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Structure of the 3-Lie algebra J11
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Abstract

The paper main concerns the structure of 8-dimensional 3-Lie alge-

bra J11 which is constructed by 2-cubic matrix. The multiplication of

J11 is discussed and the decomposition of J11 associate with a Cartan

subalgebra is provided. The structure of derivation algebra and inner

derivation algebra of J11 are also studied.
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1 Introduction

n-Lie algebras [1-2], especially, 3-Lie algebras, have wide applications in math-
ematics and mathematical physics [3-4]. Researchers try to construct n-Lie
algebras by algebras which we know well. For example, by means of one and
two dimensional extensions, people constructed n-Lie algebras from (n−1)-Lie
algebras. In papers [5-6], 3-Lie algebras are constructed by Lie algebras, as-
sociative algebras, pre-Lie algebras and commutative associative algebras and
their derivations and involutions. In paper [7], fifteen kinds of multiplications
of N -cubic matrix are provided, and four non-isomorphic N3-dimensional 3-
Lie algebras are constructed. In this paper, we pay our main attention to
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8-dimensional 3-Lie algebras which are constructed by 2-cubic matrix, we sup-
pose that 3-Lie algebras over a field F of characteristic of zero, and the subspace
generated by a subset S of a vector space V is denoted by < S >.

2 Structure of 3-Lie algebras J11

An N-order cubic matrix A = (aijk) (see [7] ) over a field F is an ordered object
which the elements with 3 indices, and the element in the position (i, j, k) is
(A)ijk = aijk, 1 ≤ i, j, k ≤ N . Denote the set of all cubic matrix over a field
F by Ω. Then Ω is an N3-dimensional vector space over F with A + B =
(aijk + bijk) ∈ Ω, λA = (λaijk) ∈ Ω, for ∀A = (aijk), B = (bijk) ∈ Ω, λ ∈ F ,
that is, (A+B)ijk = aijk + bijk, (λA)ijk = λaijk.

Denote Eijk a cubic matrix with the element in the position (i, j, k) is 1
and elsewhere are zero. Then {Eijk, 1 ≤ i, j, k ≤ N} is a basis of Ω, and for
every A = (aijk) ∈ Ω, A =

∑

1≤i,j,k≤N

aijkEijk, aijk ∈ F.

For all A = (aijk), B = (bijk) ∈ Ω, define the multiplication ∗11 in Ω by

(A ∗11 B)ijk =
N
∑

p=1

aijpbipk,

then (Ω, ∗11) is associative algebra.

Denote 〈A〉1 =
N
∑

p,q=1
apqq. Then 〈 〉1 is linear functions from Ω to F and

satisfies 〈A ∗11 B〉1 = 〈B ∗11 A〉1.
Define the multiplication [, , ]11 : Ω ∧ Ω ∧ Ω → Ω as follows:
[A,B,C]11 = 〈A〉1(B ∗11 C − C ∗11 B)

+〈B〉1(C ∗11 A− A ∗11 C) + 〈C〉1(A ∗11 B − B ∗11 A). (1)
We obtain the following lemma.
Theorem 2.1[7] The linear space Ω is a 3-Lie algebra in the multiplication

[, , ]11, which is denoted by J11.
In the following we suppose N = 2. We have the following result.
Theorem 2.2 The 3-Lie algebra J11 is a non-nilpotent indecomposable

3-Lie algebra with a basis e1 = E111, e2 = E112, e3 = E121, e4 = E111 − E122,

e5 = E211−E111, e6 = E212, e7 = E221, e8 = E211−E222, and the multiplication
in it is as follows:










[e1, e2, e3] = e4, [e1, e2, e4] = −2e2, [e1, e3, e4] = 2e3,
[e1, e6, e7] = e8, [e1, e6, e8] = −2e6, [e1, e7, e8] = 2e7,
[e1, e2, e5] = e2, [e1, e3, e5] = −e3, [e1, e5, e6] = e6, [e1, e5, e7] = −e7.

(2)

Then center of J11 is < e4 + 2e5 − e8 >.
Proof It is clear that {e1, · · · , e8} is a basis of Ω. By the definition of [, , ]11,

we obtain Eq.(2). Thank to ad(e1, e4) is non-nilpotent, the 3-Lie algebra J11
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is non-nilpotent. By a direct computation, [e4 + 2e5 − e8, x, y] = 0 for all
x, y ∈ J11. Then proof is completed.

Theorem 2.3 The subalgebra H =< e1, e4, e5, e8 > is a Cartan subalgebra
of the 3-Lie algebra J11. And the decomposition of J11 associate to H is

J11 = H+̇Jα+̇J−α, where Jα =< e2, e6 >, J−α =< e3, e7 >,
where the linear function α : H ∧ H → F defined by α(1, 4) = 2, α(1, 8) =
2, α(1, 5) = −1, and others are zero.

Proof Define linear function α : H ∧ H → F by α(1, 4) = 2, α(1, 8) =
2, α(1, 5) = −1, and others are zero. By the multiplication (2) we have
[ei, ej, e2] = α(ei, ej)e2, [ei, ej , e6] = α(ei, ej)e6, [ei, ej, e3] = −α(ei, ej)e3, [ei,
ej , e7] = −α(ei, ej)e7, for all ei, ej ∈ H . Then we have Jα =< e2, e6 >,
J−α =< e3, e7 >, and J11 = H+̇Jα+̇J−α. The proof is completed.

