Structure of 8-dimensional 3-Lie algebra J_{21}

BAI Ruipu
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
email: bairuipu@hbu.edu.cn
\section*{Lin Lixin}
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
\section*{Guo Weiwei}
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

In this paper, we study 3 -Lie algebra J_{21} which is constructed by 2 cubic matrix. We give the multiplication in a special basis, and provide the concrete expression of all derivations and inner derivations.

2010 Mathematics Subject Classification: 17B05 17D30
Keywords: N-cubic matrix, 3-Lie algebra, derivation.

$1 \quad N$-cubic matrix

We first introduce the cubic matrix which is discussed in paper [1]. Then according to the method given in the paper [2], we realized the 3-Lie algebra J_{21} [3] by the 2-cubic matrix, and study the structure of its inner derivation algebra $a d J_{21}$ and derivation algebra $\operatorname{Der} J_{21}$.

An N-order cubic matrix $A=\left(a_{i j k}\right)$ (see [1]) over a field F is an ordered object which the elements with 3 indices, and the element in the position (i, j, k) is $(A)_{i j k}=a_{i j k} \in F, 1 \leq i, j, k \leq N$. Denote the set of all cubic matrix over a field F by Ω. Then Ω is an N^{3}-dimensional vector space over F with

$$
A+B=\left(a_{i j k}+b_{i j k}\right) \in \Omega, \quad \lambda A=\left(\lambda a_{i j k}\right) \in \Omega
$$

for $\forall A=\left(a_{i j k}\right), B=\left(b_{i j k}\right) \in \Omega, \lambda \in F$, that is, $(A+B)_{i j k}=a_{i j k}+b_{i j k}$, $(\lambda A)_{i j k}=\lambda a_{i j k}$.

Denote $E_{i j k}$ a cubic matrix with the element in the position (i, j, k) is 1 and elsewhere are zero. Then $\left\{E_{i j k}, 1 \leq i, j, k \leq N\right\}$ is a basis of Ω, and for every $A=\left(a_{i j k}\right) \in \Omega, A=\sum_{1 \leq i, j, k \leq N} a_{i j k} E_{i j k}, a_{i j k} \in F$.

For all $A=\left(a_{i j k}\right), B=\left(b_{i j k}\right) \in \Omega$, define the multiplication $*_{21}$ in Ω by

$$
\left(A *_{21} B\right)_{i j k}=\sum_{p, q=1}^{N} a_{q j p} b_{i p k}, 1 \leq i, j, k \leq N,
$$

then $\left(\Omega, *_{21}\right)$ is an associative algebra, and in the basis $\left\{E_{i j k} \mid 1 \leq i, j, k \leq N\right\}$, we have

$$
E_{i j k} *_{21} E_{l m n}=\delta_{k m} E_{l j n}, 1 \leq i, j, k, l, m, n \leq N,
$$

where $\delta_{i j}$ is 1 in the cases $i=j$, and others are zero, $1 \leq i, j \leq N$.
Define linear function $\left\rangle_{1}: \Omega \rightarrow F\right.$ by $\langle A\rangle_{1}=\sum_{p, q=1}^{N} a_{p q q}$, Then we have

$$
\begin{equation*}
\left\langle A *_{21} B\right\rangle_{1}=\left\langle B *_{21} A\right\rangle_{1} . \tag{1}
\end{equation*}
$$

So we define the multiplication [, , $]_{21}: \Omega \wedge \Omega \wedge \Omega \rightarrow \Omega$ as follows:

$$
\begin{align*}
{[A, B, C]_{21} } & =\langle A\rangle_{1}\left(B *_{21} C-C *_{21} B\right) \\
& +\langle B\rangle_{1}\left(C *_{21} A-A *_{21} C\right)+\langle C\rangle_{1}\left(A *_{21} B-B *_{21} A\right) . \tag{2}
\end{align*}
$$

We obtain a 3 -ary algebra $\left(\Omega,[,,]_{21}\right)$.

2 The structure of J_{21}

First we give the following lemma.
Theorem 2.1 ${ }^{[1]}$ The linear space Ω is a 3-Lie algebras [2] in the multiplication $[,,]_{21}$, which is denoted by J_{21}.

