Mathematica Aeterna, Vol. 5, 2015, no. 5, 733 - 737

Structures of Γ_{11} over the prime field Z_2

BAI Ruipu

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

GUO Weiwei

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

BAI Jin

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

The 8-dimensional 3-Lie algebra Γ_{11} over the prime field Z_2 is realized by 2-cubic matrix, and the structures of it is studied. It is proved that Γ_{11} is a solvable but non-nilpotent 3-Lie algebra (Theorem 2.3). The inner derivation algebra $ad(\Gamma_{11})$ is a 10-dimensional two-step nilpotent Lie algebra (Theorem 2.5), and the derivation algebra $Der(\Gamma_{11})$ with dimension 13 is solvable but non-nilpotent (Theorem 2.6). And the concrete expression of all derivations are given.

2010 Mathematics Subject Classification: 17B05 17D30 **Keywords:** 2-cubic matrix, 3-Lie algebra, derivation, prime field.

1 Introduction

Authors in papers [1, 2] constructed 3-Lie algebras by Lie algebras, associative algebras, pre-Lie algebras and commutative associative algebras and their derivations and involutions. In paper [3], fifteen kinds of multiplications of *N*-cubic matrix are provided, and four non-isomorphic N^3 -dimensional 3-Lie algebras are constructed. Bai, Guo, and Lin in papers [4, 5] discussed 3-Lie algebras J_{11} and J_{21} which are realized by 2-cubic matrix over a field with characteristic $p, p \neq 2$. In this paper, we pay our main attention to 8-dimensional 3-Lie algebras which are constructed by 2-cubic matrix in the prime field $Z_2 = \{0, 1\}$. In the following we suppose that $Z_2 = \{0, 1\}$ is the prime field with characteristic two, for a vector space V and a subset S, the subspace generated by S is denoted by (S).

2 Structure of 3-Lie algebra Γ_{11}

First we introduce some notations. An N-order cubic matrix $A = (a_{ijk})$ over the field Z_2 is an ordered object which the elements with 3 indices, and the element in the position (i, j, k) is $(A)_{ijk} = a_{ijk}, 1 \leq i, j, k \leq N$ and $a_{ijk} = 0$ or 1. Denote the set of all cubic matrix over Z_2 by Ω . Then Ω is an N^3 dimensional vector space with $A + B = (a_{ijk} + b_{ijk}) \in \Omega$, $\lambda A = (\lambda a_{ijk}) \in \Omega$, for $\forall A = (a_{ijk}), B = (b_{ijk}) \in \Omega$, $\lambda \in Z_2$, that is, $(A + B)_{ijk} = a_{ijk} + b_{ijk}$, $(\lambda A)_{ijk} = \lambda a_{ijk}$.

Denote $E_{ijk} = (e_{h_1h_2h_3})$, where $e_{h_1h_2h_3} = \delta_{h_1i}\delta_{h_2j}\delta_{h_3k}$, that is when $h_1 = i$, $h_2 = j$, $h_3 = k$, $e_{h_1h_2h_3} = 1$, and elsewhere are zero. Then, $\{E_{ijk} | 1 \le i, j, k \le n\}$ is a basis of Ω .

For all $A = (a_{ijk}), B = (b_{ijk}) \in \Omega$, define the multiplication $*_{11}$ in Ω by

$$(A *_{11} B)_{ijk} = \sum_{p=1}^{n} a_{ijp} b_{ipk}, 1 \le i, j, k \le n.$$
(1)

Denote $\langle A \rangle_1 = \sum_{p,q=1}^N (A)_{pqq} = \sum_{p,q=1}^N a_{pqq}$, Then $\langle \rangle_1$ is a linear function from the vector space Ω to Z_2 and satisfies

$$\langle A *_{11} B \rangle_1 = \langle B *_{11} A \rangle_1. \tag{2}$$

Define the multiplication $[,,]_{11}: \Omega \land \Omega \land \Omega \to \Omega$ as follows:

$$[A, B, C]_{11} = \langle A \rangle_1 (B *_{11} C + C *_{11} B) + \langle B \rangle_1 (C *_{11} A + A *_{11} C) + \langle C \rangle_1 (A *_{11} B + B *_{11} A).$$
(3)

Theorem 2.1^[3] The linear space Ω is a 3-Lie algebra in the multiplication $*_{11}$, which is denoted by Γ_{11} , and the multiplication $[,,]_{11}$ is simply denoted by [,,].

