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Abstract

We give an estimate of type sup X inf on riemannian manifold of dimen-
sion 3 for the prescribed curvature equation.

Mathematics Subject Classification: 53C21, 35J60 35B45 35B50

Keywords: sup x inf , riemannian manifold, dimension 3, prescribed curva-
ture.

1 Introduction and Main Results

In dimension 3, the scalar curvature equation is:

8Au + Ryu = Vu®, u > 0. (E)
Where R, is the scalar curvature and V' is a function (called the prescribed scalar

curvature).

We consider three positive real number a, b, A and we suppose V' lipschitzian:
0<a<V(x)<b< +ooand |[|[VV||pem) < A. ()

The equation (F) was studied a lot when M = Q C R" or M = S,, see for
example [2], [6], [9]. In these cases we have some inequalities of type sup X inf.

The corresponding equation in dimension 2, on open set (2 of R?, is:

Au=Ve", (E)
The equation (E’) was studed a lot and we can find many important results about
a priori estimates in [3], [4], [7], [10], and [13].
In the case V' = 1 and M compact, the equation (£) is Yamabe equation.

T.Aubin and R.Schoen have proved the existence of solution in this case, see for
example [1] and [8].
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When M is a compact riemannian manifold, there is some compactness results
for the equation (£) see [11-12]. Li and Zhu, see [12], proved that the energy is
bounded, and, if we assume M not diffeormorfic to the three sphere, the solutions
are uniformly bounded. They use the positive mass theorem.

Now, if we suppose M a riemannian manifold (not necessarily compact) and
V' =1, Li and Zhang [11] proved that the product sup X inf is bounded.

Here, we give an equality of type sup x inf for the equation (E) with general

conditions (C'). We have:

Theorem 1.1 For all compact set K of M and all positive numbers a,b,A, there
is a positive constant ¢, which depends only on, a,b,A,K,M, g such that:

(supu)'/? x infu < ¢,
K M
for all u solution of (E) with conditions (C').

As a consequence of the previous theorem, we have an estimate of the maximum
if we control the minimum of the solutions:

Corollary 1.2 For all compact set K of M and all positive numbers a,b,A, m,
there is a positive constant ¢, which depends only on, a,b,A, m, K,M,g such that:

supu < ¢, if infu >m >0,
K M

for all u solution of (E) with conditions (C').

Note that in our work, we have not assumption on energy or boundary condition
if we assume the manifold M with boundary.

Next, in the proof of the previous theorem, we can replace the scalar curvature
by any smooth function f, but here we proof the result with 2, the scalar curvature.

2 Proof of the Theorem

Part I: The metric and the laplacian in polar coordinates.

Let (M, g) a Riemannian manifold. We note g, ;; the local expression of the
metric g in the exponential map centered in x.

We are concerning by the polar coordinates expression of the metric. By using
Gauss lemma, we can write:
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g =ds* =dt* + gl;(r,0)d6’d6? = dt* + r*g};(r,0)d0'd6? = g, ;;da’da’,

in a polar chart with origin ", |0, €[ x U, with (U*, ) a chart of S,,_;. We can
write the element volume:

dV, = r" |Gk drddt . .. do" = [det(gm,ij)]dxl c.dx”,

then,

dV, = r"1\/[det(ge.ij)][exp, (r0)]a*(0)drdo" . ..do" ",

where, o is such that, dog, , = o*(0)df' ... d0" . (Riemannian volume ele-
ment of the la sphere in the chart (U*, 1)) ).

Then,

95 = " (0)V/[det(gz)],

Clearly, we have the following proposition:
Propostion 2.1 Let xo € M, there exist e, > 0 and if we reduce U*, we have:

10,35 (2,7, 0)|+]0,0m Gl (x,7,0)] < Cr, V& € B(wg,e1) Vr € [0,6], V€U

and,

|8r]§k|(x,r, 0)|+8r89m|§k|<$,7", 0) < Cr, Vx € B(xg,e1) Vrel0,e], Ve U*.
Remark:

Or[log 1/|g*|] is a local function of 6, and the restriction of the global function

on the sphere S,,_1, 0,[log /det(g,,i;)]. We will note, J(x,r,8) = \/det(ga,ij)-

Let’s write the laplacian in [0, ¢;] x U*,

n—1 — 1 ~0i07 1=
—A =0+ ——0, + ;[log |3"]0, + 7,27392‘(99 P V15*100s)-

VIgH

We have,
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—1 1 ipj —
—A =0, + n . Oy + 0, log J(z,7,0)0, + Dpi (77 \V |G*(0ps).

