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Structure of 8-dimensional 3-Lie algebra J21
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Abstract

In this paper, we study 3-Lie algebra J21 which is constructed by 2-

cubic matrix. We give the multiplication in a special basis, and provide

the concrete expression of all derivations and inner derivations.
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1 N-cubic matrix

We first introduce the cubic matrix which is discussed in paper [1]. Then
according to the method given in the paper [2], we realized the 3-Lie algebra
J21 [3] by the 2-cubic matrix, and study the structure of its inner derivation
algebra adJ21 and derivation algebra DerJ21.

An N -order cubic matrix A = (aijk) (see [1] ) over a field F is an ordered
object which the elements with 3 indices, and the element in the position
(i, j, k) is (A)ijk = aijk ∈ F, 1 ≤ i, j, k ≤ N . Denote the set of all cubic matrix
over a field F by Ω. Then Ω is an N3-dimensional vector space over F with

A +B = (aijk + bijk) ∈ Ω, λA = (λaijk) ∈ Ω,
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for ∀A = (aijk), B = (bijk) ∈ Ω, λ ∈ F , that is, (A + B)ijk = aijk + bijk,
(λA)ijk = λaijk.

Denote Eijk a cubic matrix with the element in the position (i, j, k) is 1
and elsewhere are zero. Then {Eijk, 1 ≤ i, j, k ≤ N} is a basis of Ω, and for
every A = (aijk) ∈ Ω, A =

∑

1≤i,j,k≤N

aijkEijk, aijk ∈ F.

For all A = (aijk), B = (bijk) ∈ Ω, define the multiplication ∗21 in Ω by

(A ∗21 B)ijk =
N
∑

p,q=1

aqjpbipk, 1 ≤ i, j, k ≤ N,

then (Ω, ∗21) is an associative algebra, and in the basis {Eijk|1 ≤ i, j, k ≤ N},
we have

Eijk ∗21 Elmn = δkmEljn, 1 ≤ i, j, k, l,m, n ≤ N,

where δij is 1 in the cases i = j, and others are zero, 1 ≤ i, j ≤ N.

Define linear function 〈 〉1 : Ω → F by 〈A〉1 =
N
∑

p,q=1
apqq, Then we have

〈A ∗21 B〉1 = 〈B ∗21 A〉1. (1)

So we define the multiplication [, , ]21 : Ω ∧ Ω ∧ Ω → Ω as follows:
[A,B,C]21 = 〈A〉1(B ∗21 C − C ∗21 B)

+〈B〉1(C ∗21 A− A ∗21 C) + 〈C〉1(A ∗21 B − B ∗21 A). (2)
We obtain a 3-ary algebra (Ω, [, , ]21).

2 The structure of J21

First we give the following lemma.
Theorem 2.1[1] The linear space Ω is a 3-Lie algebras [2] in the multipli-

cation [, , ]21, which is denoted by J21.
In the following we suppose N = 2. We have the following result.
Theorem 2.2 The 3-Lie algebra J21 is a non-nilpotent indecomposable 3-

Lie algebra with a basis e1 = E111, e2 = E112, e3 = E121, e4 = E111 − E122, e5 =
E211 −E111, e6 = E212 − E112, e7 = E221 − E121, e8 = E122 − E222, and

1) the multiplication in it is as follows:











[e1, e2, e3] = e4, [e1, e4, e2] = 2e2, [e1, e3, e4] = 2e3, [e1, e7, e4] = e7,

[e1, e3, e5] = e7, [e1, e4, e5] = e5, [e1, e6, e3] = e8, [e1, e4, e6] = e6,

[e1, e2, e7] = e5, [e1, e8, e2] = e6, [e1, e4, e8] = −e8.

