Mathematica Aeterna, Vol. 5, 2015, no. 4, 599 - 603

Structure of 8-dimensional 3-Lie algebra J_{21}

BAI Ruipu

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

Lin Lixin

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Guo Weiwei

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

In this paper, we study 3-Lie algebra J_{21} which is constructed by 2cubic matrix. We give the multiplication in a special basis, and provide the concrete expression of all derivations and inner derivations.

2010 Mathematics Subject Classification: 17B05 17D30 **Keywords:** *N*-cubic matrix, 3-Lie algebra, derivation.

1 N-cubic matrix

We first introduce the cubic matrix which is discussed in paper [1]. Then according to the method given in the paper [2], we realized the 3-Lie algebra J_{21} [3] by the 2-cubic matrix, and study the structure of its inner derivation algebra adJ_{21} and derivation algebra $DerJ_{21}$.

An N-order cubic matrix $A = (a_{ijk})$ (see [1]) over a field F is an ordered object which the elements with 3 indices, and the element in the position (i, j, k) is $(A)_{ijk} = a_{ijk} \in F$, $1 \leq i, j, k \leq N$. Denote the set of all cubic matrix over a field F by Ω . Then Ω is an N^3 -dimensional vector space over F with

$$A + B = (a_{ijk} + b_{ijk}) \in \Omega, \quad \lambda A = (\lambda a_{ijk}) \in \Omega,$$

for $\forall A = (a_{ijk}), B = (b_{ijk}) \in \Omega, \ \lambda \in F$, that is, $(A + B)_{ijk} = a_{ijk} + b_{ijk}, (\lambda A)_{ijk} = \lambda a_{ijk}$.

Denote E_{ijk} a cubic matrix with the element in the position (i, j, k) is 1 and elsewhere are zero. Then $\{E_{ijk}, 1 \leq i, j, k \leq N\}$ is a basis of Ω , and for every $A = (a_{ijk}) \in \Omega$, $A = \sum_{1 \leq i, j, k \leq N} a_{ijk} E_{ijk}$, $a_{ijk} \in F$.

For all $A = (a_{ijk}), B = (b_{ijk}) \in \Omega$, define the multiplication $*_{21}$ in Ω by

$$(A *_{21} B)_{ijk} = \sum_{p,q=1}^{N} a_{qjp} b_{ipk}, 1 \le i, j, k \le N,$$

then $(\Omega, *_{21})$ is an associative algebra, and in the basis $\{E_{ijk} | 1 \leq i, j, k \leq N\}$, we have

$$E_{ijk} *_{21} E_{lmn} = \delta_{km} E_{ljn}, \ 1 \le i, j, k, l, m, n \le N,$$

where δ_{ij} is 1 in the cases i = j, and others are zero, $1 \le i, j \le N$.

Define linear function $\langle \rangle_1 : \Omega \to F$ by $\langle A \rangle_1 = \sum_{p,q=1}^N a_{pqq}$, Then we have

$$\langle A *_{21} B \rangle_1 = \langle B *_{21} A \rangle_1. \tag{1}$$

So we define the multiplication $[,,]_{21} : \Omega \land \Omega \land \Omega \to \Omega$ as follows:

 $[A, B, C]_{21} = \langle A \rangle_1 (B *_{21} C - C *_{21} B)$

 $+\langle B \rangle_1 (C *_{21} A - A *_{21} C) + \langle C \rangle_1 (A *_{21} B - B *_{21} A).$ (2) We obtain a 3-ary algebra $(\Omega, [, ,]_{21}).$

2 The structure of J_{21}

First we give the following lemma.

Theorem 2.1^[1] The linear space Ω is a 3-Lie algebras [2] in the multiplication $[,,]_{21}$, which is denoted by J_{21} .

In the following we suppose N = 2. We have the following result.

Theorem 2.2 The 3-Lie algebra J_{21} is a non-nilpotent indecomposable 3-Lie algebra with a basis $e_1 = E_{111}, e_2 = E_{112}, e_3 = E_{121}, e_4 = E_{111} - E_{122}, e_5 = E_{211} - E_{111}, e_6 = E_{212} - E_{112}, e_7 = E_{221} - E_{121}, e_8 = E_{122} - E_{222}, and$ 1) the multiplication in it is as follows:

$$\begin{cases} [e_1, e_2, e_3] = e_4, [e_1, e_4, e_2] = 2e_2, [e_1, e_3, e_4] = 2e_3, [e_1, e_7, e_4] = e_7, \\ [e_1, e_3, e_5] = e_7, [e_1, e_4, e_5] = e_5, [e_1, e_6, e_3] = e_8, [e_1, e_4, e_6] = e_6, \\ [e_1, e_2, e_7] = e_5, [e_1, e_8, e_2] = e_6, [e_1, e_4, e_8] = -e_8. \end{cases}$$
(3)

Then center of J_{21} is 0.

