Mathematica Aeterna, Vol. 6, 2016, no. 4, 631-635

# Super-biderivations of the super Virasoro algebra 

Jinsen Zhou<br>School of Information Engineering, Longyan University, Longyan 364012, Fujian, P. R. China<br>Email: zjs9932@126.com<br>\section*{Guangzhe Fan ${ }^{1}$}<br>School of Mathematical Sciences, Tongji University, Shanghai 200092, P. R. China<br>Email: yzfanguangzhe@126.com


#### Abstract

In this paper we investigate super-biderivations of the super Virasoro algebra. The super Virasoro algebra is a Lie superalgebra equipped with a basis $\left\{L_{m}, I_{m}, G_{m} \mid m \in Z\right\}$ and nontrivial Lie super-brackets: $\left[L_{m}, L_{n}\right]=(n-m) L_{m+n},\left[L_{m}, I_{n}\right]=n I_{m+n},\left[L_{m}, G_{n}\right]=(n-m) G_{m+n}$, $\left[I_{m}, G_{n}\right]=G_{m+n}$. Finally, we prove that all skew-supersymmetric super-biderivations of the super Virasoro algebra are inner super-biderivations.


Mathematics Subject Classification: 17B05, 17B40, 17B60, 17B65, 17B70

Keywords: the super Virasoro algebra; super-biderivations

## 1 Introduction

Recently, many authors have investigated biderivations of both Lie algebras and Lie superalgebras. In [3,7], the authors proved that each skew-symmetric biderivation on the Schrödinger-Virasoro algebra and a simple generalized Witt algebra over a field of characteristic 0 is a inner biderivation. Later on, superbiderivations of many Lie superalgebras were studied in [4,9,10]. In [5], the author introduced the concept of the super Virasoro algebra. In [11], the

[^0]authors studied Lie super-bialgebra and quantization of the super Virasoro algebra.

The super Virasoro algebra $S$ is a Lie superalgebra whose even part $S_{\overline{0}}$ has a basis $\left\{L_{m}, I_{m} \mid m \in Z\right\}$ and odd part $S_{\overline{1}}$ has a basis $\left\{G_{m} \mid m \in Z\right\}$, equipped with the following nontrivial Lie super-brackets $(m, n \in Z):\left[L_{m}, L_{n}\right]=(n-$ $m) L_{m+n},\left[L_{m}, I_{n}\right]=n I_{m+n},\left[L_{m}, G_{n}\right]=(n-m) G_{m+n},\left[I_{m}, G_{n}\right]=G_{m+n}$.

Obviously, we know that $S$ contains many important subalgebras. For example,

- $W=\oplus_{m \in Z} L_{m}$ is in fact the well-known centerless Virasoro algebra.
- $H=\left(\oplus_{m \in Z} L_{m}\right) \oplus\left(\oplus_{m \in Z} I_{m}\right)$ is the centerless twisted Heisenberg-Virasoro algebra.

Note that $S$ is $Z$-graded: $S=\underset{m \in Z}{\oplus} S_{m}, S_{m}=\operatorname{span}\left\{L_{m}, I_{m}, G_{m}\right\}$.
Here is a detailed outline of the contents of the main parts of the article. In Section 2, we review some conclusions about super-biderivations of Lie superalgebras. In Section 3, we prove that all skew-supersymmetric superbiderivations of the super Virasoro algebras are inner super-biderivations.

For the readers' convenience, we give some notations used in this paper. Denote by $C, Z$ the sets of complex numbers, integers. We assume that all vector spaces are based on $C$ and the degree of $x$ or $\phi$ is denoted by $|x|$ or $|\phi|$. In addition, $x$ is always assumed to be homogeneous when $|x|$ occurs. Denote by $h g(L)$ the set of all homogeneous elements of $L$ where $L$ be a superspace.

## 2 Preliminaries

In this section, we shall summarize some basic concepts about super-bideivations of Lie superalgebras in $[4,9]$.

