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Abstract

In this paper, we investigate necessary and sufficient conditions for
logarithmic complete monotonicity of a class of functions related to
q−gamma function . Some results of the paper generalize those due to
Guo, Qi, and Srivastava [1]. As consequences of these results, supple-
ments to the recent investigation by the author [2] are provided and the
q−version of Kěckić-Vasić type inequality is established.
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1 Introduction

Recall that a non-negative function f defined on (0,∞) is called completely
monotonic if it has derivatives of all orders and

(−1)nf (n)(x) ≥ 0, n ≥ 1

and x > 0 [[3], Def. 1.3]. This inequality is known to be strict unless f is
a constant. By the celebrated Bernstein theorem, a function is completely
monotonic if and only if it is the Laplace transform of a non-negative measure
[[3], Thm. 1.4]. The above definition implies the following equivalences:

f is CM on(0,∞) ⇔ f ≥ 0,−f ′ is completely monotonic on(0,∞),

⇔ −f ′ is CM on(0,∞), and lim
x→∞

f(x) ≥ 0.

A positive function f is said to be logarithmically completely monotonic
(LCM) on (0,∞) if −(log f)′is completely monotonic (CM) on (0,∞) [[3],
Definition 5.8]. Thus

f is LCM on(0,∞) ⇔ (− log f(x))′ ≥ 0, (log f)′′ is CM on(0,∞),
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⇔ (log f)′′ is CM , and lim
x→∞

(− log f(x))′ ≥ 0.

The class of logarithmically completely monotonic functions is a proper
subset of the class of completely monotonic functions. Their importance stems
from the fact that they represent Laplace transforms of innitely divisible prob-
ability distributions, see [[3], Thm. 5.9] and [[4], Sec. 51].

Euler gamma function is defined for positive real numbers x by

Γ(x) =
∫

∞

0
tx−1e−tdt,

which is one of the most important special functions and has many extensive
applications in many branches, for example, statistics, physics, engineering,
and other mathematical sciences.

The logarithmic derivative of Γ(x), denoted ψ(x) = Γ′(x)
Γ(x)

, is called the psi or

digamma function, and ψ(k)(x) for k ≥ 1 are called the polygamma functions.
The functions Γ(x) and ψ(k)(x) for k ≥ 1 are of fundamental importance in
mathematics and have been extensively studied by many authors.

The q−analogue of Γ is defined by

Γq(x) = (1− q)1−x
∞
∏

j=0

1− qj+1

1− qj+x
, 0 < q < 1, (1)

and

Γq(x) = (q − 1)1−xq
x(x−1)

2

∞
∏

j=0

1− q−(j+1)

1− q−(j+x)
, q > 1. (2)

The q−gamma function Γq(z) has the following basic properties:

Γq(z) = q
(x−1)(x−2)

2 Γ 1
q
(z). (3)

and consequently

log Γq(z) =
x2 − 3x+ 2

2
log(q) + log Γ 1

q
(z). (4)

The q−digamma function ψq, the q−analogue of the psi or digamma func-
tion ψ is defined by

ψq(x) =
Γ

′

q(x)

Γq(z)
= − log(1− q) + log(q)

∞
∑

k=0

qk+x

1− qk+x
(5)

= − log(1− q) + log(q)
∞
∑

k=1

qkx

1− qk
,
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for 0 < q < 1, and from (2) we obtain for q > 1 and x > 0,

ψq(x) = − log(1− q) + log(q)

[

x−
1

2
−

∞
∑

k=0

q−(k+x)

1− q−(k+x)

]

(6)

= − log(1− q) + log(q)

[

x−
1

2
−

∞
∑

k=1

q−kx

1− q−k

]

.

In [5], the authors proved that the function ψq(x) tends ψ(x) on letting
q → 1.