In the following we suppose that Ω_2 is vector space over $Z_2 = \{0, 1\}$ which consists of 2-cubic matrix. Then the dimension of Ω_2 is eight and with a basis

$$\{E_{111}, E_{112}, E_{121}, E_{122}, E_{211}, E_{212}, E_{221}, E_{222}\}$$

And for all $A \in \Omega_2$, $A = \sum_{i,j,k=1}^{2} \lambda_{ijk} E_{ijk}$, $\lambda_{ijk} = 1, 0 \in \mathbb{Z}_2$.

Structures of Γ_{11} over the prime field Z_2

Theorem 2.2. The multiplication of the 3-Lie algebra Γ_{11} in the basis $\{E_{111}, E_{112}, E_{121}, E_{122}, E_{211}, E_{212}, E_{221}, E_{222}\}$ is as follows

$$\begin{cases} [E_{111}, E_{112}, E_{121}] = E_{111} + E_{122}, \\ [E_{111}, E_{121}, E_{211}] = E_{121}, \\ [E_{111}, E_{211}, E_{212}] = E_{212}, \\ [E_{111}, E_{211}, E_{221}] = E_{221}, \\ [E_{111}, E_{112}, E_{221}] = E_{112}, \\ [E_{111}, E_{212}, E_{222}] = E_{212}, \\ [E_{111}, E_{212}, E_{222}] = E_{221}, \\ [E_{111}, E_{212}, E_{222}] = E_{221}, \\ [E_{111}, E_{212}, E_{221}] = E_{211} + E_{222}, \\ [E_{112}, E_{121}, E_{122}] = E_{111} + E_{122}, \\ [E_{112}, E_{121}, E_{211}] = E_{111} + E_{122}, \\ [E_{112}, E_{122}, E_{211}] = E_{112}, \\ [E_{121}, E_{122}, E_{211}] = E_{121}, \\ [E_{211}, E_{122}, E_{221}] = E_{211} + E_{222}, \\ [E_{212}, E_{221}, E_{222}] = E_{211} + E_{222}, \\ \end{bmatrix}$$

where the zero product of the basis vectors are omitted.

Proof The result follows from a direct complication according to the definition of $*_{11}$ and Eqs.(1), (2) and (3).

For studying the structure of the 3-Lie algebra Γ_{11} , we need to find a special basis to simplify its multiplication.

Theorem 2.3 1). Γ_{11} is an indecomposable 3-Lie algebra with two dimensional center, and the multiplication in the basis $\{e_1 = E_{111}, e_2 = E_{112}, e_3 = E_{121}, e_4 = E_{111} + E_{122}, e_5 = E_{211} + E_{111}, e_6 = E_{212}, e_7 = E_{221}, e_8 = E_{211} + E_{222}\}$ is as follows

$$\begin{pmatrix}
[e_1, e_2, e_3] = e_4, \\
[e_1, e_5, e_6] = e_6, \\
[e_1, e_6, e_7] = e_8, \\
[e_1, e_2, e_5] = e_2, \\
[e_1, e_3, e_5] = e_3, \\
[e_1, e_5, e_7] = e_7.
\end{cases}$$
(5)

2) The 3-Lie algebra Γ_{11} is solvable but non-nilpotent.

Proof It is clear that $\{e_1, \dots, e_8\}$ is a basis of Ω_2 . By Theorem 2.2 and a direct computation we have Eq.(4), and the center of Γ_{11} is $Z(\Gamma_{11}) = (e_4, e_8)$. Since Γ_{11} can not be written as the direct sum of two proper ideals, Γ_{11} is indecomposable. The result 1) follows.

