Mathematica Aeterna, Vol. 5, 2015, no. 4, 593 - 597

Structure of the 3-Lie algebra J_{11}

BAI Ruipu

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

GUO Weiwei

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

LIN Lixin

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

The paper main concerns the structure of 8-dimensional 3-Lie algebra J_{11} which is constructed by 2-cubic matrix. The multiplication of J_{11} is discussed and the decomposition of J_{11} associate with a Cartan subalgebra is provided. The structure of derivation algebra and inner derivation algebra of J_{11} are also studied.

2010 Mathematics Subject Classification: 17B05 17D30 **Keywords:** *N*-cubic matrix, 3-Lie algebra, derivation.

1 Introduction

n-Lie algebras [1-2], especially, 3-Lie algebras, have wide applications in mathematics and mathematical physics [3-4]. Researchers try to construct *n*-Lie algebras by algebras which we know well. For example, by means of one and two dimensional extensions, people constructed *n*-Lie algebras from (n-1)-Lie algebras. In papers [5-6], 3-Lie algebras are constructed by Lie algebras, associative algebras, pre-Lie algebras and commutative associative algebras and their derivations and involutions. In paper [7], fifteen kinds of multiplications of *N*-cubic matrix are provided, and four non-isomorphic N^3 -dimensional 3-Lie algebras are constructed. In this paper, we pay our main attention to

8-dimensional 3-Lie algebras which are constructed by 2-cubic matrix, we suppose that 3-Lie algebras over a field F of characteristic of zero, and the subspace generated by a subset S of a vector space V is denoted by $\langle S \rangle$.

2 Structure of 3-Lie algebras J_{11}

An N-order cubic matrix $A = (a_{ijk})$ (see [7]) over a field F is an ordered object which the elements with 3 indices, and the element in the position (i, j, k) is $(A)_{ijk} = a_{ijk}, 1 \leq i, j, k \leq N$. Denote the set of all cubic matrix over a field F by Ω . Then Ω is an N^3 -dimensional vector space over F with A + B = $(a_{ijk} + b_{ijk}) \in \Omega, \quad \lambda A = (\lambda a_{ijk}) \in \Omega, \text{ for } \forall A = (a_{ijk}), B = (b_{ijk}) \in \Omega, \quad \lambda \in F,$ that is, $(A + B)_{ijk} = a_{ijk} + b_{ijk}, \quad (\lambda A)_{ijk} = \lambda a_{ijk}.$

Denote E_{ijk} a cubic matrix with the element in the position (i, j, k) is 1 and elsewhere are zero. Then $\{E_{ijk}, 1 \leq i, j, k \leq N\}$ is a basis of Ω , and for every $A = (a_{ijk}) \in \Omega$, $A = \sum_{1 \leq i, j, k \leq N} a_{ijk} E_{ijk}$, $a_{ijk} \in F$.

For all $A = (a_{ijk}), B = (b_{ijk}) \in \Omega$, define the multiplication $*_{11}$ in Ω by

$$(A *_{11} B)_{ijk} = \sum_{p=1}^{N} a_{ijp} b_{ipk},$$

then $(\Omega, *_{11})$ is associative algebra.

Denote $\langle A \rangle_1 = \sum_{p,q=1}^N a_{pqq}$. Then $\langle \rangle_1$ is linear functions from Ω to F and satisfies $\langle A *_{11} B \rangle_1 = \langle B *_{11} A \rangle_1$.

Define the multiplication $[,,]_{11}: \Omega \wedge \Omega \wedge \Omega \to \Omega$ as follows:

 $[A, B, C]_{11} = \langle A \rangle_1 (B *_{11} C - C *_{11} B)$

 $+\langle B\rangle_1(C*_{11}A - A*_{11}C) + \langle C\rangle_1(A*_{11}B - B*_{11}A).$ (1) We obtain the following lemma.

Theorem 2.1^[7] The linear space Ω is a 3-Lie algebra in the multiplication $[,,]_{11}$, which is denoted by J_{11} .

In the following we suppose N = 2. We have the following result.