Definition 2.1 We call a bilinear map $\phi: L \times L \longrightarrow L$ a super-biderivation of $L$ if it satisfies the following two equations $(x, y, z \in h g(L))$ :

$$
\begin{gather*}
\phi([x, y], z)=(-1)^{|\phi| x \mid}[x, \phi(y, z)]+(-1)^{|y||z|}[\phi(x, z), y],  \tag{1}\\
\phi(x,[y, z])=[\phi(x, y), z]+(-1)^{(|\phi|+|x|)|y|}[y, \phi(x, z)] . \tag{2}
\end{gather*}
$$

Proposition 2.2 We say that a super-biderivation $\phi$ of $L$ is a skew-supersymmetric super-biderivation if $\phi$ satisfies the following condition $(x, y \in h g(L))$ :

$$
\begin{equation*}
\text { skew - supersymmetry : } \quad \phi(x, y)=-(-1)^{|x| y \mid} \phi(y, x) . \tag{3}
\end{equation*}
$$

Definition 2.3 A super-biderivation $\phi$ of homogenous $\gamma \in Z_{2}$ of $L$ is a super-biderivation such that $\phi\left(L_{\alpha}, L_{\beta}\right) \subseteq L_{\alpha+\beta+\gamma}$ for any $\alpha, \beta \in Z_{2}$. Denote by $\operatorname{BDer}_{\gamma}(L)$ the set of all super-biderivations of homogenous $\gamma$ of $L$. Obviously, $\operatorname{BDer}(L)=\operatorname{BDer}_{\overline{0}}(L) \oplus \operatorname{BDer}_{\overline{1}}(L)$.

Lemma 2.4 If the map $\phi_{\lambda}: L \times L \longrightarrow L$, defined by $\phi_{\lambda}(x, y)=\lambda[x, y]$ for any $x, y \in h g(L)$, where $\lambda \in C$, then $\phi_{\lambda}$ is a skew-supersymmetric superbiderivation of $L$. We call this class super-biderivations inner super-biderivations.

Lemma 2.5 Let $\phi$ be a skew-supersymmetric super-biderivation on $L$, then we get $[\phi(x, y),[u, v]]=(-1)^{\mid \phi(|x|+|y|)}[[x, y], \phi(u, v)]$ for any $x, y, u, v \in h g(L)$.

Lemma 2.6 Let $\phi$ be a skew-supersymmetric super-biderivation on $L$. If $|x|+|y|=\overline{0}$, then $[\phi(x, y),[x, y]]=0$ for any $x, y \in h g(L)$.

Lemma 2.7 Let $\phi$ be a skew-supersymmetric super-biderivation on $L$. If $[x, y]=0$, then $\phi(x, y) \in Z([L, L])$, where $Z([L, L])$ is the center of $[L, L]$.

## 3 Super-biderivations of the super Virasoro algebra

In this section, we would like to compute super-biderivations of the super Virasoro algebras.

Lemma 3.1 Every super-skewsymmetric super-biderivation on the super Virasoro algebra $S$ is an inner super-biderivation.

Proof Suppose $\phi$ is a super-biderivation of the super Virasoro algebra $S$. Assume that $\phi\left(L_{0}, L_{n}\right)=\Sigma_{m \in Z}\left(a_{m}^{n} L_{m}+b_{m}^{n} I_{m}+c_{m}^{n} G_{m}\right), \phi\left(L_{0}, I_{n}\right)=\Sigma_{m \in Z}\left(d_{m}^{n} L_{m}+\right.$ $\left.e_{m}^{n} I_{m}+f_{m}^{n} G_{m}\right), \phi\left(L_{0}, G_{n}\right)=\Sigma_{m \in Z}\left(g_{m}^{n} L_{m}+h_{m}^{n} I_{m}+\triangle_{m}^{n} G_{m}\right)$, where $a_{m}^{n}, b_{m}^{n}$, $c_{m}^{n}, d_{m}^{n}, e_{m}^{n}, f_{m}^{n}, g_{m}^{n}, h_{m}^{n}, \triangle_{m}^{n} \in C$ for any $m, n \in Z$.