Now we study the inner derivation algebra adJ11. For ei, ej ∈ Ω, denote

ad(ei, ej)ek =
8

∑

l=1

a
ij
klel, where a

ij
kl = −a

ji
kl ∈ F.

Then the matrix form of ad(ei, ej) in the basis e1, · · · , e8 is
∑8

k,l=1 a
ij
klEkl, where

Ekl are the matrix units.
Theorem 2.4 Let J11 be a 3-Lie algebra in Theorem 2.2. Then we have
1) dim adJ11 = 12, and X1 = E34 − 2E42 + E52, X2 = −E24 + 2E43 − E53,

X3 = 2E22 − 2E33, X4 = −E56 + E78 − 2E86, X5 = E57 − E68 + 2E87, X6 =
2E66−2E77, X7 = E14, X8 = E12, X9 = E13, X10 = E16, X11 = E17, X12 = E18

is a basis of adJ11. And the multiplication in it is
[X2, X1] = X3, [X3, X2] = 2X2, [X3, X1] = −2X1, [X6, X4] = −2X4,

[X5, X4] = X6, [X6, X5] = 2X5, [X1, X7] = 2X8, [X1, X9] = −X7, [X2, X7] =
−2X9, [X3, X9] = 2X9, [X4, X11] = −X12, [X4, X12] = 2X10, [X5, X10] = X12,

[X5, X12] = −2X11, [X6, X10] = −2X10, [X6, X11] = 2X11, [X2, X8] = X7,

[X3, X8] = −2X8.

2) adJ11 is a decomposable Lie algebra, and

adJ11 = L1+̇L2, [L1, L1] = L1, [L2, L2] = L2, [L1, L2] = 0,

where L1 =< X1, X2, X3, X7, X8, X9 >, L2 =< X4, X5, X6, X10, X11, X12 >,
< X1, X2, X3 >∼=< X4, X5, X6 >∼= sl2, and I1 =< X7, X8, X9 >, I2 =<

X10, X11, X12 > are minimal ideals of adJ11.
Proof By a direct computation according to Eq.(2) we have

ad(e1, e2) = E34 − 2E42 + E52, ad(e1, e3) = −E24 + 2E43 − E53, ad(e1, e4) =
2E22 − 2E33, ad(e1, e6) = −E56 + E78 − 2E86; ad(e1, e7) = E57 − E68 + 2E87,

ad(e1, e8) = 2E66 − 2E77, ad(e2, e3) = E14, ad(e2, e5) = E12, ad(e3, e5) = −E13,

ad(e5, e6) = E16, ad(e5, e7) = −E17, ad(e6, e7) = E18. Then {X1, · · · , X12} is a
basis of adJ11. From

[ad(ei, ej), ad(ek, el)]= ad([ei, ej , ek], el) + ad(ek, [ei, ejel]),
we have the result.
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At the last of the paper, we discuss the derivation algebra DerJ11.

Theorem 2.5 The derivation algebra DerJ11 satisfies:
1) The dimension of DerJ11 is 15, and DerJ11 with a basis {X1, · · · , X15},

where X13 = E11 − 2E33 − E44 − E55 − 2E77 − E88, X14 = E54 + 2E55 − E58,

X15 = E15, Xi is in Theorem 2.4 for 1 ≤ i ≤ 12. And the multiplication in the
basis is















































































[X2, X1] = X3, [X10, X13] = −X10, [X5, X12] = −2X11,

[X6, X5] = 2X5, [X6, X4] = −2X4, [X1, X7] = 2X8, [X1, X9] = −X7,

[X2, X7] = −2X9, [X2, X8] = X7, [X3, X8] = −2X8, [X3, X9] = 2X9,

[X4, X11] = −X12, [X4, X12] = 2X10, [X5, X10] = X12,

[X3, X2] = 2X2, [X6, X10] = −2X10, [X6, X11] = 2X11

[X1, X13] = X1, [X2, X13] = −X2, [X4, X13] = X4, [X5, X13] = −X5

[X7, X13] = −2X7, [X8, X13] = −X8, [X9, X13] = −3X9,

[X3, X1] = −2X1, [X11, X13] = −3X11, [X12, X13] = −2X12,

[X2, X15] = X9, [X4, X15] = X10, [X5, X15] = −X11, [X13, X15] = 2X15,

[X5, X4] = X6, [X14, X15] = −X7 − 2X15 +X12, [X1, X15] = −X8.

2) DerJ11 is an indecomposable Lie algebra, and

DerJ11 = adJ11+̇W,

where W =< X13, X14, X15 > .

3) Derived algebra Der1J11 = < X1, · · · , X12, X15 >, I1, I2 are minimal
ideals of DerJ11, L1, L2 are ideals of DerJ11 and [W,L1] ⊆ L1, [W,L2] ⊆ L2.

Proof For all D ∈ DerJ11, suppose D(ei) =
8
∑

j=1
aijej , 1 ≤ i ≤ 8, then the

matrix of D in the basis {e1, · · · , e8} is A = (aij)
8
i,j=1 =

8
∑

i,j=1
aijEij , where Eij

are (8 × 8) matrix units, 1 ≤ i, j ≤ 8. By s direct computation according to
the multiplication (2), we have the result 1).

Thanks to Theorem 2.5, W =< X13, X14, X15 > are exterior derivations.
Then we have DerJ11 = adJ11+̇W .

By a direct computation, Der1J11 =< X2, · · · , X12, X15 > and L1, L2 de-
fined in Theorem 2.5 are ideals of DerJ11, and I1, I2 are minimal ideals.
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