From $\Gamma_{11}^{(1)} = [\Gamma_{11}, \Gamma_{11}, \Gamma_{11}] = (e_2, e_3, e_4, e_6, e_7, e_8)$, and $\Gamma_{11}^{(2)} = [\Gamma_{11}^{(1)}, \Gamma_{11}^{(1)}, \Gamma_{11}^{(1)}] = 0$, Γ_{11} is solvable. By $\Gamma_{11}^1 = [\Gamma_{11}, \Gamma_{11}, \Gamma_{11}] = (e_2, e_3, e_4, e_6, e_7, e_8)$,

$$\Gamma_{11}^2 = [\Gamma_{11}^1, \Gamma_{11}, \Gamma_{11}] = (e_2, e_3, e_4, e_6, e_7, e_8) = \Gamma_{11}^1$$

so for all s > 1, we have $\Gamma_{11}^{s+1} = [\Gamma_{11}^s, \Gamma_{11}^s, \Gamma_{11}] = \Gamma_{11}^1 \neq 0$. Then Γ_{11} is non-nilpotent. The proof is completed.

Theorem 2.4 The subalgebra $H = (e_1, e_4, e_5, e_8)$ is a Cartan subalgebra of Γ_{11} . And the decomposition of Γ_{11} associate to H is

$$\Gamma_{11} = H \dot{+} \Gamma_{\alpha}, \ \Gamma_{\alpha} = (e_2, e_3, e_6, e_7) = \{ e \in \Gamma \mid [h_1, h_2, e] = \alpha(h_1, h_2) e \},\$$

where $\alpha \in (H \otimes H)^*$, $\alpha(e_1, e_5) = 1$, $\alpha(e_1, e_j) = \alpha(e_i, e_j) = 0$, i, j = 4, 5, 8.

Proof From Theorem 2.3, the subalgebra $H = (e_1, e_4, e_5, e_8)$ is an abelian subalgebra, so it is also a nilpotent 3-Lie algebra. If the element e in Γ_{11} satisfies $[e, \Gamma_{11}, H] \subseteq H$, then $e \in H$, so H is a Cartan subalgebra of Γ_{11} . Thanks to Eq.(4), the decomposition of Γ_{11} associate to H is

$$\Gamma_{11} = H \dot{+} \Gamma_{\alpha}, \ \Gamma_{\alpha} = (e_2, e_3, e_6, e_7) = \{ e \in \Gamma \mid [h_1, h_2, e] = \alpha(h_1, h_2) e \},\$$

where $\alpha \in (H \otimes H)^*$, $\alpha(e_1, e_5) = 1$, $\alpha(e_1, e_j) = \alpha(e_i, e_j) = 0$, i, j = 4, 5, 8. The proof is completed.

Now we study the inner derivation algebra $ad(\Gamma_{11})$. For $e_i, e_j \in \Omega$, denote

$$ad(e_i, e_j)e_k = \sum_{l=1}^8 a_{kl}^{ij}e_l$$
, where $a_{kl}^{ij} = a_{kl}^{ji} = 0$, or $1 \in \mathbb{Z}_2$.

Then the matrix form of $ad(e_i, e_j)$ in the basis e_1, \dots, e_8 is $\sum_{k,l=1}^8 a_{kl}^{ij} E_{kl}$, where $E_{kl}, 1 \leq k, l \leq 8$ are matrix units.

Theorem 2.5 The inner derivation algebra $ad(\Gamma_{11})$ satisfies the following

1) dim $ad(\Gamma_{11}) = 10$, and $X_1 = E_{34} + E_{52}$, $X_2 = E_{24} + E_{53}$, $X_3 = E_{56} + E_{78}$, $X_4 = E_{57} + E_{68}$, $X_5 = E_{14}$, $X_6 = E_{12}$, $X_7 = E_{13}$, $X_8 = E_{16}$, $X_9 = E_{17}$, $X_{10} = E_{18}$ is a basis of $ad(\Gamma_{11})$, the multiplication in it is

$$\begin{cases}
[X_1, X_7] = X_5, \\
[X_2, X_6] = X_5, \\
[X_3, X_9] = X_{10}, \\
[X_4, X_8] = X_{10}.
\end{cases}$$
(5)

2) $ad(\Gamma_{11})$ is a two-step nilpotent Lie algebra, and the center $Z(ad(\Gamma_{11})) = (X_4, X_{10}) = \Gamma_{11}^1$.

