Mathematica Aeterna, Vol. 5, 2015, no. 4, 593-597

Structure of the 3 -Lie algebra J_{11}

BAI Ruipu
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn
\section*{GUO Weiwei}
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
\section*{LIN Lixin}
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

The paper main concerns the structure of 8 -dimensional 3-Lie algebra J_{11} which is constructed by 2 -cubic matrix. The multiplication of J_{11} is discussed and the decomposition of J_{11} associate with a Cartan subalgebra is provided. The structure of derivation algebra and inner derivation algebra of J_{11} are also studied.

2010 Mathematics Subject Classification: 17B05 17D30
Keywords: N-cubic matrix, 3-Lie algebra, derivation.

1 Introduction

n-Lie algebras [1-2], especially, 3 -Lie algebras, have wide applications in mathematics and mathematical physics [3-4]. Researchers try to construct n-Lie algebras by algebras which we know well. For example, by means of one and two dimensional extensions, people constructed n-Lie algebras from ($n-1$)-Lie algebras. In papers [5-6], 3-Lie algebras are constructed by Lie algebras, associative algebras, pre-Lie algebras and commutative associative algebras and their derivations and involutions. In paper [7], fifteen kinds of multiplications of N-cubic matrix are provided, and four non-isomorphic N^{3}-dimensional 3Lie algebras are constructed. In this paper, we pay our main attention to

8-dimensional 3-Lie algebras which are constructed by 2-cubic matrix, we suppose that 3 -Lie algebras over a field F of characteristic of zero, and the subspace generated by a subset S of a vector space V is denoted by $\langle S\rangle$.

2 Structure of 3-Lie algebras J_{11}

An N-order cubic matrix $A=\left(a_{i j k}\right)$ (see [7]) over a field F is an ordered object which the elements with 3 indices, and the element in the position (i, j, k) is $(A)_{i j k}=a_{i j k}, 1 \leq i, j, k \leq N$. Denote the set of all cubic matrix over a field F by Ω. Then Ω is an N^{3}-dimensional vector space over F with $A+B=$ $\left(a_{i j k}+b_{i j k}\right) \in \Omega, \quad \lambda A=\left(\lambda a_{i j k}\right) \in \Omega$, for $\forall A=\left(a_{i j k}\right), B=\left(b_{i j k}\right) \in \Omega, \lambda \in F$, that is, $(A+B)_{i j k}=a_{i j k}+b_{i j k},(\lambda A)_{i j k}=\lambda a_{i j k}$.

Denote $E_{i j k}$ a cubic matrix with the element in the position (i, j, k) is 1 and elsewhere are zero. Then $\left\{E_{i j k}, 1 \leq i, j, k \leq N\right\}$ is a basis of Ω, and for every $A=\left(a_{i j k}\right) \in \Omega, A=\sum_{1 \leq i, j, k \leq N} a_{i j k} E_{i j k}, a_{i j k} \in F$.

For all $A=\left(a_{i j k}\right), B=\left(b_{i j k}\right) \in \Omega$, define the multiplication $*_{11}$ in Ω by

$$
\left(A *_{11} B\right)_{i j k}=\sum_{p=1}^{N} a_{i j p} b_{i p k},
$$

then $\left(\Omega, *_{11}\right)$ is associative algebra.
Denote $\langle A\rangle_{1}=\sum_{p, q=1}^{N} a_{p q q}$. Then $\left\rangle_{1}\right.$ is linear functions from Ω to F and satisfies $\left\langle A *_{11} B\right\rangle_{1}=\left\langle B *_{11} A\right\rangle_{1}$.

Define the multiplication $[,,]_{11}: \Omega \wedge \Omega \wedge \Omega \rightarrow \Omega$ as follows:

$$
\begin{align*}
{[A, B, C]_{11} } & =\langle A\rangle_{1}\left(B *_{11} C-C *_{11} B\right) \\
& +\langle B\rangle_{1}\left(C *_{11} A-A *_{11} C\right)+\langle C\rangle_{1}\left(A *_{11} B-B *_{11} A\right) . \tag{1}
\end{align*}
$$

We obtain the following lemma.
Theorem 2.1 ${ }^{[7]}$ The linear space Ω is a 3-Lie algebra in the multiplication $[,,]_{11}$, which is denoted by J_{11}.