2) The derived algebra $J_{21}^1 = \langle e_2, e_3, e_4, e_5, e_6, e_7, e_8 \rangle$, and $M_1 = \langle e_5, e_7 \rangle$, $M_2 = \langle e_6, e_8 \rangle$ are minimal ideals of J_{21} .

3) J_{21} is a non-2-solvable, but 3-solvable 3-Lie algebra with $[J_{21}^1, J_{21}^1, J_{21}^1] = 0.$

Proof It is clear that $\{e_1, \dots, e_8\}$ is a basis of Ω . By the definition of $*_{12}$, we obtain Eq.(3). Thanks to $ad(e_1, e_4)$ is non-nilpotent, the 3-Lie algebra J_{21} is non-nilpotent and the center is zero. By the multiplication, dim $J_{21}^1 = 7$, and $J_{21}^1 = \langle e_2, \dots, e_8 \rangle$. Since $[J_{21}, M_1] = M_1$ and $[J_{21}, M_2] = M_2$, M_1 and M_2 are minimal ideals of J_{21} . Follows from $[J_{21}^1, J_{21}^1, J_{21}] = J_{21}^1$, and $[J_{21}^1, J_{21}^1, J_{21}] = 0$, we obtain the result. Then proof is completed.

Now we study the inner derivation algebra adJ_{21} . For $e_i, e_j \in \Omega$, denote

$$ad(e_i, e_j)e_k = \sum_{l=1}^{8} a_{kl}^{ij}e_l$$
, where $a_{kl}^{ij} = -a_{kl}^{ji} \in F$.

Then the matrix form of $ad(e_i, e_j)$ in the basis e_1, \dots, e_8 is $\sum_{k,l=1}^8 a_{kl}^{ij} E_{kl}$, where E_{kl} are 8×8 -matrix units.

Theorem 2.3 Let J_{21} be a 3-Lie algebra in Theorem 2.2. Then we have 1) dim $adJ_{21} = 14$, and $\{X_1 = E_{34} - 2E_{42} + E_{75} - E_{86}, X_2 = -E_{24} + 2E_{43} + E_{57} - E_{68}, X_3 = 2E_{22} - 2E_{33} + E_{55} + E_{66} - E_{77} - E_{88}, X_4 = E_{37} + E_{45}, X_5 = E_{38} - E_{46}, X_6 = -E_{25} + E_{47}, X_7 = E_{26} + E_{48}, X_8 = E_{12}, X_9 = E_{13}, X_{10} = E_{14}, X_{11} = E_{15}, X_{12} = E_{16}, X_{13} = E_{17}, X_{14} = E_{18} \}$ is a basis of adJ_{21} , the multiplication in it is

$$\begin{cases} [X_2, X_1] = X_3, \ [X_3, X_2] = 2X_2, \ [X_1, X_3] = 2X_1, \ [X_{10}, X_2] = 2X_9, \\ [X_1, X_7] = X_5, \ [X_1, X_9] = -X_{10}, \ [X_{10}, X_1] = 2X_8, \ [X_1, X_{13}] = -X_{11}, \\ [X_1, X_{14}] = X_{12}, \ [X_3, X_5] = -X_5, \ [X_2, X_4] = X_6, \ [X_2, X_8] = X_{10}, \\ [X_1, X_6] = X_4, \ [X_2, X_{11}] = -X_{13}, \ [X_2, X_{12}] = X_{14}, \ [X_3, X_4] = -X_4, \\ [X_2, X_5] = X_7, \ [X_3, X_{12}] = -X_{12}, \ [X_3, X_6] = X_6, \ [X_3, X_7] = X_7, \\ [X_3, X_9] = 2X_9, \ [X_3, X_{11}] = -X_{11}, \ [X_3, X_{13}] = X_{13}, \ \ [X_3, X_8] = -2X_8, \\ [X_3, X_{14}] = X_{14}, \ [X_4, X_9] = -X_{13}, \ \ [X_4, X_{10}] = -X_{11}, \ [X_5, X_9] = -X_{14}, \\ [X_5, X_{10}] = X_{12}, \ \ [X_6, X_{10}] = -X_{13}, \ \ [X_6, X_8] = X_{11}, \ \ [X_7, X_8] = -X_{12}, \\ [X_7, X_{10}] = -X_{14}. \end{cases}$$

2) adJ_{21} is an indecomposable Lie algebra, and

$$adJ_{21} = L + M = ad^{1}J_{21}$$
, where $L = \langle X_{1}, X_{2}, X_{3} \rangle \cong sl(2)$.