Theorem 2.2 The 3-Lie algebra J_{11} is a non-nilpotent indecomposable 3-Lie algebra with a basis $e_1 = E_{111}$, $e_2 = E_{112}$, $e_3 = E_{121}$, $e_4 = E_{111} - E_{122}$, $e_5 = E_{211} - E_{111}$, $e_6 = E_{212}$, $e_7 = E_{221}$, $e_8 = E_{211} - E_{222}$, and the multiplication in it is as follows:

 $\begin{cases} [e_1, e_2, e_3] = e_4, [e_1, e_2, e_4] = -2e_2, [e_1, e_3, e_4] = 2e_3, \\ [e_1, e_6, e_7] = e_8, [e_1, e_6, e_8] = -2e_6, [e_1, e_7, e_8] = 2e_7, \\ [e_1, e_2, e_5] = e_2, [e_1, e_3, e_5] = -e_3, [e_1, e_5, e_6] = e_6, [e_1, e_5, e_7] = -e_7. \end{cases}$ (2)Then center of J_{11} is $< e_4 + 2e_5 - e_8 > .$

Proof It is clear that $\{e_1, \dots, e_8\}$ is a basis of Ω . By the definition of $[, ,]_{11}$, we obtain Eq.(2). Thank to $ad(e_1, e_4)$ is non-nilpotent, the 3-Lie algebra J_{11}

is non-nilpotent. By a direct computation, $[e_4 + 2e_5 - e_8, x, y] = 0$ for all $x, y \in J_{11}$. Then proof is completed.

Theorem 2.3 The subalgebra $H = \langle e_1, e_4, e_5, e_8 \rangle$ is a Cartan subalgebra of the 3-Lie algebra J_{11} . And the decomposition of J_{11} associate to H is

 $J_{11} = H + J_{\alpha} + J_{-\alpha}$, where $J_{\alpha} = \langle e_2, e_6 \rangle$, $J_{-\alpha} = \langle e_3, e_7 \rangle$, where the linear function $\alpha : H \wedge H \to F$ defined by $\alpha(1,4) = 2, \alpha(1,8) = 2, \alpha(1,5) = -1$, and others are zero.

Proof Define linear function $\alpha : H \wedge H \to F$ by $\alpha(1,4) = 2, \alpha(1,8) = 2, \alpha(1,5) = -1$, and others are zero. By the multiplication (2) we have $[e_i, e_j, e_2] = \alpha(e_i, e_j)e_2, [e_i, e_j, e_6] = \alpha(e_i, e_j)e_6, [e_i, e_j, e_3] = -\alpha(e_i, e_j)e_3, [e_i, e_j, e_7] = -\alpha(e_i, e_j)e_7$, for all $e_i, e_j \in H$. Then we have $J_{\alpha} = \langle e_2, e_6 \rangle, J_{-\alpha} = \langle e_3, e_7 \rangle$, and $J_{11} = H + J_{\alpha} + J_{-\alpha}$. The proof is completed.

Now we study the inner derivation algebra adJ_{11} . For $e_i, e_j \in \Omega$, denote

$$ad(e_i, e_j)e_k = \sum_{l=1}^{8} a_{kl}^{ij}e_l$$
, where $a_{kl}^{ij} = -a_{kl}^{ji} \in F$.

Then the matrix form of $ad(e_i, e_j)$ in the basis e_1, \dots, e_8 is $\sum_{k,l=1}^8 a_{kl}^{ij} E_{kl}$, where E_{kl} are the matrix units.

Theorem 2.4 Let J_{11} be a 3-Lie algebra in Theorem 2.2. Then we have 1) dim $adJ_{11} = 12$, and $X_1 = E_{34} - 2E_{42} + E_{52}$, $X_2 = -E_{24} + 2E_{43} - E_{53}$, $X_3 = 2E_{22} - 2E_{33}$, $X_4 = -E_{56} + E_{78} - 2E_{86}$, $X_5 = E_{57} - E_{68} + 2E_{87}$, $X_6 = 2E_{66} - 2E_{77}$, $X_7 = E_{14}$, $X_8 = E_{12}$, $X_9 = E_{13}$, $X_{10} = E_{16}$, $X_{11} = E_{17}$, $X_{12} = E_{18}$ is a basis of adJ_{11} . And the multiplication in it is