In the following we suppose $N=2$. We have the following result.
Theorem 2.2 The 3-Lie algebra J_{11} is a non-nilpotent indecomposable 3-Lie algebra with a basis $e_{1}=E_{111}, e_{2}=E_{112}, e_{3}=E_{121}, e_{4}=E_{111}-E_{122}$, $e_{5}=E_{211}-E_{111}, e_{6}=E_{212}, e_{7}=E_{221}, e_{8}=E_{211}-E_{222}$, and the multiplication in it is as follows:

$$
\left\{\begin{array}{l}
{\left[e_{1}, e_{2}, e_{3}\right]=e_{4},\left[e_{1}, e_{2}, e_{4}\right]=-2 e_{2},\left[e_{1}, e_{3}, e_{4}\right]=2 e_{3},} \tag{2}\\
{\left[e_{1}, e_{6}, e_{7}\right]=e_{8},\left[e_{1}, e_{6}, e_{8}\right]=-2 e_{6},\left[e_{1}, e_{7}, e_{8}\right]=2 e_{7},} \\
{\left[e_{1}, e_{2}, e_{5}\right]=e_{2},\left[e_{1}, e_{3}, e_{5}\right]=-e_{3},\left[e_{1}, e_{5}, e_{6}\right]=e_{6},\left[e_{1}, e_{5}, e_{7}\right]=-e_{7}}
\end{array}\right.
$$

Then center of J_{11} is $\left\langle e_{4}+2 e_{5}-e_{8}\right\rangle$.
Proof It is clear that $\left\{e_{1}, \cdots, e_{8}\right\}$ is a basis of Ω. By the definition of $[,,]_{11}$, we obtain Eq.(2). Thank to $a d\left(e_{1}, e_{4}\right)$ is non-nilpotent, the 3 -Lie algebra J_{11}
is non-nilpotent. By a direct computation, $\left[e_{4}+2 e_{5}-e_{8}, x, y\right]=0$ for all $x, y \in J_{11}$. Then proof is completed.

Theorem 2.3 The subalgebra $H=<e_{1}, e_{4}, e_{5}, e_{8}>$ is a Cartan subalgebra of the 3-Lie algebra J_{11}. And the decomposition of J_{11} associate to H is

$$
J_{11}=H \dot{+} J_{\alpha} \dot{+} J_{-\alpha}, \text { where } J_{\alpha}=<e_{2}, e_{6}>, J_{-\alpha}=<e_{3}, e_{7}>
$$

where the linear function $\alpha: H \wedge H \rightarrow F$ defined by $\alpha(1,4)=2, \alpha(1,8)=$ $2, \alpha(1,5)=-1$, and others are zero.

Proof Define linear function $\alpha: H \wedge H \rightarrow F$ by $\alpha(1,4)=2, \alpha(1,8)=$ $2, \alpha(1,5)=-1$, and others are zero. By the multiplication (2) we have $\left[e_{i}, e_{j}, e_{2}\right]=\alpha\left(e_{i}, e_{j}\right) e_{2},\left[e_{i}, e_{j}, e_{6}\right]=\alpha\left(e_{i}, e_{j}\right) e_{6},\left[e_{i}, e_{j}, e_{3}\right]=-\alpha\left(e_{i}, e_{j}\right) e_{3},\left[e_{i}\right.$, $\left.e_{j}, e_{7}\right]=-\alpha\left(e_{i}, e_{j}\right) e_{7}$, for all $e_{i}, e_{j} \in H$. Then we have $J_{\alpha}=<e_{2}, e_{6}>$, $J_{-\alpha}=<e_{3}, e_{7}>$, and $J_{11}=H \dot{+} J_{\alpha} \dot{+} J_{-\alpha}$. The proof is completed.

Now we study the inner derivation algebra $a d J_{11}$. For $e_{i}, e_{j} \in \Omega$, denote

$$
a d\left(e_{i}, e_{j}\right) e_{k}=\sum_{l=1}^{8} a_{k l}^{i j} e_{l}, \text { where } a_{k l}^{i j}=-a_{k l}^{j i} \in F .
$$

Then the matrix form of $a d\left(e_{i}, e_{j}\right)$ in the basis e_{1}, \cdots, e_{8} is $\sum_{k, l=1}^{8} a_{k l}^{i j} E_{k l}$, where $E_{k l}$ are the matrix units.