According to Lemma 2.7, then $\phi\left(L_{0}, L_{0}\right), \phi\left(L_{0}, I_{0}\right), \phi\left(L_{0}, G_{0}\right) \in Z([S, S])$. Hence, $\phi\left(L_{0}, L_{0}\right)=\phi\left(L_{0}, I_{0}\right)=\phi\left(L_{0}, G_{0}\right)=0$.

Due to $L_{m} \in S_{\overline{0}}$, then $\left|L_{m}\right|+\left|L_{n}\right|=\overline{0}$ for any $m, n \in Z$. By Lemma 2.6, then we obtain

$$
\left[\left[L_{0}, L_{n}\right], \phi\left(L_{0}, L_{n}\right)\right]=0
$$

Furthermore,

$$
n\left[L_{n}, \Sigma_{m \in Z}\left(a_{m}^{n} L_{m}+b_{m}^{n} I_{m}+c_{m}^{n} G_{m}\right)\right]=0
$$

One has

$$
a_{m}^{n}(m-n)=b_{m}^{n} m=c_{m}^{n}(m-n)=0 .
$$

Thus, $a_{m}^{n}=c_{m}^{n}=0$ for $m \neq n$ and $b_{m}^{n}=0$ for $m \neq 0$. So we get $\phi\left(L_{0}, L_{n}\right)=a_{n}^{n} L_{n}+b_{0}^{n} I_{0}+c_{n}^{n} G_{n}$.

By Lemma 2.5, we have

$$
\left[\phi\left(L_{0}, L_{n}\right),\left[L_{0}, L_{1}\right]\right]=(-1)^{|\phi|\left(\left|L_{0}\right|+\left|L_{n}\right|\right)}\left[\left[L_{0}, L_{n}\right], \phi\left(L_{0}, L_{1}\right)\right] .
$$

Hence, we deduce that $a_{n}^{n}=n a_{1}^{1}$ and $c_{n}^{n}=n c_{1}^{1}$.
Let $\lambda=a_{1}^{1}, \mu=c_{1}^{1}$, then we have

$$
\phi\left(L_{0}, L_{n}\right)=\lambda n L_{n}+b_{0}^{n} I_{0}+\mu n G_{n} .
$$

By Lemma 2.5, we have

$$
\left[\phi\left(L_{0}, L_{k}\right),\left[L_{0}, I_{n}\right]\right]=(-1)^{|\phi|\left(\left|L_{0}\right|+\left|I_{n}\right|\right)}\left[\left[L_{0}, L_{k}\right], \phi\left(L_{0}, I_{n}\right)\right]
$$

One deduces that

$$
\begin{aligned}
& \phi\left(L_{0}, L_{n}\right)=\lambda n L_{n}+b_{0}^{n} I_{0}, \\
& \phi\left(L_{0}, I_{n}\right)=\lambda n G_{n}+d_{0}^{n} I_{0}
\end{aligned}
$$

Set $x=L_{0}, y=I_{0}, z=G_{n}$ in (2), then

$$
\phi\left(L_{0},\left[I_{0}, G_{n}\right]\right)=\left[\phi\left(L_{0}, I_{0}\right), G_{n}\right]+\left[I_{0}, \phi\left(L_{0}, G_{n}\right)\right] .
$$

Hence, we have $\phi\left(L_{0}, G_{n}\right)=\Sigma_{m \in Z}\left(\triangle_{m}^{n} G_{m}\right)$.
Set $x=L_{0}, y=L_{0}, z=G_{n}$ in (2), then

$$
\phi\left(L_{0},\left[L_{0}, G_{n}\right]\right)=\left[\phi\left(L_{0}, L_{0}\right), G_{n}\right]+\left[L_{0}, \phi\left(L_{0}, G_{n}\right)\right] .
$$

