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Abstract

In this paper, we discuss the structure of the exterior direct sum n-

Lie algebra (A™,[,---,,]r) of an n-Lie algebra A. And it is proved that,
(1) if I,---,I,—1 are ideals of an n-Lie algebra A, then the vector space
(Il, IQ, e 7Ik—17 Il, Ik+17 tee 7In—1) is also an ideal of (An’ [, ey 7]k)> and

if I is a solvable (nilpotent) ideal of A, then I"™ is also solvable (nilpo-
tent). (2) For a linear mapping 6§ € End(A), then ¢ is a derivation of A
if and only if fs € Hom(A, A™) is an n-Lie algebra homomorphism. (3)
If (V,p) is an A-module, then (V", p) is an A™-module.
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1 Preliminary

In the paper [1], authors provided the exterior direct sum n-Lie algebras of
n-Lie algebras [2, 3]. In this paper, we mainly study the structures of the
exterior direct sum n-Lie algebra of a given n-Lie algebra. First, we recall
some notions. Let A be a vector space. The direct sum vector space of A is
A" ={(x1, -, zn) |2 € A, 1 < i < n},satistying that for all X = (zy,-- -, z,)
and Y = (y1,++,yn) € A" and A\ € F,

X_'_Y:(xla"'axn)+(y17"'7yn>:(xl—i_yl;""xn—i_yn),
AX = Mz, -+ xn) = (Azq, -+, Axy,).

An n-Lie algebra [3] is a vector space A over a field F' endowed with an n-
ary multilinear skew-symmetric multiplication satisfying that for all z1, - - -, x,,,
Y2, s Yno1 € A,

n

be' ' 'axn]>y2a te ayn] = Z[xlf ' '7[1'1',92, o '>yn]a o '>$n]~ (]-)
i=1
The identity (1) is usually called the n-Jacobi identity.
Let A be an n-Lie algebra. A derivation of an n-Lie algebra A is a linear
mapping D : A — A satisfying that
D([xlv"'7xn]> = Z[xh”'v D(xi)7"'7xn]7 v'51:17"'7:1:n € A

1=

By Eq.(1), for x1, -+, x,-1 € A, the left multiplication ad(zy, -+, z,_1) :
A — A defined by for all x € A, ad(zq,- -+, 2y-1)(x) = [T1, -+, 2h_1,2] is &
derivation of A. All the derivations of A, denoted by Der(A), is a subalgebra
of the general linear algebra gi(A).

Let A be an n-Lie algebra and V' be a vector space. If there exists a linear
mapping p : ANY — End(V) satisfying that for all x;,y; € A,i=1,---,n,

5([$17 T l’n],yg, T 7yn—1)
= Sl B ol v ) ©)

[p(xlv' ’ '7xn—1)7p(y17' ’ '7yn—1)] = ;p(ylu o '7[']:17' ’ '7In—lvyi]7 o '7yn—1> (3)

then (V, p) is called a representation of A, or V' is an A-module [4].

As an example, the linear mapping p : A"? — End(A) defined by for all
1, Ty € A, p(xy, -+ xn—1) = ad(wy, -+, Tpo1), (A,ad) is an A-module,
which is called the adjoint module of A.

Let A be an n-Lie algebra and V' be a subspace of A. If V satisfies that
[V,---, V] CV, then V is a subalgebra of the n-Lie algebra A. If V satisfies
that [V, A,---, A] CV, then V is called an ideal of the n-Lie algebra A. If V'
satisfies that [V,---, V] =0 ([V,V,A,---,A] =0), then V is called an abelian
subalgebra (an abelian ideal).
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2 Structures of n-Lie algebra A"

Lemma 2.1[1] Let A be an n-Lie algebra. Then for any s > 2, A" is an n-Lie

algebra in the multiplication [,---,]s, where for all X; = (x],---,2) € A",
j = ]-7 N,
[Xla"'>XN]8:(Z[xi> ’le’ >93?]’[935aa933]a’[9371wa932]) (4)
i=1
The n-Lie algebra (A™,[,---,]s) is called the exterior direct sum n-Lie al-

gebra. For the similarity, in the following, we mainly discuss the case s = 2.
Theorem 2.2 Let A be an n-Lie algebra, I;, i = 1,---,n — 1 be ideals of
A. Then