Theorem 2.4 Let J_{11} be a 3-Lie algebra in Theorem 2.2. Then we have

1) $\operatorname{dim} a d J_{11}=12$, and $X_{1}=E_{34}-2 E_{42}+E_{52}, X_{2}=-E_{24}+2 E_{43}-E_{53}$, $X_{3}=2 E_{22}-2 E_{33}, X_{4}=-E_{56}+E_{78}-2 E_{86}, X_{5}=E_{57}-E_{68}+2 E_{87}, X_{6}=$ $2 E_{66}-2 E_{77}, X_{7}=E_{14}, X_{8}=E_{12}, X_{9}=E_{13}, X_{10}=E_{16}, X_{11}=E_{17}, X_{12}=E_{18}$ is a basis of $a d J_{11}$. And the multiplication in it is
$\left[X_{2}, X_{1}\right]=X_{3},\left[X_{3}, X_{2}\right]=2 X_{2},\left[X_{3}, X_{1}\right]=-2 X_{1},\left[X_{6}, X_{4}\right]=-2 X_{4}$, $\left[X_{5}, X_{4}\right]=X_{6},\left[X_{6}, X_{5}\right]=2 X_{5},\left[X_{1}, X_{7}\right]=2 X_{8},\left[X_{1}, X_{9}\right]=-X_{7},\left[X_{2}, X_{7}\right]=$ $-2 X_{9},\left[X_{3}, X_{9}\right]=2 X_{9},\left[X_{4}, X_{11}\right]=-X_{12},\left[X_{4}, X_{12}\right]=2 X_{10},\left[X_{5}, X_{10}\right]=X_{12}$, $\left[X_{5}, X_{12}\right]=-2 X_{11},\left[X_{6}, X_{10}\right]=-2 X_{10},\left[X_{6}, X_{11}\right]=2 X_{11},\left[X_{2}, X_{8}\right]=X_{7}$, $\left[X_{3}, X_{8}\right]=-2 X_{8}$.
2) $a d J_{11}$ is a decomposable Lie algebra, and

$$
a d J_{11}=L_{1} \dot{+} L_{2},\left[L_{1}, L_{1}\right]=L_{1},\left[L_{2}, L_{2}\right]=L_{2},\left[L_{1}, L_{2}\right]=0
$$

where $L_{1}=<X_{1}, X_{2}, X_{3}, X_{7}, X_{8}, X_{9}>, L_{2}=<X_{4}, X_{5}, X_{6}, X_{10}, X_{11}, X_{12}>$, $<X_{1}, X_{2}, X_{3}>\cong<X_{4}, X_{5}, X_{6}>\cong s l_{2}$, and $I_{1}=<X_{7}, X_{8}, X_{9}>, I_{2}=<$ $X_{10}, X_{11}, X_{12}>$ are minimal ideals of $a d J_{11}$.

Proof By a direct computation according to Eq.(2) we have $a d\left(e_{1}, e_{2}\right)=E_{34}-2 E_{42}+E_{52}, a d\left(e_{1}, e_{3}\right)=-E_{24}+2 E_{43}-E_{53}, a d\left(e_{1}, e_{4}\right)=$ $2 E_{22}-2 E_{33}, a d\left(e_{1}, e_{6}\right)=-E_{56}+E_{78}-2 E_{86} ; a d\left(e_{1}, e_{7}\right)=E_{57}-E_{68}+2 E_{87}$, $a d\left(e_{1}, e_{8}\right)=2 E_{66}-2 E_{77}, a d\left(e_{2}, e_{3}\right)=E_{14}, a d\left(e_{2}, e_{5}\right)=E_{12}, a d\left(e_{3}, e_{5}\right)=-E_{13}$, $a d\left(e_{5}, e_{6}\right)=E_{16}, a d\left(e_{5}, e_{7}\right)=-E_{17}, a d\left(e_{6}, e_{7}\right)=E_{18}$. Then $\left\{X_{1}, \cdots, X_{12}\right\}$ is a basis of $a d J_{11}$. From

$$
\left[a d\left(e_{i}, e_{j}\right), a d\left(e_{k}, e_{l}\right)\right]=a d\left(\left[e_{i}, e_{j}, e_{k}\right], e_{l}\right)+a d\left(e_{k},\left[e_{i}, e_{j} e_{l}\right]\right)
$$

we have the result.

At the last of the paper, we discuss the derivation algebra $\operatorname{Der} J_{11}$.
Theorem 2.5 The derivation algebra $\operatorname{Der} J_{11}$ satisfies:

1) The dimension of $\operatorname{Der} J_{11}$ is 15 , and $\operatorname{Der} J_{11}$ with a basis $\left\{X_{1}, \cdots, X_{15}\right\}$, where $X_{13}=E_{11}-2 E_{33}-E_{44}-E_{55}-2 E_{77}-E_{88}, X_{14}=E_{54}+2 E_{55}-E_{58}$, $X_{15}=E_{15}, X_{i}$ is in Theorem 2.4 for $1 \leq i \leq 12$. And the multiplication in the basis is