 $\begin{bmatrix} X_2, X_1 \end{bmatrix} = X_3, \begin{bmatrix} X_3, X_2 \end{bmatrix} = 2X_2, \begin{bmatrix} X_3, X_1 \end{bmatrix} = -2X_1, \begin{bmatrix} X_6, X_4 \end{bmatrix} = -2X_4, \\ \begin{bmatrix} X_5, X_4 \end{bmatrix} = X_6, \begin{bmatrix} X_6, X_5 \end{bmatrix} = 2X_5, \begin{bmatrix} X_1, X_7 \end{bmatrix} = 2X_8, \begin{bmatrix} X_1, X_9 \end{bmatrix} = -X_7, \begin{bmatrix} X_2, X_7 \end{bmatrix} = -2X_9, \begin{bmatrix} X_3, X_9 \end{bmatrix} = 2X_9, \begin{bmatrix} X_4, X_{11} \end{bmatrix} = -X_{12}, \begin{bmatrix} X_4, X_{12} \end{bmatrix} = 2X_{10}, \begin{bmatrix} X_5, X_{10} \end{bmatrix} = X_{12}, \\ \begin{bmatrix} X_5, X_{12} \end{bmatrix} = -2X_{11}, \begin{bmatrix} X_6, X_{10} \end{bmatrix} = -2X_{10}, \begin{bmatrix} X_6, X_{11} \end{bmatrix} = 2X_{11}, \begin{bmatrix} X_2, X_8 \end{bmatrix} = X_7, \\ \begin{bmatrix} X_3, X_8 \end{bmatrix} = -2X_8.$

2) adJ_{11} is a decomposable Lie algebra, and

$$adJ_{11} = L_1 + L_2, \ [L_1, L_1] = L_1, [L_2, L_2] = L_2, [L_1, L_2] = 0,$$

where $L_1 = \langle X_1, X_2, X_3, X_7, X_8, X_9 \rangle$, $L_2 = \langle X_4, X_5, X_6, X_{10}, X_{11}, X_{12} \rangle$, $\langle X_1, X_2, X_3 \rangle \cong \langle X_4, X_5, X_6 \rangle \cong sl_2$, and $I_1 = \langle X_7, X_8, X_9 \rangle$, $I_2 = \langle X_{10}, X_{11}, X_{12} \rangle$ are minimal ideals of adJ_{11} .

Proof By a direct computation according to Eq.(2) we have

 $ad(e_1, e_2) = E_{34} - 2E_{42} + E_{52}, ad(e_1, e_3) = -E_{24} + 2E_{43} - E_{53}, ad(e_1, e_4) = 2E_{22} - 2E_{33}, ad(e_1, e_6) = -E_{56} + E_{78} - 2E_{86}; ad(e_1, e_7) = E_{57} - E_{68} + 2E_{87}, ad(e_1, e_8) = 2E_{66} - 2E_{77}, ad(e_2, e_3) = E_{14}, ad(e_2, e_5) = E_{12}, ad(e_3, e_5) = -E_{13}, ad(e_5, e_6) = E_{16}, ad(e_5, e_7) = -E_{17}, ad(e_6, e_7) = E_{18}.$ Then $\{X_1, \dots, X_{12}\}$ is a basis of adJ_{11} . From

 $[ad(e_i,e_j),ad(e_k,e_l)]=ad([e_i,e_j,e_k],e_l)+ad(e_k,[e_i,e_je_l]),$ we have the result.

At the last of the paper, we discuss the derivation algebra $Der J_{11}$.