In the following we suppose $N=2$. We have the following result.
Theorem 2.2 The 3-Lie algebra J_{21} is a non-nilpotent indecomposable 3Lie algebra with a basis $e_{1}=E_{111}, e_{2}=E_{112}, e_{3}=E_{121}, e_{4}=E_{111}-E_{122}, e_{5}=$ $E_{211}-E_{111}, e_{6}=E_{212}-E_{112}, e_{7}=E_{221}-E_{121}, e_{8}=E_{122}-E_{222}$, and

1) the multiplication in it is as follows:

$$
\left\{\begin{array}{l}
{\left[e_{1}, e_{2}, e_{3}\right]=e_{4},\left[e_{1}, e_{4}, e_{2}\right]=2 e_{2},\left[e_{1}, e_{3}, e_{4}\right]=2 e_{3},\left[e_{1}, e_{7}, e_{4}\right]=e_{7},} \tag{3}\\
{\left[e_{1}, e_{3}, e_{5}\right]=e_{7},\left[e_{1}, e_{4}, e_{5}\right]=e_{5},\left[e_{1}, e_{6}, e_{3}\right]=e_{8},\left[e_{1}, e_{4}, e_{6}\right]=e_{6},} \\
{\left[e_{1}, e_{2}, e_{7}\right]=e_{5},\left[e_{1}, e_{8}, e_{2}\right]=e_{6},\left[e_{1}, e_{4}, e_{8}\right]=-e_{8} .}
\end{array}\right.
$$

Then center of J_{21} is 0 .
2) The derived algebra $\left.J_{21}^{1}=<e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right\rangle$, and $M_{1}=\left\langle e_{5}, e_{7}\right\rangle$, $M_{2}=<e_{6}, e_{8}>$ are minimal ideals of J_{21}.
3) J_{21} is a non-2-solvable, but 3-solvable 3-Lie algebra with $\left[J_{21}^{1}, J_{21}^{1}, J_{21}^{1}\right]=$ 0.

Proof It is clear that $\left\{e_{1}, \cdots, e_{8}\right\}$ is a basis of Ω. By the definition of $*_{12}$, we obtain Eq.(3). Thanks to $\operatorname{ad}\left(e_{1}, e_{4}\right)$ is non-nilpotent, the 3-Lie algebra J_{21} is non-nilpotent and the center is zero. By the multiplication, $\operatorname{dim} J_{21}^{1}=7$, and $J_{21}^{1}=<e_{2}, \cdots, e_{8}>$. Since $\left[J_{21}, M_{1}\right]=M_{1}$ and $\left[J_{21}, M_{2}\right]=M_{2}, M_{1}$ and M_{2} are minimal ideals of J_{21}. Follows from $\left[J_{21}^{1}, J_{21}^{1}, J_{21}\right]=J_{21}^{1}$, and $\left[J_{21}^{1}, J_{21}^{1}, J_{21}^{1}\right]=0$, we obtain the result. Then proof is completed.

Now we study the inner derivation algebra $a d J_{21}$. For $e_{i}, e_{j} \in \Omega$, denote

$$
a d\left(e_{i}, e_{j}\right) e_{k}=\sum_{l=1}^{8} a_{k l}^{i j} e_{l}, \text { where } a_{k l}^{i j}=-a_{k l}^{j i} \in F
$$

Then the matrix form of $a d\left(e_{i}, e_{j}\right)$ in the basis e_{1}, \cdots, e_{8} is $\sum_{k, l=1}^{8} a_{k l}^{i j} E_{k l}$, where $E_{k l}$ are 8×8-matrix units.

Theorem 2.3 Let J_{21} be a 3-Lie algebra in Theorem 2.2. Then we have

1) $\operatorname{dim} a d J_{21}=14$, and $\left\{X_{1}=E_{34}-2 E_{42}+E_{75}-E_{86}, X_{2}=-E_{24}+2 E_{43}+\right.$ $E_{57}-E_{68}, X_{3}=2 E_{22}-2 E_{33}+E_{55}+E_{66}-E_{77}-E_{88}, X_{4}=E_{37}+E_{45}, X_{5}=$ $E_{38}-E_{46}, X_{6}=-E_{25}+E_{47}, X_{7}=E_{26}+E_{48}, X_{8}=E_{12}, X_{9}=E_{13}, X_{10}=$ $\left.E_{14}, X_{11}=E_{15}, X_{12}=E_{16}, X_{13}=E_{17}, X_{14}=E_{18}\right\}$ is a basis of adJ J_{21}, the multiplication in it is

