

Mathematics Subject Classification: 33D05, 26D07, 26A48.

Keywords: Completely monotonic functions, Logarithmically completely monotonic, *q*-gamma function, Inequalities.

1 Introduction

Recall that a non-negative function f defined on $(0, \infty)$ is called completely monotonic if it has derivatives of all orders and

$$(-1)^n f^{(n)}(x) \ge 0, \ n \ge 1$$

and x > 0 [[3], Def. 1.3]. This inequality is known to be strict unless f is a constant. By the celebrated Bernstein theorem, a function is completely monotonic if and only if it is the Laplace transform of a non-negative measure [[3], Thm. 1.4]. The above definition implies the following equivalences:

$$f \text{ is CM on}(0,\infty) \Leftrightarrow f \ge 0, -f' \text{ is completely monotonic on}(0,\infty),$$

 $\Leftrightarrow -f' \text{ is CM on}(0,\infty), \text{ and } \lim_{x \to \infty} f(x) \ge 0.$

A positive function f is said to be logarithmically completely monotonic (LCM) on $(0,\infty)$ if $-(\log f)$ 'is completely monotonic (CM) on $(0,\infty)$ [[3], Definition 5.8]. Thus

f is LCM on $(0, \infty) \Leftrightarrow (-\log f(x))' \ge 0, (\log f)''$ is CM on $(0, \infty),$

 $\Leftrightarrow (\log f)'' \text{ is CM}, \text{ and } \lim_{x \to \infty} (-\log f(x))' \ge 0.$

The class of logarithmically completely monotonic functions is a proper subset of the class of completely monotonic functions. Their importance stems from the fact that they represent Laplace transforms of innitely divisible probability distributions, see [[3], Thm. 5.9] and [[4], Sec. 51].

Euler gamma function is defined for positive real numbers x by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt,$$

which is one of the most important special functions and has many extensive applications in many branches, for example, statistics, physics, engineering, and other mathematical sciences.

The logarithmic derivative of $\Gamma(x)$, denoted $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$, is called the psi or digamma function, and $\psi^{(k)}(x)$ for $k \ge 1$ are called the polygamma functions. The functions $\Gamma(x)$ and $\psi^{(k)}(x)$ for $k \ge 1$ are of fundamental importance in mathematics and have been extensively studied by many authors.

The q-analogue of Γ is defined by

$$\Gamma_q(x) = (1-q)^{1-x} \prod_{j=0}^{\infty} \frac{1-q^{j+1}}{1-q^{j+x}}, \ 0 < q < 1,$$
(1)

and

$$\Gamma_q(x) = (q-1)^{1-x} q^{\frac{x(x-1)}{2}} \prod_{j=0}^{\infty} \frac{1-q^{-(j+1)}}{1-q^{-(j+x)}}, \ q > 1.$$
(2)

The q-gamma function $\Gamma_q(z)$ has the following basic properties:

$$\Gamma_q(z) = q^{\frac{(x-1)(x-2)}{2}} \Gamma_{\frac{1}{q}}(z).$$
(3)

and consequently

$$\log \Gamma_q(z) = \frac{x^2 - 3x + 2}{2} \log(q) + \log \Gamma_{\frac{1}{q}}(z).$$
(4)

The q-digamma function ψ_q , the q-analogue of the psi or digamma function ψ is defined by

$$\psi_q(x) = \frac{\Gamma'_q(x)}{\Gamma_q(z)} = -\log(1-q) + \log(q) \sum_{k=0}^{\infty} \frac{q^{k+x}}{1-q^{k+x}}$$
(5)
$$= -\log(1-q) + \log(q) \sum_{k=1}^{\infty} \frac{q^{kx}}{1-q^k},$$

for 0 < q < 1, and from (2) we obtain for q > 1 and x > 0,

$$\psi_q(x) = -\log(1-q) + \log(q) \left[x - \frac{1}{2} - \sum_{k=0}^{\infty} \frac{q^{-(k+x)}}{1 - q^{-(k+x)}} \right]$$
(6)
$$= -\log(1-q) + \log(q) \left[x - \frac{1}{2} - \sum_{k=1}^{\infty} \frac{q^{-kx}}{1 - q^{-k}} \right].$$

In [5], the authors proved that the function $\psi_q(x)$ tends $\psi(x)$ on letting $q \to 1$.