219"

We write the laplacian ( radial and angular decomposition),

—1
A =0y + 20, + 0,[log J(z,7,0)]0, — As, (s,
r
where Ag, () is the laplacian on the sphere S, ().

We set Lg(z,7)(...) = r*Ag, )(...)[exp,(r6)], clearly, this operator is a lapla-
cian on S,,_; for particular metric. We write,

Lo(z,7) = A

n—1

and,

1@+@u@¢ﬁmz—;m@¢)

n —

A =0, +

r

If, u is function on M, then, @(r, ) = ulexp,(rf)] is the corresponding function
in polar coordinates centered in . We have,

n—1

~du= 0+ Lo 4 0, 00,8~ Lo )i

Part II: '"Blow-up'' and '"'Moving-plane'' methods

The "'blow-up' technique

Let, (u;); a sequence of functions on M such that,

8AUZ + Rgui = ‘/7;’&7;5, u; > 0, (E)

We argue by contradiction and we suppose that sup'/? x inf is not bounded.

‘We assume that:

V ¢, R > 0 3 u, g solution of (£) such that:

R[ sup wuep)Y? x infu.p > c, (H)
B(zo,R) M
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Propostion 2.2 There exist a sequence of points (y;);, yi — xo and two se-
quences of positive real number (1;);,(L;);, l; — 0, L; — +o00, such that if we
ui[exp,, (y)]

u;(yi)

0<wiy) <B <22 Bi— 1.

consider v;(y) = , we have:

1

1/2
1+|’2> , uniformly on every compact set of R3.
Yy

i) = (

i (yi)]? % i}\lf u; — +00

Proof:
We use the hypothesis (H), we can take two sequences R; > 0, R; — 0 and
¢; — +00, such that,

R;[ sup ui]l/?’ x infu; > ¢; — 400,
B(zo.R:) M

Let, x; € B(xg, R;), such that SUDB (4o, ri) Wi = u;i(z;) and s;(x) = [R; —
d(x, 7;)]?u;(x), v € B(x;, R;). Then, z; — .

We have,

Br(nal}é)si(ﬁf) = si(yi) = si(w;) = B Pui(;) > /e — +oo.

Set :

Ui[eXpyi (Z/[uz(y1>]2)]

li = Ri — d(yi, ), wi(y) = wilexp,, (y)], vi(2) =

u;(yi)
Clearly, y; — x¢. We obtain:
i o sw)]? _ od 1/2
1
If |z| < Li, then y = exp,,[2/[ui(y:)]?] € B(yi,d;l;) with 6; = e and
k2 CZ

d(y,y;) < R; — d(y;, z;), thus, d(y, z;) < R; and, s;(y) < s;(y;), we can write,

wi(y)[Ri — d(y, vi)]"? < wilys) (L)',
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we obtain,

u;i(y) { l; T/Q 1/2
0<v(z) = < < 244,
=) wi(yi) — LL(1—6)
1 1/2
We set, 5, = (1 — 5}) , clearly 8; — 1.

The function v; is solution of:

: , R,lexp,, (y
—gjk[expyi (¥)]0jkvi — Ok [gjk lg] [eXpyi (y)]0jv; + W%’ = Vv,

By elleptic estimates and Ascoli, Ladyzenskaya theorems, (v;); converge uni-
formely on each compact to the function v solution on R? of,

8AV =V (zo)v®, v(0) =1, 0<v <1< 21/2
Without loss of generality, we can suppose V' () = 24.

By using maximum principle, we have v > 0 on R, the result of Caffarelli-

1/2
Gidas-Spruck ( see [5]) give, v(y) = <1+H2> . We have the same propreties
Y

for v; in the previous paper [2].

