Mathematica Aeterna, Vol. 6, 2016, no. 1, 19-23

Structure of 3-Lie algebra J_{27}

\author{

Abstract

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

}

Abstract

In this paper, the 3-Lie algebra J_{27} is constructed by 2-cubic matrices over a field F with $\operatorname{ch} F=0$, and the structure of it is studied. It is proved that the 3 -Lie algebra J_{27} is solvable but non-nilpotent 3 -Lie algebra with two dimensional center, and the concrete expression of all derivations and inner derivations is given.

2010 Mathematics Subject Classification: 17B05 17D30
Keywords: 2-cubic matrix, 3-Lie algebra, derivation.

1 Introduction

We know that the 3-Lie algebra [1] has wide applications in mathematics and mathematical physics [2,3]. The realization of 3-Lie algebras is always a hard task in the structural study of 3 -Lie algebras. Authors constructed 3Lie algebras by Lie algebras, associative algebras, pre-Lie algebras and linear functions in [4], and also realized 3-Lie algebras by commutative associative algebras and their derivations and involutions in [5]. In this paper, we continue to construct 3 -Lie algebras by 2 -cubic matrices [6]. In the following, we suppose that F is a field with characteristic zero, $\left\langle x_{1}, \cdots, x_{s}\right\rangle$ denotes the subspace generated by vectors x_{1}, \cdots, x_{s}, and in the multiplication table of a 3-Lie algebra, we omit the zero product of basis vectors.

$2 \quad N$-cubic matrix

An N-order cubic matrix $A=\left(a_{i j k}\right)$ (see [6]) over a field F is an ordered object which the elements with 3 indices, and the element in the position (i, j, k) is $(A)_{i j k}=a_{i j k} \in F, 1 \leq i, j, k \leq N$. Denote the set of all cubic matrix over a field F by Ω. Then Ω is an N^{3}-dimensional vector space over F with

$$
A+B=\left(a_{i j k}+b_{i j k}\right) \in \Omega, \quad \lambda A=\left(\lambda a_{i j k}\right) \in \Omega,
$$

for all $A=\left(a_{i j k}\right), B=\left(b_{i j k}\right) \in \Omega, \lambda \in F$, that is,

$$
(A+B)_{i j k}=a_{i j k}+b_{i j k}, \quad(\lambda A)_{i j k}=\lambda a_{i j k} .
$$

Denote $E_{i j k}$ a cubic matrix with the element in the position (i, j, k) is 1 and elsewhere are zero. Then $\left\{E_{i j k}, 1 \leq i, j, k \leq N\right\}$ is a basis of Ω, and for every $A=\left(a_{i j k}\right) \in \Omega, A=\sum_{1 \leq i, j, k \leq N} a_{i j k} E_{i j k}, a_{i j k} \in F$.

For all $A=\left(a_{i j k}\right), B=\left(b_{i j k}\right) \in \Omega$, define the multiplication $*_{27}$ in Ω by

$$
\left(A *_{27} B\right)_{i j k}=\sum_{p, q=1}^{N} a_{q j k} b_{i p k}, 1 \leq i, j, k \leq N,
$$

then $\left(\Omega, *_{27}\right)$ is an associative algebra, and in the basis $\left\{E_{i j k} \mid 1 \leq i, j, k \leq N\right\}$, we have

$$
E_{i j k} *_{27} E_{l m n}=\delta_{k n} E_{l j k}, 1 \leq i, j, k, l, m, n \leq N,
$$

where $\delta_{i j}$ is 1 in the cases $i=j$, and others are zero, $1 \leq i, j \leq N$.
Define linear function $\left\rangle_{0}: \Omega \rightarrow F\right.$ by $\langle A\rangle_{0}=\sum_{p, q, r=1}^{N} a_{p q r}$, Then we have

$$
\begin{equation*}
\left\langle A *_{27} B\right\rangle_{0}=\left\langle B *_{27} A\right\rangle_{0} . \tag{1}
\end{equation*}
$$

So we define the multiplication $[,,]_{27}: \Omega \wedge \Omega \wedge \Omega \rightarrow \Omega$ as follows:

$$
\begin{align*}
{[A, B, C]_{27} } & =\langle A\rangle_{0}\left(B *_{27} C-C *_{27} B\right) \\
& +\langle B\rangle_{0}\left(C *_{27} A-A *_{27} C\right)+\langle C\rangle_{0}\left(A *_{27} B-B *_{27} A\right) . \tag{2}
\end{align*}
$$

3 The structure of J_{27}

First we give the following lemma.
Theorem $1^{[6]}$ The linear space Ω is a 3-Lie algebra in the multiplication $[,,]_{27}$, which is denoted by J_{27}.