(3)

Then center of J21 is 0.
2) The derived algebra J1

21 =< e2, e3, e4, e5, e6, e7, e8 >, and M1 =< e5, e7 >,
M2 =< e6, e8 > are minimal ideals of J21.
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3) J21 is a non-2-solvable, but 3-solvable 3-Lie algebra with [J1
21, J

1
21, J

1
21] =

0.
Proof It is clear that {e1, · · · , e8} is a basis of Ω. By the definition of ∗12,

we obtain Eq.(3). Thanks to ad(e1, e4) is non-nilpotent, the 3-Lie algebra J21

is non-nilpotent and the center is zero. By the multiplication, dim J1
21 = 7, and

J1
21 =< e2, · · · , e8 >. Since [J21,M1] = M1 and [J21,M2] = M2, M1 and M2 are

minimal ideals of J21. Follows from [J1
21, J

1
21, J21] = J1

21, and [J1
21, J

1
21, J

1
21] = 0,

we obtain the result. Then proof is completed.
Now we study the inner derivation algebra adJ21. For ei, ej ∈ Ω, denote

ad(ei, ej)ek =
8

∑

l=1

a
ij
klel, where a

ij
kl = −a

ji
kl ∈ F.

Then the matrix form of ad(ei, ej) in the basis e1, · · · , e8 is
∑8

k,l=1 a
ij
klEkl, where

Ekl are 8× 8-matrix units.
Theorem 2.3 Let J21 be a 3-Lie algebra in Theorem 2.2. Then we have
1) dim adJ21 = 14, and {X1 = E34−2E42+E75−E86, X2 = −E24+2E43+

E57 − E68, X3 = 2E22 − 2E33 + E55 + E66 − E77 − E88, X4 = E37 + E45, X5 =
E38 − E46, X6 = −E25 + E47, X7 = E26 + E48, X8 = E12, X9 = E13, X10 =
E14, X11 = E15, X12 = E16, X13 = E17, X14 = E18} is a basis of adJ21, the
multiplication in it is



































































[X2, X1] = X3, [X3, X2] = 2X2, [X1, X3] = 2X1, [X10, X2] = 2X9,

[X1, X7] = X5, [X1, X9] = −X10, [X10, X1] = 2X8, [X1, X13] = −X11,

[X1, X14] = X12, [X3, X5] = −X5, [X2, X4] = X6, [X2, X8] = X10,

[X1, X6] = X4, [X2, X11] = −X13, [X2, X12] = X14, [X3, X4] = −X4,

[X2, X5] = X7, [X3, X12] = −X12, [X3, X6] = X6, [X3, X7] = X7,

[X3, X9] = 2X9, [X3, X11] = −X11, [X3, X13] = X13, [X3, X8] = −2X8,

[X3, X14] = X14, [X4, X9] = −X13, [X4, X10] = −X11, [X5, X9] = −X14,

[X5, X10] = X12, [X6, X10] = −X13, [X6, X8] = X11, [X7, X8] = −X12,

[X7, X10] = −X14.

2) adJ21 is an indecomposable Lie algebra, and

adJ21 = L+̇M = ad1J21, where L =< X1, X2, X3 >∼= sl(2),

M = M1+̇M2+̇M3+̇M4+̇M5 is a maximal nilpotent ideal of adJ21, and Mi

are irreducible sl(2)-modules, M1 =< X6, X4 >, M2 =< X7, X5 >, M3 =<

X9, X10, X8 >, M4 =< X13, X11 >, M5 =< X14, X12 >.
Proof By a direct computation according to Eq.(3) we have

ad(e1, e2) = E34 − 2E42 + E75 −E86, ad(e1, e3) = −E24 + 2E43 + E57 −E68,

ad(e1, e4) = 2E22 − 2E33 + E55 + E66 − E77 −E88, ad(e1, e5) = −E37 − E45,
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ad(e1, e6) = E38 − E46, ad(e1, e7) = −E25 + E47, ad(e1, e8) = E26 + E48,

ad(e2, e4) = −2E12, ad(e3, e4) = 2E13, ad(e2, e3) = E14, ad(e2, e7) = E15,

ad(e2, e8) = −E16, ad(e3, e5) = E17, ad(e3, e6) = E18.

Denote X1 = E34 − 2E42 + E75 − E86, X2 = −E24 + 2E43 + E57 − E68, X3 =
2E22 − 2E33 + E55 + E66 − E77 − E88, X4 = E37 + E45, X5 = E38 − E46, X6 =
−E25+E47, X7 = E26+E48, X8 = E12, X9 = E13, X10 = E14, X11 = E15, X12 =
E16, X13 = E17, X14 = E18.