An important fact for gamma function in applied mathematics as well as in probability is the Stirling's formula that gives a pretty accurate idea about the size of gamma function. With the Euler-Maclaurin formula, Moak [[6], p. 409] obtained the following q-analogue of Stirling's formula

$$\log \Gamma_q(x) \sim \left(x - \frac{1}{2}\right) \log \left(\frac{1 - q^x}{1 - q}\right) + \frac{\operatorname{Li}_2(1 - q^x)}{\log q} + \frac{1}{2} H(q - 1) \log q + C_{\hat{q}} \quad (7)$$
$$+ \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\log \hat{q}}{\hat{q}^x - 1}\right)^{2k - 1} \hat{q}^x P_{2k - 3}(\hat{q}^x)$$

as $x \to \infty$ where H(.) denotes the Heaviside step function, B_k , k = 1, 2, ... are the Bernoulli numbers,

$$\hat{q} = \begin{cases} q & \text{if } 0 < q < 1 \\ 1/q & \text{if } q > 1 \end{cases}$$

The function $\operatorname{Li}_2(z)$ is the dilogarithm function defined for complex argument z as

$$Li_{2}(z) = -\int_{0}^{z} \frac{\log(1-t)}{t} dt, \ z \notin [1,\infty)$$
(8)

 P_k is a polynomial of degree k satisfying

$$P_{k}(z) = (z - z^{2})P_{k-1}'(z) + (kz + 1)P_{k-1}(z), P_{0} = P_{-1} = 1, k = 1, 2, \dots$$
(9)

and

$$C_q = \frac{1}{2}\log(2\pi) + \frac{1}{2}\log\left(\frac{q-1}{\log q}\right) - \frac{1}{24}\log q + \frac{1}{\log(q)}\int_0^{-\log(q)}\frac{udu}{e^u - 1} + \log\left(\sum_{m=-\infty}^{\infty} r^{m(6m+1)} - r^{(2m+1)(3m+1)}\right),$$

where $r = \exp(4\pi^2/\log q)$. In [6], the author proved the following formulas:

$$\lim_{q \to 1} \frac{\text{Li}_2(1-q^x)}{\log q} = -x, \text{ and } \lim_{q \to 1} c_q = \frac{1}{2}\log(2\pi).$$
(10)

Let α be a real number and q, β are nonnegative parameter. We define the function $f_{\alpha,\beta}(q;x)$ by [2]

$$f_{\alpha,\beta}(q;x) = \frac{\Gamma_q(x+\beta)\exp\left(\frac{-\operatorname{Li}_2(1-q^x)}{\log q}\right)}{\left(\frac{1-q^x}{1-q}\right)^{x+\beta-\alpha}}, \ x > 0.$$
(11)

It is worth mentioning that Chen and Qi [7] considered the function

$$f_{\alpha,\beta}(x) = \frac{e^x \Gamma(x+\beta)}{x^{x+\beta-\alpha}}, \ x > 0.$$

which is a special case of the function $f_{\alpha,\beta}(q;x)$ on letting $q \to 1$.

In [2], the author proved the following results:

Theorem A Let $q \in (0,1)$ and α be a real number. The function $f_{\alpha,1}(q;x)$ is logarithmically completely monotonic on $(0,\infty)$, if and only if $2\alpha \leq 1$.

Theorem B Let $q \in (0, 1)$ and α be a real number. The function $[f_{\alpha,1}(q; x)]^{-1}$ is logarithmically completely monotonic on $(0, \infty)$, if and only if $\alpha \ge 1$.