An important fact for gamma function in applied mathematics as well as
in probability is the Stirling’s formula that gives a pretty accurate idea about
the size of gamma function. With the Euler-Maclaurin formula, Moak [[6], p.
409] obtained the following q−analogue of Stirling’s formula

log Γq(x) ∼
(

x−
1

2

)

log

(

1− qx

1− q

)

+
Li2(1− qx)

log q
+

1

2
H(q − 1) log q + Cq̂ (7)

+
∞
∑

k=1

B2k

(2k)!

(

log q̂

q̂x − 1

)2k−1

q̂xP2k−3(q̂
x)

as x −→ ∞ where H(.) denotes the Heaviside step function, Bk, k = 1, 2, ...
are the Bernoulli numbers,

q̂ =

{

q if 0 < q < 1
1/q if q > 1

The function Li2(z) is the dilogarithm function defined for complex argument
z as

Li2(z) = −
∫ z

0

log(1− t)

t
dt, z /∈ [1,∞) (8)

Pk is a polynomial of degree k satisfying

Pk(z) = (z − z2)P
′

k−1(z) + (kz + 1)Pk−1(z), P0 = P−1 = 1, k = 1, 2, ... (9)

and

Cq =
1

2
log(2π) +

1

2
log

(

q − 1

log q

)

−
1

24
log q +

1

log(q)

∫

− log(q)

0

udu

eu − 1

+ log

(

∞
∑

m=−∞

rm(6m+1) − r(2m+1)(3m+1)

)

,

where r = exp(4π2/ log q). In [6], the author proved the following formulas:

lim
q−→1

Li2(1− qx)

log q
= −x, and lim

q→1
cq =

1

2
log(2π). (10)
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Let α be a real number and q, β are nonnegative parameter. We define the
function fα,β(q; x) by [2]

fα,β(q; x) =
Γq(x+ β) exp

(

− Li2(1−qx)
log q

)

(

1−qx

1−q

)x+β−α , x > 0. (11)

It is worth mentioning that Chen and Qi [7] considered the function

fα,β(x) =
exΓ(x+ β)

xx+β−α
, x > 0.

which is a special case of the function fα,β(q; x) on letting q → 1.

In [2], the author proved the following results:

Theorem A Let q ∈ (0, 1) and α be a real number. The function fα,1(q; x) is
logarithmically completely monotonic on (0,∞), if and only if 2α ≤ 1.

Theorem B Let q ∈ (0, 1) and α be a real number. The function [fα,1(q; x)]
−1

is logarithmically completely monotonic on (0,∞), if and only if α ≥ 1.

Theorem C Let q ∈ (0, 1) and α be a real number and β ≥ 0. Then, the
function fα,β(q; x) is logarithmically completely monotonic function on (0,∞)
if 2α ≤ 1 ≤ β.

Motivated by this results, our aim is to establish a sufficient condition,
a necessary condition and a necessary and sufficient condition such that the
function fα,β(q; x) is logarithmic completely monotonic on (0,∞), when the
real β is lies in different ranges. These results can be regarded as supplements
to the paper [2]. As applications of these results, we derive the q−version of
Kěckić-Vasić type inequality for q > 0, and we find a necessary and sufficient
condition for the function gα,β(q; x) defined by

gα,β(q; x) = log Γq(x+ β)−
Li2(1− qx)

log(q)
− (x+ β − α) log

(

1− qx

1− q

)

(12)

is completely monotonic on (0,∞).
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As a tool for completing our work, we need to the following lemmas:

2 Lemmas

Lemma 2.1 [6] The following approximation for the q−digamma function

ψq(x) = log

(

1− qx

1− q

)

+
1

2

qx log(q)

1− qx
+O

(

qx log2(q)

(1− qx)2

)

, (13)

holds for all q > 0 and x > 0.

Lemma 2.2 [8] For every x, q > 0, there exists at least one real number
a ∈ [0, 1] such that

ψq(x) = log

(

1− qx+a

1− q

)

+
qx log(q)

1− qx
−
(

1

2
− a

)

H(q − 1) log(q) (14)

where H(.) is the Heaviside step function.