Theorem 2.5 The derivation algebra $Der J_{11}$ satisfies:

1) The dimension of $Der J_{11}$ is 15, and $Der J_{11}$ with a basis $\{X_1, \dots, X_{15}\}$, where $X_{13} = E_{11} - 2E_{33} - E_{44} - E_{55} - 2E_{77} - E_{88}$, $X_{14} = E_{54} + 2E_{55} - E_{58}$, $X_{15} = E_{15}$, X_i is in Theorem 2.4 for $1 \le i \le 12$. And the multiplication in the basis is

$$\begin{split} & [X_2, X_1] = X_3, [X_{10}, X_{13}] = -X_{10}, [X_5, X_{12}] = -2X_{11}, \\ & [X_6, X_5] = 2X_5, [X_6, X_4] = -2X_4, [X_1, X_7] = 2X_8, [X_1, X_9] = -X_7, \\ & [X_2, X_7] = -2X_9, [X_2, X_8] = X_7, [X_3, X_8] = -2X_8, [X_3, X_9] = 2X_9, \\ & [X_4, X_{11}] = -X_{12}, [X_4, X_{12}] = 2X_{10}, [X_5, X_{10}] = X_{12}, \\ & [X_3, X_2] = 2X_2, [X_6, X_{10}] = -2X_{10}, [X_6, X_{11}] = 2X_{11} \\ & [X_1, X_{13}] = X_1, [X_2, X_{13}] = -X_2, [X_4, X_{13}] = X_4, [X_5, X_{13}] = -X_5 \\ & [X_7, X_{13}] = -2X_7, [X_8, X_{13}] = -X_8, [X_9, X_{13}] = -3X_9, \\ & [X_3, X_1] = -2X_1, [X_{11}, X_{13}] = -3X_{11}, [X_{12}, X_{13}] = -2X_{12}, \\ & [X_2, X_{15}] = X_9, [X_4, X_{15}] = X_{10}, [X_5, X_{15}] = -X_{11}, [X_{13}, X_{15}] = 2X_{15}, \\ & [X_5, X_4] = X_6, [X_{14}, X_{15}] = -X_7 - 2X_{15} + X_{12}, [X_1, X_{15}] = -X_8. \end{split}$$

2) $Der J_{11}$ is an indecomposable Lie algebra, and

$$DerJ_{11} = adJ_{11} + W,$$

where $W = \langle X_{13}, X_{14}, X_{15} \rangle$.

3) Derived algebra $Der^1 J_{11} = \langle X_1, \cdots, X_{12}, X_{15} \rangle$, I_1, I_2 are minimal ideals of $Der J_{11}, L_1, L_2$ are ideals of $Der J_{11}$ and $[W, L_1] \subseteq L_1, [W, L_2] \subseteq L_2$.

Proof For all $D \in Der J_{11}$, suppose $D(e_i) = \sum_{j=1}^{8} a_{ij} e_j$, $1 \le i \le 8$, then the

matrix of D in the basis $\{e_1, \dots, e_8\}$ is $A = (a_{ij})_{i,j=1}^8 = \sum_{i,j=1}^8 a_{ij} E_{ij}$, where E_{ij}

are (8×8) matrix units, $1 \le i, j \le 8$. By s direct computation according to the multiplication (2), we have the result 1).

Thanks to Theorem 2.5, $W = \langle X_{13}, X_{14}, X_{15} \rangle$ are exterior derivations. Then we have $Der J_{11} = a d J_{11} + W$.

By a direct computation, $Der^1 J_{11} = \langle X_2, \cdots, X_{12}, X_{15} \rangle$ and L_1, L_2 defined in Theorem 2.5 are ideals of $Der J_{11}$, and I_1, I_2 are minimal ideals.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

[1] V. FILIPPOV, *n*-Lie algebras, Sib. Mat. Zh., 1985, 26 (6), 126-140.

- [2] S. Kasymov, Conjugacy of Cartan subalgebras in n-Lie algebras, Algebra i Logika, 1995, 34(4): 405-419.
- [3] G. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes Phys. Rev. 2008, D770, 65008
- [4] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D7, 1973, 2405-2412.
- [5] R. Bai, Y. Gao, W. Guo, A class of 3-Lie algebras realized by Lie algebras, Mathematica Aeterna, 2015, 5(2): 263 - 267.
- [6] R. Bai, Y. Wu, Constructions of 3-Lie algebras, Linear and Multilinear Algebra, 2014http://dx.doi.org/10.1080/03081087.2014.986121.
- [7] R. Bai, H. LIU, M. ZHANG, 3-Lie Algebras Realized by Cubic Matrices, Chin.Ann. Math., 2014, 35B(2): 261-270.

Received: August, 2015