$$
\left\{\begin{array}{l}
{\left[X_{2}, X_{1}\right]=X_{3},\left[X_{3}, X_{2}\right]=2 X_{2}, \quad\left[X_{1}, X_{3}\right]=2 X_{1}, \quad\left[X_{10}, X_{2}\right]=2 X_{9},} \\
{\left[X_{1}, X_{7}\right]=X_{5},\left[X_{1}, X_{9}\right]=-X_{10},\left[X_{10}, X_{1}\right]=2 X_{8},\left[X_{1}, X_{13}\right]=-X_{11},} \\
{\left[X_{1}, X_{14}\right]=X_{12},\left[X_{3}, X_{5}\right]=-X_{5},\left[X_{2}, X_{4}\right]=X_{6},\left[X_{2}, X_{8}\right]=X_{10},} \\
{\left[X_{1}, X_{6}\right]=X_{4},\left[X_{2}, X_{11}\right]=-X_{13},\left[X_{2}, X_{12}\right]=X_{14},\left[X_{3}, X_{4}\right]=-X_{4},} \\
{\left[X_{2}, X_{5}\right]=X_{7},\left[X_{3}, X_{12}\right]=-X_{12},\left[X_{3}, X_{6}\right]=X_{6},\left[X_{3}, X_{7}\right]=X_{7},} \\
{\left[X_{3}, X_{9}\right]=2 X_{9},\left[X_{3}, X_{11}\right]=-X_{11},\left[X_{3}, X_{13}\right]=X_{13},\left[X_{3}, X_{8}\right]=-2 X_{8},} \\
{\left[X_{3}, X_{14}\right]=X_{14},\left[X_{4}, X_{9}\right]=-X_{13},\left[X_{4}, X_{10}\right]=-X_{11},\left[X_{5}, X_{9}\right]=-X_{14},} \\
{\left[X_{5}, X_{10}\right]=X_{12},\left[X_{6}, X_{10}\right]=-X_{13},\left[X_{6}, X_{8}\right]=X_{11},\left[X_{7}, X_{8}\right]=-X_{12},} \\
{\left[X_{7}, X_{10}\right]=-X_{14} .}
\end{array}\right.
$$

2) $a d J_{21}$ is an indecomposable Lie algebra, and

$$
a d J_{21}=L \dot{+} M=a d^{1} J_{21}, \text { where } L=<X_{1}, X_{2}, X_{3}>\cong s l(2),
$$

$M=M_{1} \dot{+} M_{2} \dot{+} M_{3} \dot{+} M_{4} \dot{+} M_{5}$ is a maximal nilpotent ideal of adJ J_{21}, and M_{i} are irreducible sl(2)-modules, $M_{1}=<X_{6}, X_{4}>, M_{2}=<X_{7}, X_{5}>, M_{3}=<$ $X_{9}, X_{10}, X_{8}>, M_{4}=<X_{13}, X_{11}>, M_{5}=<X_{14}, X_{12}>$.

Proof By a direct computation according to Eq.(3) we have

$$
\begin{aligned}
& \operatorname{ad}\left(e_{1}, e_{2}\right)=E_{34}-2 E_{42}+E_{75}-E_{86}, a d\left(e_{1}, e_{3}\right)=-E_{24}+2 E_{43}+E_{57}-E_{68}, \\
& \operatorname{ad}\left(e_{1}, e_{4}\right)=2 E_{22}-2 E_{33}+E_{55}+E_{66}-E_{77}-E_{88}, a d\left(e_{1}, e_{5}\right)=-E_{37}-E_{45},
\end{aligned}
$$

$$
\begin{gathered}
a d\left(e_{1}, e_{6}\right)=E_{38}-E_{46}, a d\left(e_{1}, e_{7}\right)=-E_{25}+E_{47}, a d\left(e_{1}, e_{8}\right)=E_{26}+E_{48}, \\
\operatorname{ad}\left(e_{2}, e_{4}\right)=-2 E_{12}, \operatorname{ad}\left(e_{3}, e_{4}\right)=2 E_{13}, \operatorname{ad}\left(e_{2}, e_{3}\right)=E_{14}, a d\left(e_{2}, e_{7}\right)=E_{15}, \\
\operatorname{ad}\left(e_{2}, e_{8}\right)=-E_{16}, \operatorname{ad}\left(e_{3}, e_{5}\right)=E_{17}, \operatorname{ad}\left(e_{3}, e_{6}\right)=E_{18} .
\end{gathered}
$$