Lemma 2.3 The function

g1(x) =
2 log(x) + x log(x)− 2x+ 2

2 log(x)
(15)

is decreasing on (0, 1). Furthermore, it satisfies limx−→0 g1(x) = 1 and limx−→1 g1(x) =
1/2.

Proof. Differentiating g(x) yields

g′1(x) =
h(x)

4x log2(x)
,

where h(x) = x log2(x) − 2x log(x) + 2x − 2, so h′(x) = log2(x) > 0, for all
x ∈ (0, 1). Consequently, the function h(x) is increasing on (0, 1), such that
limx−→1 h(x) = 0. Therefore the function g1(x) is decreasing on (0, 1). It is easy
to see that limx−→0 g1(x) = 1, and by using the l’Hospital’s rule we deduce that
limx−→1 g1(x) = 1/2.

Lemma 2.4 The function

g2(x) =
2x− x log(x)− 2

2 log(x)
(16)

is increasing on (0, 1). Furthermore, it satisfies limx−→0 g2(x) = 0 and limx−→1 g2(x) =
1/2.

Proof. We note that g2(x) = 1− g1(x). So, Lemma 2.3 completes the proof of
Lemma 2.4.
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3 Main results

We first state our main results as follows. The next Theorem is an extension
of Theorem C.

Theorem 3.1 Let q > 0, α be a real number and β ≥ 0. If 2α ≤ 1 ≤ β,
then the function fα,β(q; x) is logarithmically completely monotonic on (0,∞).

Proof. Let q > 1, the relations (3), (4) and the definition of the q−digamma
function (5) give

ψq(x+ β) =
2x+ 2β − 3

2
log(q) + ψ1/q(x+ β). (17)

A simple computation we get

log

(

1− qx

1− q

)

= log

(

1− (1/q)x

1− (1/q)

)

+ (1− x) log(1/q), (18)

and
qx

1− qx
= −qx

(1/q)x

1− (1/q)x
. (19)

By using the formula [[2], Lemma 1]

(log(fα,β(q; x))
′ = ψq(x+ β)− log

(

1− qx

1− q

)

+ (β − α)
qx log(q)

1− qx
(20)

and the previous formulas we get for q > 1

(log(fα,β(q; x))
′ = ψ1/q(x+β)−log

(

1− (1/q)x

1− (1/q)

)

+(β−α)
(1/q)x log(1/q)

1− (1/q)x
+(α−1/2) log(q)

(21)
By using the Theorem C, we deduce that the function (− log(fα,β(q; x))

′ is
completely monotonic on (0,∞) for all q ∈ (0, 1) and 2α ≤ 1 ≤ β, and
consequently the function

(− log(fα,β(q; x))
′ − (1/2− α) log(q) = (22)

= log

(

1− (1/q)x

1− (1/q)

)

− ψ1/q(x+ β) + (α− β)
(1/q)x log(1/q)

1− (1/q)x

= log

(

1− q̂x

1− q̂

)

− ψq̂(x+ β) + (α− β)
q̂x log(q̂)

1− q̂x
,

is also completely monotonic on (0,∞) for all q > 1 and 2α ≤ 1 ≤ β. From
this fact, and since

(1/2− α) log(q) ≥ 0

for all 2α ≤ 1 and q > 1, we deduce that the function (− log(fα,β(q; x))
′ is

completely monotonic on (0,∞) for all q > 1 and 2α ≤ 1 ≤ β. Applying
Theorem C with the above results, we obtain the desired results.
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Remark 3.2 A similar proof to proof of Theorem 3.1, we deduce that the
Theorem A and Theorem B are valid for q > 0, and consequently, the inequal-
ities proved in [2] are holds true for all q > 0.

In the next Theorem we give a necessary condition for the Theorem C,
where β is nonnegative.

Theorem 3.3 For q ∈ (0, 1), α be a real number and β > 0. If fα,β(q; x) is

logarithmically completely monotonic on (0,∞), then α ≤ min
(

β, β − 2qβ−log(q)qβ−2
2 log(q)

)

.

