Structure of 3-Lie algebra J_{27}

BAI Ruipu

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

GUO Weiwei

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

LIN Lixin

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

In this paper, the 3-Lie algebra J_{27} is constructed by 2-cubic matrices over a field F with chF = 0, and the structure of it is studied. It is proved that the 3-Lie algebra J_{27} is solvable but non-nilpotent 3-Lie algebra with two dimensional center, and the concrete expression of all derivations and inner derivations is given.

2010 Mathematics Subject Classification: 17B05 17D30 **Keywords:** 2-cubic matrix, 3-Lie algebra, derivation.

1 Introduction

We know that the 3-Lie algebra [1] has wide applications in mathematics and mathematical physics [2, 3]. The realization of 3-Lie algebras is always a hard task in the structural study of 3-Lie algebras. Authors constructed 3-Lie algebras by Lie algebras, associative algebras, pre-Lie algebras and linear functions in [4], and also realized 3-Lie algebras by commutative associative algebras and their derivations and involutions in [5]. In this paper, we continue to construct 3-Lie algebras by 2-cubic matrices [6]. In the following, we suppose that F is a field with characteristic zero, $\langle x_1, \dots, x_s \rangle$ denotes the subspace generated by vectors x_1, \dots, x_s , and in the multiplication table of a 3-Lie algebra, we omit the zero product of basis vectors.

2 N-cubic matrix

An N-order cubic matrix $A = (a_{ijk})$ (see [6]) over a field F is an ordered object which the elements with 3 indices, and the element in the position (i, j, k) is $(A)_{ijk} = a_{ijk} \in F, 1 \leq i, j, k \leq N$. Denote the set of all cubic matrix over a field F by Ω . Then Ω is an N^3 -dimensional vector space over F with

 $A + B = (a_{ijk} + b_{ijk}) \in \Omega, \quad \lambda A = (\lambda a_{ijk}) \in \Omega,$

for all $A = (a_{ijk}), B = (b_{ijk}) \in \Omega, \ \lambda \in F$, that is,

$$(A+B)_{ijk} = a_{ijk} + b_{ijk}, \quad (\lambda A)_{ijk} = \lambda a_{ijk}.$$

Denote E_{ijk} a cubic matrix with the element in the position (i, j, k) is 1 and elsewhere are zero. Then $\{E_{ijk}, 1 \leq i, j, k \leq N\}$ is a basis of Ω , and for every $A = (a_{ijk}) \in \Omega$, $A = \sum_{\substack{1 \leq i, j, k \leq N \\ 1 \leq i, j, k \leq N}} a_{ijk} E_{ijk}, a_{ijk} \in F$.

For all $A = (a_{ijk}), B = (b_{ijk}) \in \Omega$, define the multiplication $*_{27}$ in Ω by

$$(A *_{27} B)_{ijk} = \sum_{p,q=1}^{N} a_{qjk} b_{ipk}, 1 \le i, j, k \le N,$$

then $(\Omega, *_{27})$ is an associative algebra, and in the basis $\{E_{ijk} | 1 \leq i, j, k \leq N\}$, we have

$$E_{ijk} *_{27} E_{lmn} = \delta_{kn} E_{ljk}, \ 1 \le i, j, k, l, m, n \le N_{jk}$$

where δ_{ij} is 1 in the cases i = j, and others are zero, $1 \le i, j \le N$.

Define linear function $\langle \rangle_0 : \Omega \to F$ by $\langle A \rangle_0 = \sum_{p,q,r=1}^N a_{pqr}$, Then we have

$$\langle A *_{27} B \rangle_0 = \langle B *_{27} A \rangle_0. \tag{1}$$

So we define the multiplication $[,,]_{27}: \Omega \wedge \Omega \wedge \Omega \to \Omega$ as follows:

 $[A, B, C]_{27} = \langle A \rangle_0 (B \ast_{27} C - C \ast_{27} B)$ $+ \langle B \rangle_0 (C \ast_{27} A - A \ast_{27} C) + \langle C \rangle_0 (A \ast_{27} B - B \ast_{27} A).$ (2)

3 The structure of J_{27}

First we give the following lemma.

Theorem 1^[6] The linear space Ω is a 3-Lie algebra in the multiplication $[,,]_{27}$, which is denoted by J_{27} .