 $M = M_1 + M_2 + M_3 + M_4 + M_5 \text{ is a maximal nilpotent ideal of } adJ_{21}, \text{ and } M_i \text{ are irreducible } sl(2) - modules, M_1 = < X_6, X_4 >, M_2 = < X_7, X_5 >, M_3 = < X_9, X_{10}, X_8 >, M_4 = < X_{13}, X_{11} >, M_5 = < X_{14}, X_{12} >.$

Proof By a direct computation according to Eq.(3) we have

$$ad(e_1, e_2) = E_{34} - 2E_{42} + E_{75} - E_{86}, ad(e_1, e_3) = -E_{24} + 2E_{43} + E_{57} - E_{68},$$

$$ad(e_1, e_4) = 2E_{22} - 2E_{33} + E_{55} + E_{66} - E_{77} - E_{88}, ad(e_1, e_5) = -E_{37} - E_{45},$$

$$ad(e_1, e_6) = E_{38} - E_{46}, ad(e_1, e_7) = -E_{25} + E_{47}, ad(e_1, e_8) = E_{26} + E_{48},$$

$$ad(e_2, e_4) = -2E_{12}, ad(e_3, e_4) = 2E_{13}, ad(e_2, e_3) = E_{14}, ad(e_2, e_7) = E_{15},$$

$$ad(e_2, e_8) = -E_{16}, ad(e_3, e_5) = E_{17}, ad(e_3, e_6) = E_{18}.$$

Denote $X_1 = E_{34} - 2E_{42} + E_{75} - E_{86}, X_2 = -E_{24} + 2E_{43} + E_{57} - E_{68}, X_3 = 2E_{22} - 2E_{33} + E_{55} + E_{66} - E_{77} - E_{88}, X_4 = E_{37} + E_{45}, X_5 = E_{38} - E_{46}, X_6 = -E_{25} + E_{47}, X_7 = E_{26} + E_{48}, X_8 = E_{12}, X_9 = E_{13}, X_{10} = E_{14}, X_{11} = E_{15}, X_{12} = E_{16}, X_{13} = E_{17}, X_{14} = E_{18}.$

We obtain that $\{X_1, \dots, X_{14}\}$ is a basis of adJ_{21} . From $[ad(e_i, e_j), ad(e_k, e_l)] = ad([e_i, e_j, e_k], e_l) + ad(e_k, [e_i, e_j e_l])$, we have the result 1).

Let $L = \langle X_1, X_2, X_3 \rangle$, $M_1 = \langle X_6, X_4 \rangle$, $M_2 = \langle X_7, X_5 \rangle$, $M_3 = \langle X_9, X_{10}, X_8 \rangle$, $M_4 = \langle X_{13}, X_{11} \rangle$, $M_5 = \langle X_{14}, X_{12} \rangle$. From the above discussion, $L = \langle X_1, X_2, X_3 \rangle \cong sl(2)$, and M_i for $1 \leq i \leq 5$ are irreducible L-modules, and $adJ_{21} = ad^1J_{21}$, $[M, M] \subseteq M$. The proof is completed.

Theorem 2.4 Let J_{21} be a 3-Lie algebra in Theorem 2.2. Then we have 1) The dimension of $Der J_{21}$ is 19, and $Der J_{21}$ with a basis $\{X_1, \dots, X_{19}\}$, where $X_{15} = E_{11} - 2E_{33} - E_{44} - E_{77} - E_{88}, X_{16} = E_{66} + E_{88}, X_{17} = E_{55} + E_{77} - E_{66} - E_{88}, X_{18} = E_{56} - E_{78}, X_{19} = E_{65} - E_{87}, and X_i for <math>1 \le i \le 14$ is in Theorem 2.3. And the multiplication in the basis is