Denote $X_{1}=E_{34}-2 E_{42}+E_{75}-E_{86}, X_{2}=-E_{24}+2 E_{43}+E_{57}-E_{68}, X_{3}=$ $2 E_{22}-2 E_{33}+E_{55}+E_{66}-E_{77}-E_{88}, X_{4}=E_{37}+E_{45}, X_{5}=E_{38}-E_{46}, X_{6}=$ $-E_{25}+E_{47}, X_{7}=E_{26}+E_{48}, X_{8}=E_{12}, X_{9}=E_{13}, X_{10}=E_{14}, X_{11}=E_{15}, X_{12}=$ $E_{16}, X_{13}=E_{17}, X_{14}=E_{18}$.
We obtain that $\left\{X_{1}, \cdots, X_{14}\right\}$ is a basis of $a d J_{21}$. From
$\left[a d\left(e_{i}, e_{j}\right), a d\left(e_{k}, e_{l}\right)\right]=a d\left(\left[e_{i}, e_{j}, e_{k}\right], e_{l}\right)+a d\left(e_{k},\left[e_{i}, e_{j} e_{l}\right]\right)$,
we have the result 1).
Let $L=<X_{1}, X_{2}, X_{3}>, M_{1}=<X_{6}, X_{4}>, M_{2}=<X_{7}, X_{5}>, M_{3}=<$ $X_{9}, X_{10}, X_{8}>, M_{4}=<X_{13}, X_{11}>, M_{5}=<X_{14}, X_{12}>$. From the above discussion, $L=<X_{1}, X_{2}, X_{3}>\cong \operatorname{sl}(2)$, and M_{i} for $1 \leq i \leq 5$ are irreducible L-modules, and $a d J_{21}=a d^{1} J_{21},[M, M] \subseteq M$. The proof is completed.

Theorem 2.4 Let J_{21} be a 3-Lie algebra in Theorem 2.2. Then we have 1) The dimension of Der J_{21} is 19, and Der J_{21} with a basis $\left\{X_{1}, \cdots, X_{19}\right\}$, where $X_{15}=E_{11}-2 E_{33}-E_{44}-E_{77}-E_{88}, X_{16}=E_{66}+E_{88}, X_{17}=E_{55}+$ $E_{77}-E_{66}-E_{88}, X_{18}=E_{56}-E_{78}, X_{19}=E_{65}-E_{87}$, and X_{i} for $1 \leq i \leq 14$ is in Theorem 2.3. And the multiplication in the basis is

$$
\left\{\begin{array}{l}
{\left[X_{2}, X_{1}\right]=X_{3},\left[X_{3}, X_{2}\right]=2 X_{2},\left[X_{3}, X_{1}\right]=-2 X_{1},\left[X_{1}, X_{6}\right]=X_{4},} \\
{\left[X_{1}, X_{7}\right]=X_{5},\left[X_{1}, X_{9}\right]=-X_{10},\left[X_{1}, X_{10}\right]=-2 X_{8},\left[X_{1}, X_{13}\right]=-X_{11},} \\
{\left[X_{2}, X_{5}\right]=X_{7},\left[X_{1}, X_{14}\right]=X_{12},\left[X_{2}, X_{4}\right]=X_{6},\left[X_{3}, X_{14}\right]=X_{14},} \\
{\left[X_{2}, X_{8}\right]=X_{10},\left[X_{2}, X_{10}\right]=-2 X_{9},\left[X_{2}, X_{11}\right]=-X_{13},\left[X_{2}, X_{12}\right]=X_{14}} \\
{\left[X_{4}, X_{3}\right]=X_{4},\left[X_{3}, X_{5}\right]=-X_{5},\left[X_{3}, X_{6}\right]=X_{6},\left[X_{3}, X_{7}\right]=X_{7}} \\
{\left[X_{3}, X_{9}\right]=2 X_{9},\left[X_{3}, X_{11}\right]=-X_{11},\left[X_{3}, X_{12}\right]=-X_{12},\left[X_{3}, X_{13}\right]=X_{13},} \\
{\left[X_{9}, X_{4}\right]=X_{13},\left[X_{4}, X_{10}\right]=-X_{11},\left[X_{5}, X_{9}\right]=-X_{14},\left[X_{5}, X_{10}\right]=X_{12},} \\
{\left[X_{6}, X_{8}\right]=X_{11},\left[X_{10}, X_{6}\right]=X_{13},\left[X_{7}, X_{8}\right]=-X_{12},\left[X_{7}, X_{10}\right]=-X_{14},} \\
{\left[X_{1}, X_{15}\right]=X_{1},\left[X_{2}, X_{15}\right]=-X_{2},\left[X_{4}, X_{15}\right]=X_{4},\left[X_{5}, X_{15}\right]=X_{5},} \\
{\left[X_{15}, X_{8}\right]=X_{8},\left[X_{15}, X_{9}\right]=3 X_{9},\left[X_{15}, X_{10}\right]=2 X_{10},\left[X_{15}, X_{14}\right]=2 X_{14},} \\
{\left[X_{8}, X_{3}\right]=2 X_{8},\left[X_{15}, X_{11}\right]=X_{11},\left[X_{15}, X_{12}\right]=X_{12},\left[X_{15}, X_{13}\right]=2 X_{13},} \\
{\left[X_{6}, X_{17}\right]=X_{6},\left[X_{11}, X_{17}\right]=X_{11},\left[X_{13}, X_{17}\right]=X_{13},\left[X_{4}, X_{18}\right]=X_{5},} \\
{\left[X_{11}, X_{18}\right]=X_{12},\left[X_{18}, X_{13}\right]=X_{14},\left[X_{19}, X_{5}\right]=X_{4},\left[X_{19}, X_{7}\right]=X_{6},} \\
{\left[X_{19}, X_{14}\right]=X_{13},\left[X_{5}, X_{16}\right]=X_{5},\left[X_{7}, X_{16}\right]=X_{7},\left[X_{12}, X_{16}\right]=X_{12},} \\
{\left[X_{17}, X_{18}\right]=2 X_{18},\left[X_{17}, X_{19}\right]=-2 X_{19},\left[X_{18}, X_{19}\right]=X_{17},} \\
{\left[X_{18}, X_{16}\right]=X_{18},\left[X_{19}, X_{16}\right]=-X_{19},\left[X_{4}, X_{17}\right]=X_{4},\left[X_{6}, X_{18}\right]=-X_{7},} \\
{\left[X_{12}, X_{19}\right]=X_{11},\left[X_{14}, X_{16}\right]=X_{14},\left[X_{5}, X_{17}\right]=-X_{5},\left[X_{7}, X_{17}\right]=-X_{7},} \\
{\left[X_{12}, X_{17}\right]=-X_{12},\left[X_{14}, X_{17}\right]=-X_{14} .}
\end{array}\right.
$$