We obtain that {X1, · · · , X14} is a basis of adJ21. From
[ad(ei, ej), ad(ek, el)]= ad([ei, ej , ek], el) + ad(ek, [ei, ejel]),

we have the result 1).
Let L =< X1, X2, X3 >, M1 =< X6, X4 >, M2 =< X7, X5 >, M3 =<

X9, X10, X8 >, M4 =< X13, X11 >, M5 =< X14, X12 >. From the above
discussion, L =< X1, X2, X3 >∼= sl(2), and Mi for 1 ≤ i ≤ 5 are irreducible
L-modules, and adJ21 = ad1J21, [M,M ] ⊆ M . The proof is completed.

Theorem 2.4 Let J21 be a 3-Lie algebra in Theorem 2.2. Then we have
1) The dimension of DerJ21 is 19, and DerJ21 with a basis {X1, · · · , X19},

where X15 = E11 − 2E33 − E44 − E77 − E88, X16 = E66 + E88, X17 = E55 +
E77 − E66 − E88, X18 = E56 − E78, X19 = E65 − E87, and Xi for 1 ≤ i ≤ 14 is
in Theorem 2.3. And the multiplication in the basis is



























































































































































[X2, X1] = X3, [X3, X2] = 2X2, [X3, X1] = −2X1, [X1, X6] = X4,

[X1, X7] = X5, [X1, X9] = −X10, [X1, X10] = −2X8, [X1, X13] = −X11,

[X2, X5] = X7, [X1, X14] = X12, [X2, X4] = X6, [X3, X14] = X14,

[X2, X8] = X10, [X2, X10] = −2X9, [X2, X11] = −X13, [X2, X12] = X14

[X4, X3] = X4, [X3, X5] = −X5, [X3, X6] = X6, [X3, X7] = X7,

[X3, X9] = 2X9, [X3, X11] = −X11, [X3, X12] = −X12, [X3, X13] = X13,

[X9, X4] = X13, [X4, X10] = −X11, [X5, X9] = −X14, [X5, X10] = X12,

[X6, X8] = X11, [X10, X6] = X13, [X7, X8] = −X12, [X7, X10] = −X14,

[X1, X15] = X1, [X2, X15] = −X2, [X4, X15] = X4, [X5, X15] = X5,

[X15, X8] = X8, [X15, X9] = 3X9, [X15, X10] = 2X10, [X15, X14] = 2X14,

[X8, X3] = 2X8, [X15, X11] = X11, [X15, X12] = X12, [X15, X13] = 2X13,

[X6, X17] = X6, [X11, X17] = X11, [X13, X17] = X13, [X4, X18] = X5,

[X11, X18] = X12, [X18, X13] = X14, [X19, X5] = X4, [X19, X7] = X6,

[X19, X14] = X13, [X5, X16] = X5, [X7, X16] = X7, [X12, X16] = X12,

[X17, X18] = 2X18, [X17, X19] = −2X19, [X18, X19] = X17,

[X18, X16] = X18, [X19, X16] = −X19, [X4, X17] = X4, [X6, X18] = −X7,

[X12, X19] = X11, [X14, X16] = X14, [X5, X17] = −X5, [X7, X17] = −X7,

[X12, X17] = −X12, [X14, X17] = −X14.

2) DerJ21 is an indecomposable Lie algebra, and

DerJ21 = adJ21+̇B, Der1J21 = adJ1
21+̇ < X17, X18, X19 >,
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where B =< X15, X16, X17, X18, X19 >, [B,B] =< X17, X18, X19 >∼= sl(2),
< X15, X17 +X16 > is contained in the center of B.

Proof For all D ∈ DerJ21, suppose D(ei) =
8
∑

j=1
aijej , 1 ≤ i ≤ 8, then the

matrix form of D in the basis {e1, · · · , e8} is A = (aij)
8
i,j=1 =

8
∑

i,j=1
aijEij , where

Eij are (8 × 8) matrix units, 1 ≤ i, j ≤ 8. By a direct computation according
to the multiplication (3), we have the result 1).

Thanks to Theorem 2.3, B =< X15, X16, X17, X18, X19 > are exterior
derivations. Then we haveDerJ21 = adJ21+̇B, and [B,B] =< X17, X18, X19 >∼=
sl(2), < X15, X17 +X16 > is contained in the center of B. By a direct compu-
tation, Der1J21 =< X2, · · · , X19 >. The proof is completed.
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