Theorem C Let $q \in (0, 1)$ and α be a real number and $\beta \geq 0$. Then, the function $f_{\alpha,\beta}(q;x)$ is logarithmically completely monotonic function on $(0,\infty)$ if $2\alpha \leq 1 \leq \beta$.

Motivated by this results, our aim is to establish a sufficient condition, a necessary condition and a necessary and sufficient condition such that the function $f_{\alpha,\beta}(q;x)$ is logarithmic completely monotonic on $(0,\infty)$, when the real β is lies in different ranges. These results can be regarded as supplements to the paper [2]. As applications of these results, we derive the q-version of Kěckić-Vasić type inequality for q > 0, and we find a necessary and sufficient condition for the function $g_{\alpha,\beta}(q;x)$ defined by

$$g_{\alpha,\beta}(q;x) = \log \Gamma_q(x+\beta) - \frac{\operatorname{Li}_2(1-q^x)}{\log(q)} - (x+\beta-\alpha)\log\left(\frac{1-q^x}{1-q}\right) \quad (12)$$

is completely monotonic on $(0, \infty)$.

As a tool for completing our work, we need to the following lemmas:

2 Lemmas

Lemma 2.1 [6] The following approximation for the q-digamma function

$$\psi_q(x) = \log\left(\frac{1-q^x}{1-q}\right) + \frac{1}{2}\frac{q^x\log(q)}{1-q^x} + O\left(\frac{q^x\log^2(q)}{(1-q^x)^2}\right),\tag{13}$$

holds for all q > 0 and x > 0.

Lemma 2.2 [8] For every x, q > 0, there exists at least one real number $a \in [0, 1]$ such that

$$\psi_q(x) = \log\left(\frac{1-q^{x+a}}{1-q}\right) + \frac{q^x \log(q)}{1-q^x} - \left(\frac{1}{2} - a\right) H(q-1)\log(q)$$
(14)

where H(.) is the Heaviside step function.

Lemma 2.3 The function

$$g_1(x) = \frac{2\log(x) + x\log(x) - 2x + 2}{2\log(x)}$$
(15)

is decreasing on (0,1). Furthermore, it satisfies $\lim_{x\to 0} g_1(x) = 1$ and $\lim_{x\to 1} g_1(x) = 1/2$.

Proof. Differentiating g(x) yields

$$g_1'(x) = \frac{h(x)}{4x\log^2(x)},$$

where $h(x) = x \log^2(x) - 2x \log(x) + 2x - 2$, so $h'(x) = \log^2(x) > 0$, for all $x \in (0, 1)$. Consequently, the function h(x) is increasing on (0, 1), such that $\lim_{x \to 1} h(x) = 0$. Therefore the function $g_1(x)$ is decreasing on (0, 1). It is easy to see that $\lim_{x \to 0} g_1(x) = 1$, and by using the l'Hospital's rule we deduce that $\lim_{x \to 1} g_1(x) = 1/2$.

Lemma 2.4 The function

$$g_2(x) = \frac{2x - x\log(x) - 2}{2\log(x)}$$
(16)

is increasing on (0,1). Furthermore, it satisfies $\lim_{x\to 0} g_2(x) = 0$ and $\lim_{x\to 1} g_2(x) = 1/2$.

Proof. We note that $g_2(x) = 1 - g_1(x)$. So, Lemma 2.3 completes the proof of Lemma 2.4.

3 Main results

We first state our main results as follows. The next Theorem is an extension of Theorem C.

Theorem 3.1 Let q > 0, α be a real number and $\beta \ge 0$. If $2\alpha \le 1 \le \beta$, then the function $f_{\alpha,\beta}(q;x)$ is logarithmically completely monotonic on $(0,\infty)$.