Proof By Theorem 2.3, for all $e_i, e_j, 1 \le i, j \le 8$, the left multiplication $ad(e_i, e_j) : \Gamma_{11} \to \Gamma_{11}$, defined by $ad(e_i, e_j)e = [e_i, e_j, e]$, satisfy $ad(e_1, e_2) = E_{34} + E_{52}, ad(e_1, e_3) = E_{24} + E_{53}, ad(e_1, e_6) = E_{56} + E_{78}, ad(e_1, e_7) = E_{57} + E_{68}, ad(e_2, e_3) = E_{14}, ad(e_2, e_5) = E_{12}, ad(e_3, e_5) = E_{13}, ad(e_5, e_6) = E_{16}, ad(e_5, e_7) = E_{17}, ad(e_6, e_7) = E_{18}.$ Therefore, $\{X_1, \dots, X_{10}\}$ is a basis of $ad(\Gamma_{11})$. From $[ad(e_i, e_j), ad(e_k, e_l)] = ad([e_i, e_j, e_k], e_l) + ad(e_k, [e_i, e_j, e_l])$ and Eq.(4), we have the result.

Structures of Γ_{11} over the prime field Z_2

Theorem 2.6 The derivation algebra $Der(\Gamma_{11})$ with dimension 13, and $\{X_1, \dots, X_{13}\}$, where $X_{11} = E_{11} + E_{44} + E_{55} + E_{88}$, $X_{12} = E_{54} + E_{58}$, $X_{13} = E_{15}$, and X_i for $1 \leq i \leq 10$ expressed in Theorem 2.5, is a basis of $Der(\Gamma_{11})$, and the multiplication in it is

$$\begin{bmatrix} [X_1, X_7] = X_5, & [X_2, X_6] = X_5, \\ [X_3, X_9] = X_{10}, & [X_2, X_{11}] = X_2, \\ [X_4, X_8] = X_{10}, & [X_1, X_{11}] = X_1, \\ [X_3, X_{11}] = X_3, & [X_4, X_{11}] = X_4, \\ & [X_1, X_{13}] = X_6, & [X_2, X_{13}] = X_7, \\ & [X_3, X_{13}] = X_8, & [X_4, X_{13}] = X_9, \\ & [X_6, X_{11}] = X_6, & [X_{12}, X_{13}] = X_5 + X_{10}. \end{bmatrix}$$

$$(6)$$

2) $Der(\Gamma_{11})$ is solvable but non-nilpotent Lie algebra, $Z(Der(\Gamma_{11})) = (X_5, X_{10})$, and $Der^1(\Gamma_{11}) = ad(\Gamma_{11})$.

Proof The result follows from Theorem 2.5 and a direct computation. Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

- R. Bai,Y. Wu, Constructions of 3-Lie algebras, Linear and Multilinear Algebra, 2015, 63(11): 2171-2186.
- [2] A. Pozhidaev, Monomial n-Lie algebras, Algebra Log. 1998, 37(5):307-322.
- [3] R. Bai, H. Liu, M. Zhang, 3-Lie Algebras Realized by Cubic Matrices, Chin.Ann. Math., 2014, 35B(2): 261-270.
- [4] R. Bai, L. Lin, W. Guo, Structure of 8-dimensional 3-Lie algebra J_{21} , Mathematica Aeterna, 2015, 5(4): 599- 603.
- [5] R. Bai, W. Guo, L. Lin, Structure of the 3-Lie algebra J_{11} , Mathematica Aeterna, 2015, 5(4):593-597.

Received: October, 2015