2) $\operatorname{Der} J_{21}$ is an indecomposable Lie algebra, and

$$
\operatorname{Der} J_{21}=a d J_{21} \dot{+} B, D e r^{1} J_{21}=a d J_{21}^{1} \dot{+}<X_{17}, X_{18}, X_{19}>,
$$

where $B=<X_{15}, X_{16}, X_{17}, X_{18}, X_{19}>,[B, B]=<X_{17}, X_{18}, X_{19}>\cong \operatorname{sl}(2)$, $<X_{15}, X_{17}+X_{16}>$ is contained in the center of B.

Proof For all $D \in \operatorname{Der} J_{21}$, suppose $D\left(e_{i}\right)=\sum_{j=1}^{8} a_{i j} e_{j}, 1 \leq i \leq 8$, then the matrix form of D in the basis $\left\{e_{1}, \cdots, e_{8}\right\}$ is $A=\left(a_{i j}\right)_{i, j=1}^{8}=\sum_{i, j=1}^{8} a_{i j} E_{i j}$, where $E_{i j}$ are (8×8) matrix units, $1 \leq i, j \leq 8$. By a direct computation according to the multiplication (3), we have the result 1).

Thanks to Theorem 2.3, $B=<X_{15}, X_{16}, X_{17}, X_{18}, X_{19}>$ are exterior derivations. Then we have $\operatorname{Der} J_{21}=a d J_{21}+B$, and $\left.[B, B]=<X_{17}, X_{18}, X_{19}\right\rangle \cong$ $s l(2),<X_{15}, X_{17}+X_{16}>$ is contained in the center of B. By a direct computation, $\operatorname{Der}^{1} J_{21}=<X_{2}, \cdots, X_{19}>$. The proof is completed.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

[1] R. Bai, H. LIU, M. ZHANG, 3-Lie Algebras Realized by Cubic Matrices, Chin.Ann. Math.,35B(2), 2014, 261-270.
[2] R. Bai, C. Bai, J. Wang, Realizations of 3-Lie algebras, Journal of Mathematical Physics, 2010, 51, 063505.
[3] R. Bai, Y. Gao, W. Guo, A class of 3-Lie algebras realized by Lie algebras, Mathematica Aeterna, 2015, 5(2), 263-267.
[4] V. FILIPPOV, n-Lie algebras, Sib. Mat. Zh., 1985, 26 (6), 126-140.

Received: August, 2015