Polar coordinates and ''moving-plane' method

Let,

w;(t,0) = el/Qﬁi(et, 0) = et/2ui[expyi(et0)], et a(y;,t,0) =log J(y;, €', 0).
Lemma 2.3 The function w; is solution of:

—8ttwi — 8ta8twi — Lg(yi, Gt) + cw; = Vﬂuf,

with,

1?1 2
C:C(yi,t,e): <2> +§8ta—)\e ,

Proof:
We write:
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1 2 2
8,5’[112' = th/Qarﬂi + §wi, Ottw,- = €5t/2 6rrﬂi + tarui] + <) Ww;.
e

2

1
Oia = €'0,1og J (ys, €', 0), Oyadyw; = %t/? [0, log JO,u;] + 58,;(1102-.

the lemma is proved.

Oib
Now we have, 0,a = 2—1, b1(yi, t,0) = J(y;, €', 0) >0,
1

We can write,

att (Vorwi) — Lo(ys, e wi + [e(t) + by o (t, 0)]w; = Viw, N,
1
Where, bg(t, 9) = 8tt(\/b—) 2\/_attb1 (b )3/2 (815[)1) .
Let,
U~)z = \/awz
Lemma 2.4 The function w; is solution of:
—Oui + A, () + 2V (). Volog(vbr) + (¢ + by by — o)
€758
1 2
_ V o
<b1> Wi
1 2
where, cy = [ﬁAgyivet’Sn,1 (vb1) + |V log(v/b1) 2.
Proof:
We have:
1 2
=ity b, it (e ) = Vi (),
: 1

But,
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Ay, et g, (Vo10:) = Vi, L w; = 2Vw;. Vey/by + Wilkg, o (Vby),

,€ 7§2
and,
Ve(\/awi) = wive\/a + \/avewz’,
we deduce,
\/aAgyi’et&2 w; = Agyi’et7s2 (@) + 2V (w0;). Vg log(y/by) — cxy,

1
with ¢; = [ﬁAgyiyeKSZ (v/b1) + |Vglog(+/b1)|?]. The lemma is proved.

The ""moving-plane'' method:

Let &; a real number, and suppose & < t, we set & = 2&; — t and @% (¢, 6) =
w; (15, 9).

We have,
() +2V o (057). Vg log (/b1 )5 +[c(t5) by /2 (15, Yoo (t5) =5 ]as =

e (1) e
=V B (w;') -
1

By using the same arguments than in [2], we have:

—Ou i +0y

yiet s,

Propostion 2.5
1) @;(\,0) — (N +4,0) >k >0, V0OeS,.

For all B > 0, there exist cg > 0 such than:

1
2) —e'? <N\ +1,0) < cget’?, VE<S B, VHES,.
Cs

We set,

Zi=—0u(.)+ 0y () +2Ve(...).Valog(y/by) + (c+ by by — ¢)(...)

Yvire'ss,



sup x inf inequality 21

Remark: In the opertor Z;, by using the proposition 3, the coeficient ¢ +
by 2by — ¢y satisfy:

c+ b by —cy > K >0, for t << 0,
it is fundamental if we want to apply Hopf maximum principle.

Goal:

Like in [2], we have elliptic second order operator, here it’s Z:, the goal is to use
the "moving-plane" method to have a contradiction. For this, we must have:

Z;i(0% — ;) <0, if 0% —@; < 0.

We write:

+2(V, & —Voe) (05).V, s 10g(Vb5 )42V (0).V, s [log(ybi)—log v/bu]+

2V (V, e — Vo) log /by —[(c4+by by — o) — (c4by V2by — co) )i+

2 2
HE (bﬁ) @7 Vi (y) @l )
1 1

Clearly, we have:

Lemma 2.6

1
bi(yi, t,0) =1— gRiccz’yi(ﬁ, 0)e + ...,

Ry(e'0) = Ry(y:)+ < VR, (y:)|0 > €' + .. ..

According to proposition 2.1 and lemma 2.6, we have

Propostion 2.7
Zy(wf — ;) < Vi T [(@])° — 7] + 2@ )|V — Vil +
O —

(Vo] + |V (w5)

(@ + (@5)°] + | Ry (30) |05 ] +C"[ — ™).