U=, 5Ii,1Is,- L) ={(x1, -, 2n) | w1,20 € L1, ;€ 1;,3<i<n}

is an ideal of (A™, [, -,]2). '
Proof For all (yy,---,y,) €U, xl € A,1<i<n,2<j<n,byEq.(4),
[(yl,"',yn),(ZL’%,'",l’%),"',(l’?,"',l’ﬁ)]z

:(Liyl’l’%’...’xg]’[y2’l’§’...’x3]’...’[yn’l’i’...’xZ])
+(Z[y2’...7 Ill’...’ng[y27x%’...’xg]’...’[yn’xi’...’xZ])'
=2 ~

Since I; for j l: 1,---,n — 1 are ideals of A and y;,y> € I, we obtain that
(Y1, yn), (22, 22), - (2, -+ a)]y € U. Tt follows the result.

Theorem 2.3 Let A be an n-Lie algebra, I, ---,1,_1 be ideals of the n-Lie
algebra A. Then for any 3 < k <n, Uy = (I, I, -+, Ix_1, I1, Iys1, -+, In_1)
is an ideal of the n-Lie algebra (A, [, -+, ]k)-

Proof The proof is similar to Theorem 2.2.

Theorem 2.4 Let A be an n-Lie algebra, I be a solvable ( nilpotent ) ideal of
A. Then I™ is a solvable ( nilpotent ) ideal of the n-Lie algebras (A™,[,---, k),
2 < k < n. FEspecially, if I is an abelian ideal of the n-Lie algebra A, then
W =(I,---,1) is an abelian ideal.

Proof By Theorem 2.2, I" is an ideal of n-Lie algebras (A" [,---,]x),
3 < k <n. We only need to prove the solvability and the nilpotency. Since
the similarity, we only prove the case k = 2. Denote W = (I,---,1). By
hypothesis, there exists a number s > 0 such that I¢*) = 0. We will show that
for any r >0, W C (I ... M),

Forallyﬁef,mgeA,1§l§2;3§j§n;1Sign,suppose

[(y%aayi)a(yi)yi))(x?aaxi)aa(z?aalﬁ)b: (Zla"'azn)'
Thanks to Eq.(4), for 2 <t <mn, z = [y}, 2, 2},---, 2} € IV, and

21 = [y%vy%wrga7x§]+[y%7y%7x§7v'rg]+ z_:g[yévygv"'v'rzl)v"'7x§] el(l)
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Therefore, z, € IM for 1 <t < n, we obtain WM C (1MW ... 1),

Now suppose W=D C (1= ... =) By Theorem 2.2 and a similar
discussion, we have

W) = [W(s—l),W(s—l)’An’ o ATy C (](8)’ .. .’](S)).

Since I®®) = 0, we have W) = 0, that is, W is solvable.

Similar discussion, if I is nilpotent, then W is a nilpotent ideal of the
exterior direct sum n-Lie algebra A™.

If I is an abelian ideal, then [I, 1, A,---, A] = 0. Then for all X; = (z}, - - -,
l’z) € An’ 1<i<n, where Xl,Xg € In’ by Eq(4), [Xl,XQ,Xg, e ',Xn]g = 0.
Therefore, I™ is an abelian ideal. The proof is complete.

Now we discuss the relation between derivations of A with (A", [,---,]x),
for k£ > 3. Since the similarity of the discussion, we only study the case k = 2.

For convenience, in the following the exterior direct sum n-Lie algebra
(A™[,---,]2) of an n-Lie algebra A is simply denoted by A,.