Proof. Assume that the function fα,β(q; x) is logarithmically completely mono-
tonic on (0,∞), thus

(log(fα,β(q; x))
′ = ψq(x+ β)− log

(

1− qx

1− q

)

+ (β − α)
qx log(q)

1− qx
≤ 0,

which is equivalent to

β − α ≥
1− qx

qx log(q)

(

log

(

1− qx

1− q

)

− ψq(x+ β)

)

. (23)

By means of Lemma 2.2 and (23) we obtain

β − α ≥ lim
x→0

(

1− qx

qx log(q)

[

log

(

1− qx

1− q

)

− ψq(x+ β)

])

= lim
x→0

(

1− qx

qx log(q)

[

log

(

1− qx

1− qx+a+β

)

−
qx+β log(q)

1− qx+β

])

= 0.

Now, letting x→ ∞ in (23) and using Lemma 2.1 we get

β − α ≥ lim
x→∞

(

1− qx

qx log(q)

[

log

(

1− qx

1− q

)

− ψq(x+ β)

])

= lim
x→∞

(

1− qx

qx log(q)

[

log

(

1− qx

1− qx+β

)

−
qx+β log(q)

2(1− qx+β)

])

=
2qβ − qβ log(q)− 2

2 log(q)
,

which implies that

α ≤ β −
2qβ − qβ log(q)− 2

2 log(q)
.

Hence, the necessary condition such that the function fα,β(q; x) is logarithmi-
cally completely monotonic on (0,∞), is given by

α ≤ min

(

β, β −
2qβ − log(q)qβ − 2

2 log(q)

)

.
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Theorem 3.4 Let q ∈ (0, 1), β ∈ {0}∪ [1,∞). Then the function fα,β(q; x)
is logarithmically completely monotonic on (0,∞), if and only if α ≤ 1

2
.

Proof. Firstly, let β ≥ 1, we know that the condition of Theorem 3.4 is
sufficient, it is follows by Theorem C. Now, we prove the necessary condition.
Suppose that the function fα,β(q; x) is logarithmically completely monotonic
on (0,∞), then

α ≤ min

(

β, β −
2qβ − log(q)qβ − 2

2 log(q)

)

, (24)

by means of Theorem 3.3. As the function β 7→ kq(β) = 2qβ−log(q)qβ−2
2 log(q)

is

increasing on [1,∞), we have

kq(β) ≥ kq(1) = g2(q) ≥ 0,

for q ∈ (0, 1), by Lemma 2.4. So, for q ∈ (0, 1), β ≥ 1 we get

min

(

β, β −
2qβ − log(q)qβ − 2

2 log(q)

)

= β −
2qβ − log(q)qβ − 2

2 log(q)
. (25)

Now, for q ∈ (0, 1) and β ≥ 1, we define the function h(q; β) by

h(q; β) = β −
2qβ − log(q)qβ − 2

2 log(q)
.

It is easily verified that the function β 7→ h(q; β) is strictly increasing and
strictly convex on [1,∞) for each q ∈ (0, 1). From this fact and (24), we thus
obtain

α ≤ h(q; 1) = g(q),

where q ∈ (0, 1). From Lemma 2.3, we have

α ≤ 1/2.

Now, let β = 0. By the following relationship:

ψq(x+ 1) =
1− qx

1− q
ψq(x) (26)

and the definition of the function fα,β(q; x) we deduce that

fα,0(q; x) = fα,1(q; x). (27)

From this fact and Theorem A, we deduce the desired results for β = 0. So,
the proof of Theorem 3.4 is evidently completed.
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Remark 3.5 Theorem 3.3 and Theorem 3.4, are shown to be a generaliza-
tion of Theorem 1. (2) and (3), obtained by Guo et al. [1].

As consequence of Theorem 3.1 and Theorem 3.4 we deduce the q−version
of Kěckić-Vasić type inequality.