$$
\left\{\begin{array}{l}
{\left[X_{2}, X_{1}\right]=X_{3},\left[X_{10}, X_{13}\right]=-X_{10},\left[X_{5}, X_{12}\right]=-2 X_{11},} \\
{\left[X_{6}, X_{5}\right]=2 X_{5},\left[X_{6}, X_{4}\right]=-2 X_{4},\left[X_{1}, X_{7}\right]=2 X_{8},\left[X_{1}, X_{9}\right]=-X_{7},} \\
{\left[X_{2}, X_{7}\right]=-2 X_{9},\left[X_{2}, X_{8}\right]=X_{7},\left[X_{3}, X_{8}\right]=-2 X_{8},\left[X_{3}, X_{9}\right]=2 X_{9},} \\
{\left[X_{4}, X_{11}\right]=-X_{12},\left[X_{4}, X_{12}\right]=2 X_{10},\left[X_{5}, X_{10}\right]=X_{12},} \\
{\left[X_{3}, X_{2}\right]=2 X_{2},\left[X_{6}, X_{10}\right]=-2 X_{10},\left[X_{6}, X_{11}\right]=2 X_{11}} \\
{\left[X_{1}, X_{13}\right]=X_{1},\left[X_{2}, X_{13}\right]=-X_{2},\left[X_{4}, X_{13}\right]=X_{4},\left[X_{5}, X_{13}\right]=-X_{5}} \\
{\left[X_{7}, X_{13}\right]=-2 X_{7},\left[X_{8}, X_{13}\right]=-X_{8},\left[X_{9}, X_{13}\right]=-3 X_{9},} \\
{\left[X_{3}, X_{1}\right]=-2 X_{1},\left[X_{11}, X_{13}\right]=-3 X_{11},\left[X_{12}, X_{13}\right]=-2 X_{12},} \\
{\left[X_{2}, X_{15}\right]=X_{9},\left[X_{4}, X_{15}\right]=X_{10},\left[X_{5}, X_{15}\right]=-X_{11},\left[X_{13}, X_{15}\right]=2 X_{15},} \\
{\left[X_{5}, X_{4}\right]=X_{6},\left[X_{14}, X_{15}\right]=-X_{7}-2 X_{15}+X_{12},\left[X_{1}, X_{15}\right]=-X_{8}}
\end{array}\right.
$$

2) $\operatorname{Der} J_{11}$ is an indecomposable Lie algebra, and

$$
\operatorname{Der} J_{11}=a d J_{11} \dot{+} W
$$

where $W=<X_{13}, X_{14}, X_{15}>$.
3) Derived algebra $\operatorname{Der}^{1} J_{11}=\left\langle X_{1}, \cdots, X_{12}, X_{15}\right\rangle, I_{1}, I_{2}$ are minimal ideals of $\operatorname{Der} J_{11}, L_{1}, L_{2}$ are ideals of $\operatorname{Der} J_{11}$ and $\left[W, L_{1}\right] \subseteq L_{1},\left[W, L_{2}\right] \subseteq L_{2}$.

Proof For all $D \in \operatorname{Der} J_{11}$, suppose $D\left(e_{i}\right)=\sum_{j=1}^{8} a_{i j} e_{j}, 1 \leq i \leq 8$, then the matrix of D in the basis $\left\{e_{1}, \cdots, e_{8}\right\}$ is $A=\left(a_{i j}\right)_{i, j=1}^{8}=\sum_{i, j=1}^{8} a_{i j} E_{i j}$, where $E_{i j}$ are (8×8) matrix units, $1 \leq i, j \leq 8$. By s direct computation according to the multiplication (2), we have the result 1).

Thanks to Theorem 2.5, $W=<X_{13}, X_{14}, X_{15}>$ are exterior derivations. Then we have $\operatorname{Der} J_{11}=a d J_{11} \dot{+} W$.

By a direct computation, $\operatorname{Der}^{1} J_{11}=<X_{2}, \cdots, X_{12}, X_{15}>$ and L_{1}, L_{2} defined in Theorem 2.5 are ideals of $\operatorname{Der} J_{11}$, and I_{1}, I_{2} are minimal ideals.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

[1] V. FILIPPOV, n-Lie algebras, Sib. Mat. Zh., 1985, 26 (6), 126-140.
[2] S. Kasymov, Conjugacy of Cartan subalgebras in n-Lie algebras, Algebra i Logika, 1995, 34(4): 405-419.
[3] G. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes Phys. Rev. 2008, D770, 65008
[4] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D7, 1973, 2405-2412.
[5] R. Bai, Y. Gao, W. Guo, A class of 3-Lie algebras realized by Lie algebras, Mathematica Aeterna, 2015, 5(2): 263-267.
[6] R. Bai,Y. Wu, Constructions of 3-Lie algebras, Linear and Multilinear Algebra, 2014http://dx.doi.org/10.1080/03081087.2014.986121.
[7] R. Bai, H. LIU, M. ZHANG, 3-Lie Algebras Realized by Cubic Matrices, Chin.Ann. Math., 2014, 35B(2): 261-270.

Received: August, 2015