In the following we suppose N = 2. For simplifying the multiplication of the 3-Lie algebra J_{27} , we need to find a new basis of Ω . Denote

 $e_1 = E_{111}, e_2 = E_{112} - E_{111}, e_3 = E_{111} - E_{121}, e_4 = E_{112} - E_{122}, e_5 = E_{211} - E_{111}, e_6 = E_{212} - E_{112}, e_7 = E_{211} - E_{221} - E_{111} + E_{121}, e_8 = E_{112} - E_{111} + E_{121}, e_8 = E_{112} - E_{111} + E_{121}, e_8 = E_{112} - E_{112} - E_{112} + E_{121} + E_{121}, e_8 = E_{112} - E_{112} - E_{112} + E_{121} + E_{121}, e_8 = E_{112} - E_{112} + E_{121} + E_{$

 $e_8 = E_{212} - E_{222} - E_{112} + E_{122}.$ Then $\{e_1, \dots, e_8\}$ is a basis of Ω .

Theorem 2 The multiplication of 3-Lie algebra J_{27} in the basis $\{e_1, \dots, e_8\}$ is as follows

$$\begin{bmatrix}
[e_1, e_2, e_3] = e_3, & [e_1, e_2, e_4] = -e_4, \\
[e_1, e_3, e_5] = e_7, & [e_1, e_2, e_5] = -e_5, \\
[e_1, e_2, e_6] = e_6, & [e_1, e_4, e_6] = e_8.
\end{bmatrix}$$
(3)

Proof The result follows from a direction computation according to the multiplication $*_{27}$ and Eq. (1). We omit the computing process.

Theorem 3 The 3-Lie algebra J_{27} is solvable but non-nilpotent, and it satisfies that

1) J_{27} is an indecomposable 3-Lie algebra with two dimensional center $\langle e_7, e_8 \rangle$, and derived algebra $J_{27}^1 = \langle e_3, e_4, e_5, e_6, e_7, e_8 \rangle$.

2) $H = \langle e_1, e_2, e_7, e_8 \rangle$ is a Cartan subalgebra of J_{27} , and the decomposition of J_{27} associate to H is

$$J_{27} = H \dot{+} L_{\alpha} \dot{+} L_{-\alpha}$$

where $L_{\alpha} = \{x \in J_{27} \mid ad(h_1, h_2)x = \alpha(h_1, h_2)x, \forall h_1, h_2 \in H\} = \langle e_3, e_6 \rangle, L_{-\alpha} = \{x \in J_{27} \mid ad(h_1, h_2)x = -\alpha(h_1, h_2)x, \forall h_1, h_2 \in H\} = \langle e_4, e_5 \rangle,$

and the linear function $\alpha : H \wedge H \to F$ is defined by $\alpha(e_1, e_2) = 1$ and others are zero.

Proof By the definition of $*_{27}$ and Eq.(3), the derived algebra $J_{27}^1 = [J_{27}, J_{27}, J_{27}] = \langle e_3, \cdots, e_8 \rangle$, and the center of J_{27} is

 $Z(J_{27}) = \{ x \in J_{27} | [x, J_{27}, J_{27} = 0] \} = \langle e_7, e_8 \rangle.$

Since J_{27} can not be decompose into the direct sum of proper ideals, J_{27} is an indecomposable 3-Lie algebra.

From Eq.(3), the derived series $J_{27}^{(1)} = [J_{27}, J_{27}, J_{27}] = J_{27}^1$,

 $J_{27}^{(2)} = [J_{27}^{(1)}, J_{27}^{(1)}, J_{27}^{(1)}] = \{e_7, e_8\}, \ J_{27}^{(3)} = [J_{27}^{(2)}, J_{27}^{(2)}, J_{27}] = 0.$ We obtain that J_{27} is solvable. Thanks to the descend center series $J_{27}^{s+1} =$

 $[J_{27}^s, J_{27}, J_{27}] = J_{27}^1 \neq 0$ for all $s \ge 1$, the 3-Lie algebra J_{27} is non-nilpotent.

From the multiplication (3), $H = (e_1, e_4, e_5, e_8)$ is a nilpotent subalgebra of J_{27} , and if $[x, H, J_{27}] \subseteq H$ for $x \in J_{27}$, then $x \in H$. Therefore, H is a Cartan subalgebra. Define linear function $\alpha : H \wedge H \to F$ by $\alpha(e_1, e_2) = 1$ and others are zero. Then we have $L_0 = H$, $L_{\alpha} = \langle e_3, e_6 \rangle$, $L_{-\alpha} = \langle e_4, e_5 \rangle$. The proof is completed.

Now we study the inner derivation algebra adJ_{27} . For $e_i, e_j \in \Omega$, denote

$$ad(e_i, e_j)e_k = \sum_{l=1}^{8} a_{kl}^{ij}e_l$$
, where $a_{kl}^{ij} = -a_{kl}^{ji} \in F$.