Corollary 3.6 Let x, y be positive numbers with x < y, and β ≥ 1.
1. For q > 0, the following inequality





[

1− qx

1− qy

]α−β
Γq(x+ β)

Γq(x+ β)





log(q)

Li2(1−qy)− Li2(1−qx)
≤

1

e





[

1−qx

1−q

]x

[

1−qy

1−q

]y





log(q)

Li2(1−qy)− Li2(1−qx)

(28)
holds true also if α ≤ 1/2.
2. For q ∈ (0, 1). The inequality (28) holds true if and only if α ≤ 1/2.

Proof. Since logarithmically completely monotonic function is completely
monotonic function we conclude that the function fα,β(q; x) is decreasing on
(0,∞), and consequently we get

fα,β(q; x) ≥ fα,β(q; y),

which is equivalent to (28). By considering the sufficient condition in Theorem
3.1 and the necessary and sufficient condition in Theorem 3.4.

Remark 3.7 It is worth mentioning that the inequality (28) when letting q
tends to 1, returns to the inequality (2) in [1].

Theorem 3.8 Let q ∈ (0, 1). Then the function gα,0(q; x) is completely
monotonic on (0,∞), if and only if α = 1/2.

Proof. It is clear that
gα,β(q; x) = log fα,β(q; x). (29)

Suppose that the function gα,β(q; x) is completely monotonic on (0,∞). Hence,
the function fα,β(q; x) is logarithmically completely monotonic on (0,∞). By
using Theorem 3.4 and (27), we deduce that

α ≤ 1/2. (30)

On the other hand, by using the q−analogue of Stirling formula (7) and the
definition of the function gα,β(q; x) we obtain for q ∈ (0, 1)

gα,β(q; x) ∼
(

α−
1

2

)

log

(

1− qx

1− q

)

+ Cq̂ +
∞
∑

k=1

B2k

(2k)!

(

log q̂

q̂x − 1

)2k−1

q̂xP2k−3(q̂
x),

(31)
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as x→ ∞. In view of the fact that gα,β(q; x) ≥ 0, and (31) we get

α−
1

2
≥ − lim

x→∞

Cq̂ +
∑

∞

k=1
B2k

(2k)!

(

log q̂
q̂x−1

)2k−1
q̂xP2k−3(q̂

x)

log
(

1−qx

1−q

) = 0,

that is,
α ≥ 1/2. (32)

Combining (30) and (32) we obtain

α = 1/2.

Conversely, In view of (29) and using the fact that the function f1/2,0(q; x) is
logarithmic completely monotonic on (0,∞), (see Theorem 3.4) we have

(−1)ng
(n)
1/2,0(q; x) = (−1)n(log f1/2,0(q; x))

(n) ≥ 0, (33)

for all n ≥ 1. So, the function g1/2,0(q; x) is decreasing on (0,∞). Thus

g1/2,0(q; x) ≥ lim
x→∞

g1/2,0(q; x). (34)

By (31) and (34), we conclude that

gα,0(q; x) ≥ lim
x→∞

g1/2,0(q; x) = Cq̂ > 0,

from which we readily see that (33) is also valid for n = 0. Consequently, the
function g1/2,0(q; x) is completely monotonic on (0,∞).

Theorem 3.9 For q ∈ (0, 1), α be a real number and β > 0. If (fα,β(q; x))
−1

is logarithmically completely monotonic on (0,∞), then α ≥ max
(

β, β − 2qβ−log(q)qβ−2
2 log(q)

)

.

Proof. The proof of this Theorem is similar of the proof of Theorem 3.3.

Corollary 3.10 Let q ∈ (0, 1), β ≥ 1. If the function (fα,β(q; x))
−1 is

logarithmically completely monotonic on (0,∞), then α ≥ β.

Proof. Suppose that the function (fα,β(q; x))
−1 is logarithmically completely

monotonic on (0,∞), then

α ≥ max

(

β, β −
2qβ − log(q)qβ − 2

2 log(q)

)

,

by Theorem 3.10. From the previous inequality and (25) we deduce

α ≥ β

for all β ≥ 1 and q ∈ (0, 1).

Remark 3.11 Let β = 1 in the precedent Corollary we obtain the necessary
condition of Theorem B.
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