Proof. Let q > 1, the relations (3), (4) and the definition of the q-digamma function (5) give

$$\psi_q(x+\beta) = \frac{2x+2\beta-3}{2}\log(q) + \psi_{1/q}(x+\beta).$$
(17)

A simple computation we get

$$\log\left(\frac{1-q^x}{1-q}\right) = \log\left(\frac{1-(1/q)^x}{1-(1/q)}\right) + (1-x)\log(1/q),\tag{18}$$

and

$$\frac{q^x}{1-q^x} = -q^x \frac{(1/q)^x}{1-(1/q)^x}.$$
(19)

By using the formula [[2], Lemma 1]

$$(\log(f_{\alpha,\beta}(q;x))' = \psi_q(x+\beta) - \log\left(\frac{1-q^x}{1-q}\right) + (\beta-\alpha)\frac{q^x\log(q)}{1-q^x}$$
(20)

and the previous formulas we get for q > 1

$$(\log(f_{\alpha,\beta}(q;x))' = \psi_{1/q}(x+\beta) - \log\left(\frac{1-(1/q)^x}{1-(1/q)}\right) + (\beta-\alpha)\frac{(1/q)^x\log(1/q)}{1-(1/q)^x} + (\alpha-1/2)\log(q)$$
(21)

By using the Theorem C, we deduce that the function $(-\log(f_{\alpha,\beta}(q;x)))'$ is completely monotonic on $(0,\infty)$ for all $q \in (0,1)$ and $2\alpha \leq 1 \leq \beta$, and consequently the function

$$(-\log(f_{\alpha,\beta}(q;x))' - (1/2 - \alpha)\log(q) =$$
(22)

$$= \log\left(\frac{1 - (1/q)^x}{1 - (1/q)}\right) - \psi_{1/q}(x+\beta) + (\alpha - \beta)\frac{(1/q)^x \log(1/q)}{1 - (1/q)^x}$$
$$= \log\left(\frac{1 - \hat{q}^x}{1 - \hat{q}}\right) - \psi_{\hat{q}}(x+\beta) + (\alpha - \beta)\frac{\hat{q}^x \log(\hat{q})}{1 - \hat{q}^x},$$

is also completely monotonic on $(0, \infty)$ for all q > 1 and $2\alpha \leq 1 \leq \beta$. From this fact, and since

$$(1/2 - \alpha)\log(q) \ge 0$$

for all $2\alpha \leq 1$ and q > 1, we deduce that the function $(-\log(f_{\alpha,\beta}(q;x)))'$ is completely monotonic on $(0,\infty)$ for all q > 1 and $2\alpha \leq 1 \leq \beta$. Applying Theorem C with the above results, we obtain the desired results. Supplements to a class of logarithmically completely monotonic functions ... 247

Remark 3.2 A similar proof to proof of Theorem 3.1, we deduce that the Theorem A and Theorem B are valid for q > 0, and consequently, the inequalities proved in [2] are holds true for all q > 0.

In the next Theorem we give a necessary condition for the Theorem C, where β is nonnegative.

Theorem 3.3 For $q \in (0,1)$, α be a real number and $\beta > 0$. If $f_{\alpha,\beta}(q;x)$ is logarithmically completely monotonic on $(0,\infty)$, then $\alpha \leq \min\left(\beta,\beta-\frac{2q^{\beta}-\log(q)q^{\beta}-2}{2\log(q)}\right)$.