$$\begin{split} & [X_2, X_1] = X_3, [X_3, X_2] = 2X_2, [X_3, X_1] = -2X_1, [X_1, X_6] = X_4, \\ & [X_1, X_7] = X_5, [X_1, X_9] = -X_{10}, [X_1, X_{10}] = -2X_8, [X_1, X_{13}] = -X_{11}, \\ & [X_2, X_5] = X_7, [X_1, X_{14}] = X_{12}, [X_2, X_4] = X_6, [X_3, X_{14}] = X_{14}, \\ & [X_2, X_8] = X_{10}, [X_2, X_{10}] = -2X_9, [X_2, X_{11}] = -X_{13}, [X_2, X_{12}] = X_{14} \\ & [X_4, X_3] = X_4, [X_3, X_5] = -X_5, [X_3, X_6] = X_6, [X_3, X_7] = X_7, \\ & [X_3, X_9] = 2X_9, [X_3, X_{11}] = -X_{11}, [X_3, X_{12}] = -X_{12}, [X_3, X_{13}] = X_{13}, \\ & [X_9, X_4] = X_{13}, [X_4, X_{10}] = -X_{11}, [X_5, X_9] = -X_{14}, [X_5, X_{10}] = X_{12}, \\ & [X_6, X_8] = X_{11}, [X_{10}, X_6] = X_{13}, [X_7, X_8] = -X_{12}, [X_7, X_{10}] = -X_{14}, \\ & [X_1, X_{15}] = X_1, [X_2, X_{15}] = -X_2, [X_4, X_{15}] = X_4, [X_5, X_{15}] = X_5, \\ & [X_{15}, X_8] = X_8, [X_{15}, X_9] = 3X_9, [X_{15}, X_{10}] = 2X_{10}, [X_{15}, X_{14}] = 2X_{14}, \\ & [X_8, X_3] = 2X_8, [X_{15}, X_{11}] = X_{11}, [X_{15}, X_{12}] = X_{12}, [X_{15}, X_{13}] = 2X_{13}, \\ & [X_6, X_{17}] = X_6, [X_{11}, X_{17}] = X_{11}, [X_{13}, X_{17}] = X_{13}, [X_4, X_{18}] = X_5, \\ & [X_{11}, X_{18}] = X_{12}, [X_{18}, X_{13}] = X_{14}, [X_{19}, X_5] = X_4, [X_{19}, X_7] = X_6, \\ & [X_{19}, X_{14}] = X_{13}, [X_5, X_{16}] = X_5, [X_7, X_{16}] = X_7, [X_{12}, X_{16}] = X_{12}, \\ & [X_{17}, X_{18}] = 2X_{18}, [X_{17}, X_{19}] = -2X_{19}, [X_{18}, X_{19}] = X_{17}, \\ & [X_{18}, X_{16}] = X_{18}, [X_{19}, X_{16}] = -X_{19}, [X_4, X_{17}] = X_4, [X_6, X_{18}] = -X_7, \\ & [X_{12}, X_{19}] = X_{11}, [X_{14}, X_{16}] = X_{14}, [X_5, X_{17}] = -X_5, [X_7, X_{17}] = -X_7, \\ & [X_{12}, X_{19}] = X_{11}, [X_{14}, X_{17}] = -X_{14}. \\ \end{split}$$

2) $Der J_{21}$ is an indecomposable Lie algebra, and

$$Der J_{21} = adJ_{21} + B, \ Der^1 J_{21} = adJ_{21}^1 + \langle X_{17}, X_{18}, X_{19} \rangle,$$

Structure of 3-Lie algebra J_{21}

where $B = \langle X_{15}, X_{16}, X_{17}, X_{18}, X_{19} \rangle$, $[B, B] = \langle X_{17}, X_{18}, X_{19} \rangle \cong sl(2)$, $\langle X_{15}, X_{17} + X_{16} \rangle$ is contained in the center of B.

Proof For all $D \in Der J_{21}$, suppose $D(e_i) = \sum_{j=1}^{8} a_{ij}e_j$, $1 \le i \le 8$, then the matrix form of D in the basis $\{e_1, \dots, e_8\}$ is $A = (a_{ij})_{i,j=1}^8 = \sum_{i,j=1}^8 a_{ij}E_{ij}$, where E_{ij} are (8×8) matrix units, $1 \le i, j \le 8$. By a direct computation according to the multiplication (3), we have the result 1).

Thanks to Theorem 2.3, $B = \langle X_{15}, X_{16}, X_{17}, X_{18}, X_{19} \rangle$ are exterior derivations. Then we have $Der J_{21} = adJ_{21} + B$, and $[B, B] = \langle X_{17}, X_{18}, X_{19} \rangle \cong sl(2), \langle X_{15}, X_{17} + X_{16} \rangle$ is contained in the center of B. By a direct computation, $Der^1 J_{21} = \langle X_2, \cdots, X_{19} \rangle$. The proof is completed.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

- R. Bai, H. LIU, M. ZHANG, 3-Lie Algebras Realized by Cubic Matrices, Chin.Ann. Math., 35B(2), 2014, 261-270.
- [2] R. Bai, C. Bai, J. Wang, Realizations of 3-Lie algebras, Journal of Mathematical Physics, 2010, 51, 063505.
- [3] R. Bai, Y. Gao, W. Guo, A class of 3-Lie algebras realized by Lie algebras, Mathematica Aeterna, 2015, 5(2), 263 - 267.
- [4] V. FILIPPOV, *n*-Lie algebras, Sib. Mat. Zh., 1985, 26 (6), 126-140.

Received: August, 2015