Theorem 2.5 Let A be an n-Lie algebra, 6 € End(A). Define linear
mapping fs : A — A™ by the formula

fs(x) = 0z, x,- -+, x), Vo € A. (5)

Then ¢ is a deriwvation of A if and only if fs is an algebra homomorphism.
Proof If ¢ is a derivation of A. Then forall z; € A;i =1, ---, n, by Eq.(4)

and Eq.(5),
f5([l’1,$2, T 7In]) = (5([$1, L2, 7In])7 [Ilv T ZL’n], T [Ilv B anv
[fs(@1), -, fs(wn)]2

= [(5(1’1), e >I1)> (5(1’2), o '>I2)a T (5(In)> T xn)]2

= (S fan, -, 8(@), ], [E1, @]y [T 2]

Since 6([z1, g, - -+, xy]) = i (21, -+, 0(x;), -+, 2], we have

fa([%afz,---,%]) [fa(xl) ,f(;(a:n)].

Conversely, if fs is an n-Lie algebra homomorphism, then for all x; € A,
I1<i< n, [f5(x1)7 T f&(xn)] = f5([$1, o 7xn]) Thanks to Eq(4) and Eq(5>7

[(5(1’1), to >I1)> T (5(In)> o '>IN)]2

= (lg:l[xl’...’5(;5[.)’...7:5”]’ [$1,$2,"',$n],"',[$1,$2,"',$n])
= (5([:61,1’2,"',(5”]),-”,[xl,xg’ 7In])
Therefore, §([z1,xq, -+, 2,]) = Z[ml, ,0(xy), -+, @y, that is, 0 is a

derivation of A. The proof is complete

At last of the paper, we study the representation of the exterior direct
sum n-Lie algebras. Let A be an n-Lie algebra, V be a vector space and
p: AN~ — End(V) be a linear mapping. By the paper [4], (V, p) is an n-Lie
algebra A-module if and only if the direct sum vector space B = A& V is an
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n-Lie algebra in the following multiplication, for all z; € A,v € V, 1 <i <mn,

(@1, xnlp = |21, -, 2], (21,0 o1, ] = p(@01, -0, T,

and V' is an abelian ideal, that is, [A,---, A, V, V]| = 0. Then we have the
following result.

Theorem 2.6 Let A be an n-Lie algebra, (V, p) be a representation of n-Lie
algebra A. Then (V™ p) is a representation of the exterior direct sum n-Lie
algebra A™, where the linear mapping p : (A™)""~' — End(V") defined by for
all Xy = (2, 2) e A", 1<i<n—1, andu = (uy, -+, u,) € V",

rn

n—1
ﬁ(X17 KN Xn_l)u — ( Z p(lé, KN xi’ .. ,’ng—l)UQ
i=1
—Fp(l’%, Ty zg_l)ula p(l’%, Ty xg_l)u% ) ,O(SE,ll, T xz_l)un)'

Proof Since (V) p) is a representation of A, then (B=A&V,[,---,]p) is
an n-Lie algebra. Therefore, we obtain the exterior direct sum n-Lie algebra
(B",[,---,]2) of the n-Lie algebra (B = A@V, [---,]p). From V is an
abelian ideal of B, and Theorem 2.2, V" is an abelian ideal of the n-Lie algebra

(Bn’ [a e 9]2)'
Define linear mapping p : (A")"*~1 — End(V") by for all X, -+, X,,_; €
A" w = (wy, -+, w,) €V

ﬁ(Xh T Xn_l)(U)) - CLdBn(Xl, Ty Xn—l)(w) = [X17 tU 7Xn—17w]2-

By a direct computation, p satisfies Eq.(2) and Eq.(3). Therefore, (V",p) is a
representation of A™. The proof is complete.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science
Foundation (11371245) and the Natural Science Foundation of Hebei Province
(A2014201006).

References

[1] R. Bai, Y. Zhang, Exterior direct sum n-Lie algebras, Mathematica
Aeterna, 2016, 6(5) appear.

[2] R.Bai, C. Bai and J. Wang, Realizations of 3-Lie algebras, J. Math. Phys.,
2010, 51, 063505.

[3] V.T. Filippov, n—Lie algebras, Sib. Mat. Zh., 1985, 26: 126-140.

[4] S. Kasymov, On a theory of n-Lie algebras, Algebra i Logika, 1987, 26:
277-297.

Received: August 31, 2016