Proof. Assume that the function $f_{\alpha,\beta}(q;x)$ is logarithmically completely monotonic on $(0,\infty)$, thus

$$(\log(f_{\alpha,\beta}(q;x))' = \psi_q(x+\beta) - \log\left(\frac{1-q^x}{1-q}\right) + (\beta-\alpha)\frac{q^x\log(q)}{1-q^x} \le 0,$$

which is equivalent to

$$\beta - \alpha \ge \frac{1 - q^x}{q^x \log(q)} \left(\log\left(\frac{1 - q^x}{1 - q}\right) - \psi_q(x + \beta) \right).$$
(23)

By means of Lemma 2.2 and (23) we obtain

$$\beta - \alpha \ge \lim_{x \to 0} \left(\frac{1 - q^x}{q^x \log(q)} \left[\log\left(\frac{1 - q^x}{1 - q}\right) - \psi_q(x + \beta) \right] \right)$$
$$= \lim_{x \to 0} \left(\frac{1 - q^x}{q^x \log(q)} \left[\log\left(\frac{1 - q^x}{1 - q^{x+a+\beta}}\right) - \frac{q^{x+\beta} \log(q)}{1 - q^{x+\beta}} \right] \right) = 0.$$

Now, letting $x \to \infty$ in (23) and using Lemma 2.1 we get

$$\beta - \alpha \ge \lim_{x \to \infty} \left(\frac{1 - q^x}{q^x \log(q)} \left[\log\left(\frac{1 - q^x}{1 - q}\right) - \psi_q(x + \beta) \right] \right)$$
$$= \lim_{x \to \infty} \left(\frac{1 - q^x}{q^x \log(q)} \left[\log\left(\frac{1 - q^x}{1 - q^{x+\beta}}\right) - \frac{q^{x+\beta} \log(q)}{2(1 - q^{x+\beta})} \right] \right)$$
$$= \frac{2q^\beta - q^\beta \log(q) - 2}{2\log(q)},$$

which implies that

$$\alpha \le \beta - \frac{2q^{\beta} - q^{\beta}\log(q) - 2}{2\log(q)}.$$

Hence, the necessary condition such that the function $f_{\alpha,\beta}(q;x)$ is logarithmically completely monotonic on $(0,\infty)$, is given by

$$\alpha \le \min\left(\beta, \beta - \frac{2q^{\beta} - \log(q)q^{\beta} - 2}{2\log(q)}\right).$$

Theorem 3.4 Let $q \in (0, 1)$, $\beta \in \{0\} \cup [1, \infty)$. Then the function $f_{\alpha,\beta}(q; x)$ is logarithmically completely monotonic on $(0, \infty)$, if and only if $\alpha \leq \frac{1}{2}$.

Proof. Firstly, let $\beta \geq 1$, we know that the condition of Theorem 3.4 is sufficient, it is follows by Theorem C. Now, we prove the necessary condition. Suppose that the function $f_{\alpha,\beta}(q;x)$ is logarithmically completely monotonic on $(0,\infty)$, then

$$\alpha \le \min\left(\beta, \beta - \frac{2q^{\beta} - \log(q)q^{\beta} - 2}{2\log(q)}\right),\tag{24}$$

by means of Theorem 3.3. As the function $\beta \mapsto k_q(\beta) = \frac{2q^\beta - \log(q)q^\beta - 2}{2\log(q)}$ is increasing on $[1, \infty)$, we have

$$k_q(\beta) \ge k_q(1) = g_2(q) \ge 0,$$

for $q \in (0, 1)$, by Lemma 2.4. So, for $q \in (0, 1)$, $\beta \ge 1$ we get

$$\min\left(\beta, \beta - \frac{2q^{\beta} - \log(q)q^{\beta} - 2}{2\log(q)}\right) = \beta - \frac{2q^{\beta} - \log(q)q^{\beta} - 2}{2\log(q)}.$$
 (25)

Now, for $q \in (0, 1)$ and $\beta \ge 1$, we define the function $h(q; \beta)$ by

$$h(q;\beta) = \beta - \frac{2q^{\beta} - \log(q)q^{\beta} - 2}{2\log(q)}$$

It is easily verified that the function $\beta \mapsto h(q;\beta)$ is strictly increasing and strictly convex on $[1,\infty)$ for each $q \in (0,1)$. From this fact and (24), we thus obtain

$$\alpha \le h(q;1) = g(q)$$

where $q \in (0, 1)$. From Lemma 2.3, we have

$$\alpha \leq 1/2.$$

Now, let $\beta = 0$. By the following relationship:

$$\psi_q(x+1) = \frac{1-q^x}{1-q}\psi_q(x)$$
(26)

and the definition of the function $f_{\alpha,\beta}(q;x)$ we deduce that

$$f_{\alpha,0}(q;x) = f_{\alpha,1}(q;x).$$
(27)

From this fact and Theorem A, we deduce the desired results for $\beta = 0$. So, the proof of Theorem 3.4 is evidently completed.