Then the matrix form of $ad(e_i, e_j)$ in the basis e_1, \dots, e_8 is $\sum_{k,l=1}^8 a_{kl}^{ij} E_{kl}$, where E_{kl} are 8×8 -matrix units.

Theorem 4 Let J_{27} be the 3-Lie algebra in Theorem 1. Then we have 1) The dimension of inner derivation algebra adJ_{27} is 11, and $\{X_1 = E_{33} - E_{44} - E_{55} + E_{66}, X_2 = -E_{23} + E_{57}, X_3 = E_{24} + E_{68}, X_4 = E_{25} - E_{37}, X_5 = E_{26} + E_{48}, X_6 = E_{13}, X_7 = E_{14}, X_8 = E_{15}, X_9 = E_{16}, X_{10} = E_{17}, X_{11} = E_{18}\}$ is a basis of adJ_{27} , the multiplication in it is

 $\begin{bmatrix} [X_1, X_2] = -X_2, [X_1, X_3] = X_3, [X_1, X_4] = X_4, [X_1, X_5] = -X_5 \\ [Y_1, Y_2] = -X_5, [Y_1, Y_2] = -X_5, [Y_1, Y_2] = -X_5 \end{bmatrix}$

 $\begin{cases} [X_1, X_6] = -X_6, [X_1, X_7] = X_7, [X_1, X_8] = X_8, [X_1, X_9] = -X_9\\ [X_2, X_8] = -X_{10}, [X_3, X_9] = -X_{11}, [X_4, X_6] = X_{10}, [X_5, X_7] = -X_{11}. \end{cases}$

 $([X_2, X_8] = -X_{10}, [X_3, X_9] = -X_{11}, [X_4, X_6] = X_{10}, [X_5, X_7] = -X_{11}.$ 2) adJ_{27} is a solvable and indecomposable Lie algebra.

Proof By a direct computation according to Eq.(3) we have $ad(e_1, e_2) = E_{33} - E_{44} - E_{55} + E_{66}$, $ad(e_1, e_3) = -E_{23} + E_{57}$, $ad(e_1, e_4) = E_{24} + E_{68}$, $ad(e_1, e_5) = E_{25} - E_{37}$, $ad(e_1, e_6) = -E_{26} - E_{48}$, $ad(e_2, e_3) = E_{13}$, $ad(e_2, e_4) = -E_{14}$, $ad(e_2, e_5) = -E_{15}$, $ad(e_2, e_6) = E_{16}$, $ad(e_3, e_5) = E_{17}$, $ad(e_4, e_6) = E_{18}$, and others are zero.

Denote $\{X_1 = E_{33} - E_{44} - E_{55} + E_{66}, X_2 = -E_{23} + E_{57}, X_3 = E_{24} + E_{68}, X_4 = E_{25} - E_{37}, X_5 = E_{26} + E_{48}, X_6 = E_{13}, X_7 = E_{14}, X_8 = E_{15}, X_9 = E_{16}, X_{10} = E_{17}, X_{11} = E_{18}\}$, then $\{X_1, \dots, X_{11}\}$ is a basis of adJ_{27} . From $[ad(e_i, e_j), ad(e_k, e_l)] = ad([e_i, e_j, e_k], e_l) + ad(e_k, [e_i, e_j, e_l]).$

From the above discussion, adJ_{27} is an indecomposable solvable Lie algebra. The proof is completed.