Hence, we have $\phi\left(L_{0}, G_{n}\right)=\triangle_{n}^{n} G_{n}$.
Set $x=L_{0}, y=L_{k}, z=G_{n}$ in (2), then we have

$$
\phi\left(L_{0},\left[L_{k}, G_{n}\right]\right)=\left[\phi\left(L_{0}, L_{k}\right), G_{n}\right]+\left[L_{k}, \phi\left(L_{0}, G_{n}\right)\right],
$$

This shows that $\triangle_{n}^{n}=\lambda n$ and $b_{0}^{n}=0$.
Set $x=L_{0}, y=I_{k}, z=G_{n}$ in (2), then we have

$$
\phi\left(L_{0},\left[I_{k}, G_{n}\right]\right)=\left[\phi\left(L_{0}, I_{k}\right), G_{n}\right]+\left[I_{k}, \phi\left(L_{0}, G_{n}\right)\right],
$$

Therefore, we have $d_{0}^{n}=0$.
Finally, we have proved the following equations ( $n \in Z$ ):

$$
\begin{aligned}
\phi\left(L_{0}, L_{n}\right) & =\lambda\left[L_{0}, L_{n}\right], \\
\phi\left(L_{0}, I_{n}\right) & =\lambda\left[L_{0}, I_{n}\right], \\
\phi\left(L_{0}, G_{n}\right) & =\lambda\left[L_{0}, G_{n}\right] .
\end{aligned}
$$

For any $z \in S$, we get

$$
\phi\left(L_{0}, z\right)=\lambda\left[L_{0}, z\right] .
$$

Due to $|\phi|=\overline{0}$, and according to Lemma 2.5, we obtain

$$
\left[\phi(x, y),\left[L_{0}, z\right]\right]=\left[[x, y], \phi\left(L_{0}, z\right)\right]
$$

Furthermore we have $\left[\phi(x, y)-\lambda[x, y],\left[L_{0}, z\right]\right]=0$. According to the arbitrary of $z$, then $\phi(x, y)-\lambda[x, y]=0$.

Thus, $\phi(x, y)=\lambda[x, y]$.

## References

[1] D. Benkovič, "Biderivations of triangular algebras," Linear Algebra Appl. 431(2009), pp. 1587-1602.
[2] M. Brešar, "On generalized biderivations and related maps," J. Algebra. 172 (1995), pp. 764-786.
[3] Z. Chen, "Biderivations and linear commuting maps on simple generalized Witt algebras over a field," Elec J. Linear algebra. 31(2016), pp. 1-12.
[4] G. Fan, X. Dai, "Super-biderivations of Lie superalgebras," Linear Multi. Algebra. (2016), pp. 1-9.
[5] M. Mansour, "On the quantum super Virasoro algebra," Czech. J. Phys.. 51(2001), pp. 883-888.
[6] D. Wang, X. Yu, Z. Chen, "Biderivations of parabolic subalgebras of simple Lie algebras," Comm. Algebra. 39(2011), pp. 4097-4104.
[7] D. Wang, X. Yu, "Biderivations and linear commuting maps on the Schrödinger-Virasoro Lie algebra," Comm. Algebra. 41(2013), pp. 21662173.
[8] V. G. Kac, "Lie superalgebras," Adv. Math. 26(1977), pp. 8-96.
[9] C. Xia, D. Wang, X. Han, "Linear super-commuting maps and superbiderivations on the super-Virasoro algebras," Comm. Algebra. 44(2016), pp. 5342-5350.
[10] H. Xu, L. Wang, "The properties of biderivations on Heisenberg superalgebras," Mathematica Aeterna. 5(2015), pp. 285-291 .
[11] L. Yuan, C. He, "Lie super-bialgebra and quantization of the super Virasoro algebra," J. Math. Phys. 57(2016), pp. 1-14.
Received: August 18, 2016


[^0]:    ${ }^{1}$ Corresponding author: G. Fan.