Supplements to a class of logarithmically completely monotonic functions ... 249

Remark 3.5 Theorem 3.3 and Theorem 3.4, are shown to be a generalization of Theorem 1. (2) and (3), obtained by Guo et al. [1].

As consequence of Theorem 3.1 and Theorem 3.4 we deduce the q-version of Kěckić-Vasić type inequality.

Corollary 3.6 Let x, y be positive numbers with x < y, and $\beta \ge 1$. 1. For q > 0, the following inequality

$$\left[\left[\frac{1-q^x}{1-q^y}\right]^{\alpha-\beta}\frac{\Gamma_q(x+\beta)}{\Gamma_q(x+\beta)}\right]^{\frac{\log(q)}{Li_2(1-q^y)-Li_2(1-q^x)}} \le \frac{1}{e}\left[\frac{\left[\frac{1-q^x}{1-q}\right]^x}{\left[\frac{1-q^y}{1-q}\right]^y}\right]^{\frac{\log(q)}{Li_2(1-q^y)-Li_2(1-q^x)}}$$
(28)

holds true also if $\alpha \leq 1/2$. 2. For $q \in (0, 1)$. The inequality (28) holds true if and only if $\alpha \leq 1/2$.

Proof. Since logarithmically completely monotonic function is completely monotonic function we conclude that the function $f_{\alpha,\beta}(q;x)$ is decreasing on $(0,\infty)$, and consequently we get

$$f_{\alpha,\beta}(q;x) \ge f_{\alpha,\beta}(q;y),$$

which is equivalent to (28). By considering the sufficient condition in Theorem 3.1 and the necessary and sufficient condition in Theorem 3.4.

Remark 3.7 It is worth mentioning that the inequality (28) when letting q tends to 1, returns to the inequality (2) in [1].

Theorem 3.8 Let $q \in (0,1)$. Then the function $g_{\alpha,0}(q;x)$ is completely monotonic on $(0,\infty)$, if and only if $\alpha = 1/2$.

Proof. It is clear that

$$g_{\alpha,\beta}(q;x) = \log f_{\alpha,\beta}(q;x).$$
(29)

Suppose that the function $g_{\alpha,\beta}(q;x)$ is completely monotonic on $(0,\infty)$. Hence, the function $f_{\alpha,\beta}(q;x)$ is logarithmically completely monotonic on $(0,\infty)$. By using Theorem 3.4 and (27), we deduce that

$$\alpha \le 1/2. \tag{30}$$

On the other hand, by using the q-analogue of Stirling formula (7) and the definition of the function $g_{\alpha,\beta}(q;x)$ we obtain for $q \in (0,1)$

$$g_{\alpha,\beta}(q;x) \sim \left(\alpha - \frac{1}{2}\right) \log\left(\frac{1-q^x}{1-q}\right) + C_{\hat{q}} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\log \hat{q}}{\hat{q}^x - 1}\right)^{2k-1} \hat{q}^x P_{2k-3}(\hat{q}^x),$$
(31)

as $x \to \infty$. In view of the fact that $g_{\alpha,\beta}(q;x) \ge 0$, and (31) we get

$$\alpha - \frac{1}{2} \ge -\lim_{x \to \infty} \frac{C_{\hat{q}} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\log \hat{q}}{\hat{q}^x - 1}\right)^{2k-1} \hat{q}^x P_{2k-3}(\hat{q}^x)}{\log\left(\frac{1-q^x}{1-q}\right)} = 0,$$