Theorem 5 The dimension of derivation algebra $Der J_{27}$ is 18, and $Der J_{27}$ with a basis $\{X_1, \dots, X_{18}\}$, where $X_{12} = E_{11} - E_{22} + E_{77} + E_{88}$, $X_{13} = E_{33} + E_{77}$, $X_{14} = E_{44} + E_{88}, X_{15} = E_{55} + E_{77}, X_{16} = E_{28}, X_{17} = E_{12}, X_{18} = E_{27}, and X_i$ for $1 \leq i \leq 11$ are defined in Theorem 4. The multiplication in the basis is $[X_1, X_2] = -X_2, [X_1, X_3] = X_3, [X_2, X_8] = -X_{10}, \ [X_{18}, X_{17}] = -X_{10},$ $[X_1, X_6] = -X_6, [X_1, X_7] = X_7, [X_4, X_6] = X_{10}, \quad [X_{18}, X_{12}] = 2X_{18},$ $[X_1, X_5] = X_5, [X_1, X_4] = X_4, [X_3, X_9] = -X_{11},$ $[X_1, X_8] = X_8,$ $[X_2, X_{12}] = X_2, [X_3, X_{12}] = X_3, [X_5, X_{12}] = X_5, [X_6, X_{12}] = -X_6,$ $[X_2, X_{13}] = X_2, [X_4, X_{15}] = X_4, [X_8, X_{12}] = -X_8, [X_9, X_{12}] = -X_9,$ $[X_4, X_{12}] = X_4, [X_3, X_{14}] = X_3, [X_{16}, X_{12}] = 2X_{16}, [X_1, X_9] = -X_9,$ $[X_6, X_{13}] = X_6, [X_{10}, X_{13}] = X_{10}, [X_{18}, X_{13}] = X_{18}, [X_3, X_{17}] = -X_7,$ $[X_7, X_{14}] = X_7, [X_{11}, X_{14}] = X_{11}, [X_{16}, X_{14}] = X_{16}, [X_5, X_7] = -X_{11},$ $[X_8, X_{15}] = X_8, [X_{10}, X_{15}] = X_{10}, [X_{18}, X_{15}] = X_{18},$ $[X_2, X_{17}] = X_6, [X_4, X_{17}] = -X_8, [X_5, X_{17}] = -X_9,$ $[X_{17}, X_{12}] = -2X_{17}, [X_7, X_{12}] = -X_7, [X_{16}, X_{17}] = -X_{11}.$ **Proof** The result follows from a direct computation.

Theorem 6 The subalgebra $H = \langle X_1, X_{12}, X_{13}, X_{14}, X_{15} \rangle$ is a Cartan subalgebra of $Der J_{27}$, and the decomposition of $Der J_{27}$ associate to H is

$$Der J_{27} = H + Der^1 J_{27} = H + L_{\alpha_1} + L_{\alpha_2} + L_{\alpha_3} + L_{\alpha_4} + L_{\alpha_5} + \sum_{i=1}^8 L_{\beta_i},$$

where $\alpha_i, \beta_j \in H^*$, and the form of vectors of $\alpha_i, \beta_j, 1 \leq i \leq 5, 1 \leq j \leq 8$

under the basis $X_1, X_{12}, X_{13}, X_{14}, X_{15}$ are as follows

$$\alpha_1 = (-1, -1, -1, 0, 0), \ \alpha_2 = (1, -1, 0, -1, 0), \ \alpha_3 = (1, -1, 0, 0, -1),$$

$$\alpha_4 = (-1, -1, 0, 0, 0), \ \alpha_5 = (-1, 1, -1, 0, 0),$$

$$\beta_1 = -\alpha_1 + \alpha_2 + \alpha_5, \ \beta_2 = -\alpha_1 + \alpha_3 + \alpha_5, \ \beta_3 = -\alpha_1 + \alpha_4 + \alpha_5, \beta_4 = \alpha_3 + \alpha_5, \\ \beta_5 = -\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5, \ \beta_6 = -\alpha_1 + \alpha_5, \ \beta_7 = \alpha_1 + \alpha_3, \beta_8 = \alpha_2 + \alpha_4.$$

The corresponding root subspace is $L_{\alpha_1} = \langle X_2 \rangle$, $L_{\alpha_2} = \langle X_3 \rangle$, $L_{\alpha_3} = \langle X_4 \rangle$, $L_{\alpha_4} = \langle X_5 \rangle$, $L_{\alpha_5} = \langle X_6 \rangle$, $L_{\beta_1} = \langle X_7 \rangle$, $L_{\beta_2} = \langle X_8 \rangle$, $L_{\beta_3} = \langle X_9 \rangle$, $L_{\beta_4} = \langle X_{10} \rangle$, $L_{\beta_5} = \langle X_{11} \rangle$, $L_{\beta_6} = \langle X_{17} \rangle$, $L_{\beta_7} = \langle X_{18} \rangle$, $L_{\beta_8} = \langle X_{16} \rangle$.

Proof The result follows from Theorem 5.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

- [1] V. FILIPPOV, *n*-Lie algebras, Sib. Mat. Zh., 1985, 26 (6): 126-140.
- [2] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 1994, 160: 295-315.
- [3] J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, *Phys. Rev. D* 2008, 77, 065008.
- [4] R. Bai, C. Bai, J. Wang, Realizations of 3-Lie algebras, Journal of Mathematical Physics, 2010, 51,063505.
- [5] R. Bai, Y. Gao, W. Guo, A class of 3-Lie algebras realized by Lie algebras, Mathematica Aeterna, 2015, 5(2): 263C267.
- [6] R. Bai, H. LIU, M. ZHANG, 3-Lie Algebras Realized by Cubic Matrices, Chin.Ann. Math., 35B(2): 2014,261-270.