+ | Ricciy,
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Proof:

We use proposition 2.1, we have:

a(yi, t,0) = log J(y;, €', 0) = log by, |0:by (t)| + |04y (t)] + |Ora(t)] < Ce*,
and,

’aejbll + ‘89j,9kb1| + at,ejbl| + ’at,ej,ekb1’ S Ce2t7

then,

10,01 (£5) — by (£)] < C'|e* — 2

, on | —oo,loge] xS,V x € B(xo, €1)
Locally,
1 ~0lpi ~
Ay, o = Lo(yie") = ——=—==0n[g"" (¢', 0)\/g" (€', 0) |0ps].
e |G*(et, 0)]
Thus, in [0, ¢;] x U*, we have,

&
1

%meVWH%ﬁ}'_ @ﬂ%meVMH@A (")

_ [

A; = [\/@

then, Az = Bl + Dz With,

B; = [gelej(etgi,é) — f]elm(et, 9)} Oprgs 05 (¢, 0),

and,
[ 1 ~0led ;4 o/t 1 ~0l07 [ ¢ —rl( ot
Di = [Wagl [g (6 ,9) |g ‘(6 ,9)] - Wa9l [.g (6 79) ‘g ’(6 79)]
we deduce,

Ay < Cyle® — | |Vt | + |V3(af)]

We take C' = max{C;, 1 < i < ¢} and if we use (x * *1), we obtain proposition
2.7.
We have,
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1 1
c(yirt,0) = (4) Fo0a+ Ry, (o)

b2(t> 6) - att(\/a) = Z\;Eattbl - 4(()11)3/2(@51)2, (O‘2>

) aSn71

1
2 =[—=0 . (Vo) +|Volog(vb)]],  (as)
N
Then,
1
atC(yi7 t, 9) = 58&@ + 2€2th(€t9) + €3t < VR9<€t(9)|6 >7
by proposition 1,

|0cca| + |01 ] + |Opba| + |0sc| < K1€2ta

[ (1:)]/3 x mingy u; o
2 b

Now, we consider the function, w;(t,0) = w;(t,0) —
and A > 2> 0.

Fort <t; = —(2/3)logu;(y;), we have:

[w; (yi)]Y3 x minpy u;
5 >

wi(t,0) = et |by(t,0)e ™ *u0 exp,, (€'0) —

[ui(yi)]l/?’ X miny u;
2

[w; (y:)]"/? x mingg u;
5 .

> ¢t >0,

We set, u; =

We use proposition 2.5 and the same arguments than in [2], we obtain:

Lemma 2.8 There exists v < 0 such that for p < v :
wét(tve) - wz(tae) < 07 v (tve) € [Matz] X SQa

We set, \; = —2log u;(y;), then,

Lemma 2.9
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Proof of lemma 2.9:

Clearly:

Wi(Ai, 0) — wi( X +4,0) = (N, 0) — Wi (N +4,0) 4 e (e — 1),
we deduce lemma 2.9 from proposition 2.5.
Let, & = sup{pu < A + 2,05 (,0) — wi(t,0) <0, V (t,0) € [&,t;] x Sa}.

The real &; exists (see [2]), if we use (x * %2), we have:

@ (t,0) + Vo (1, 0)| + [Viui! (t,0)] < C(R), ¥ (t,0) €] — co,log R] x Sy,

We can write:

_ ) 1 3 _ ) )
—Zi(etf’ —e)y=[1- 1 5&@ — RgeZt + by 1/2b2 — 62](6,552 —e') < cl(etgl —éh,

with ¢; > 0, because |0ya| + [0;b1| + [Oyebr| + |Or0,b1| + Orp, 0,01 < C'e* < 1,
for ¢ very small.

We use proposition 2.7, to obtain on, [§;, ;] X S,

Zi(w§ —wi) < GV[(5)° =] + |V = Vil (wf)* + [pier — C'(R)] (e = ') < 0,
with ¢, > 0.
Like in [2], after using Hopf maximum principle, we have,

sup[wy’ (t;, 0) — wi(t;,0)] = 0.
0€Sy

We have:

u_)f"(ti,el-) —w;(t;,0;) =0, V1.
We deduce,

N3 < ;
[wy:)] 7 x 11‘an u <c¢, Vi
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it is in contradiction with proposition 2.
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