that is,

$$\alpha \ge 1/2. \tag{32}$$

Combining (30) and (32) we obtain

$$\alpha = 1/2.$$

Conversely, In view of (29) and using the fact that the function $f_{1/2,0}(q;x)$ is logarithmic completely monotonic on $(0, \infty)$, (see Theorem 3.4) we have

$$(-1)^{n} g_{1/2,0}^{(n)}(q;x) = (-1)^{n} (\log f_{1/2,0}(q;x))^{(n)} \ge 0,$$
(33)

for all $n \ge 1$. So, the function $g_{1/2,0}(q; x)$ is decreasing on $(0, \infty)$. Thus

$$g_{1/2,0}(q;x) \ge \lim_{x \to \infty} g_{1/2,0}(q;x).$$
 (34)

By (31) and (34), we conclude that

$$g_{\alpha,0}(q;x) \ge \lim_{x \to \infty} g_{1/2,0}(q;x) = C_{\hat{q}} > 0,$$

from which we readily see that (33) is also valid for n = 0. Consequently, the function $g_{1/2,0}(q;x)$ is completely monotonic on $(0,\infty)$.

Theorem 3.9 For $q \in (0,1)$, α be a real number and $\beta > 0$. If $(f_{\alpha,\beta}(q;x))^{-1}$ is logarithmically completely monotonic on $(0,\infty)$, then $\alpha \ge \max\left(\beta,\beta-\frac{2q^{\beta}-\log(q)q^{\beta}-2}{2\log(q)}\right)$.

Proof. The proof of this Theorem is similar of the proof of Theorem 3.3.

Corollary 3.10 Let $q \in (0,1)$, $\beta \geq 1$. If the function $(f_{\alpha,\beta}(q;x))^{-1}$ is logarithmically completely monotonic on $(0,\infty)$, then $\alpha \geq \beta$.

Proof. Suppose that the function $(f_{\alpha,\beta}(q;x))^{-1}$ is logarithmically completely monotonic on $(0,\infty)$, then

$$\alpha \ge \max\left(\beta, \beta - \frac{2q^{\beta} - \log(q)q^{\beta} - 2}{2\log(q)}\right),$$

by Theorem 3.10. From the previous inequality and (25) we deduce

 $\alpha \geq \beta$

for all $\beta \geq 1$ and $q \in (0, 1)$.

Remark 3.11 Let $\beta = 1$ in the precedent Corollary we obtain the necessary condition of Theorem B.

References

- S. Guo, F. Qi, H. M. Srivastava, Supplements to a Class of Logarithmically Completely Monotonic Functions Associated with he Gamma Function, App.Math. and Comp. 2008
- [2] K. Mehrez, A Class of logarithmically completely monotonic functions related to the q-gamma function and applications, Positivity 2016.
- [3] Schilling, R.L., Song, R., Vondracek, Z.: Bernstein Functions. Theory and Applications, Studies in Mathematics, vol. 37. Walter de Gruyter, Berlin (2010).
- [4] K. Sato, Lévy processes and innitely divisible distributions. Cambridge University Press, Cambridge (1999).
- [5] C. Krattenthaler, H.M. Srivastava, Summations for basic hypergeometric series involving a q-analogue of the digamma function, Computers and Mathematics with Applications 32 (2) (1996) 7391.
- [6] D. S. Moak, D.S.: The q-analogue of Stirling's formula, Rocky Mountain J. Math. 14 (1984) 403-412.
- [7] Chen, C.-P., Qi. F.: Logarithmically completely monotonic functions relating to the gamma function, J. Math. Anal. Appl. 321 (2006), 405-411.
- [8] A. Salem, A completely monotonic function involving q-gamma and qdigamma functions. J Appr Theory, 2012, 164 : 971-980.

Received: July 27, 2017