In the following we suppose $N=2$. For simplifying the multiplication of the 3 -Lie algebra J_{27}, we need to find a new basis of Ω. Denote
$e_{1}=E_{111}, e_{2}=E_{112}-E_{111}, e_{3}=E_{111}-E_{121}, e_{4}=E_{112}-E_{122}$,
$e_{5}=E_{211}-E_{111}, e_{6}=E_{212}-E_{112}, e_{7}=E_{211}-E_{221}-E_{111}+E_{121}$,

$$
e_{8}=E_{212}-E_{222}-E_{112}+E_{122} .
$$

Then $\left\{e_{1}, \cdots, e_{8}\right\}$ is a basis of Ω.
Theorem 2 The multiplication of 3-Lie algebra J_{27} in the basis $\left\{e_{1}, \cdots, e_{8}\right\}$ is as follows

$$
\left\{\begin{array}{l}
{\left[e_{1}, e_{2}, e_{3}\right]=e_{3},\left[e_{1}, e_{2}, e_{4}\right]=-e_{4},} \tag{3}\\
{\left[e_{1}, e_{3}, e_{5}\right]=e_{7},\left[e_{1}, e_{2}, e_{5}\right]=-e_{5},} \\
{\left[e_{1}, e_{2}, e_{6}\right]=e_{6},\left[e_{1}, e_{4}, e_{6}\right]=e_{8} .}
\end{array}\right.
$$

Proof The result follows from a direction computation according to the multiplication $*_{27}$ and Eq. (1). We omit the computing process.

Theorem 3 The 3-Lie algebra J_{27} is solvable but non-nilpotent, and it satisfies that

1) J_{27} is an indecomposable 3-Lie algebra with two dimensional center $\left\langle e_{7}, e_{8}\right\rangle$, and derived algebra $\left.J_{27}^{1}=<e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right\rangle$.
2) $H=<e_{1}, e_{2}, e_{7}, e_{8}>$ is a Cartan subalgebra of J_{27}, and the decomposition of J_{27} associate to H is

$$
J_{27}=H \dot{+} L_{\alpha} \dot{+} L_{-\alpha},
$$

where $L_{\alpha}=\left\{x \in J_{27} \mid a d\left(h_{1}, h_{2}\right) x=\alpha\left(h_{1}, h_{2}\right) x, \forall h_{1}, h_{2} \in H\right\}=<e_{3}, e_{6}>$,
$L_{-\alpha}=\left\{x \in J_{27} \mid \operatorname{ad}\left(h_{1}, h_{2}\right) x=-\alpha\left(h_{1}, h_{2}\right) x, \forall h_{1}, h_{2} \in H\right\}=<e_{4}, e_{5}>$, and the linear function $\alpha: H \wedge H \rightarrow F$ is defined by $\alpha\left(e_{1}, e_{2}\right)=1$ and others are zero.

Proof By the definition of $*_{27}$ and Eq.(3), the derived algebra $J_{27}^{1}=$ $\left[J_{27}, J_{27}, J_{27}\right]=\left\langle e_{3}, \cdots, e_{8}\right\rangle$, and the center of J_{27} is
$Z\left(J_{27}\right)=\left\{x \in J_{27} \mid\left[x, J_{27}, J_{27}=0\right]\right\}=<e_{7}, e_{8}>$.
Since J_{27} can not be decompose into the direct sum of proper ideals, J_{27} is an indecomposable 3-Lie algebra.

From Eq.(3), the derived series $J_{27}^{(1)}=\left[J_{27}, J_{27}, J_{27}\right]=J_{27}^{1}$,
$J_{27}^{(2)}=\left[J_{27}^{(1)}, J_{27}^{(1)}, J_{27}\right]=\left\{e_{7}, e_{8}\right\}, J_{27}^{(3)}=\left[J_{27}^{(2)}, J_{27}^{(2)}, J_{27}\right]=0$.
We obtain that J_{27} is solvable. Thanks to the descend center series $J_{27}^{s+1}=$ $\left[J_{27}^{s}, J_{27}, J_{27}\right]=J_{27}^{1} \neq 0$ for all $s \geq 1$, the 3-Lie algebra J_{27} is non-nilpotent.

From the multiplication (3), $H=\left(e_{1}, e_{4}, e_{5}, e_{8}\right)$ is a nilpotent subalgebra of J_{27}, and if $\left[x, H, J_{27}\right] \subseteq H$ for $x \in J_{27}$, then $x \in H$. Therefore, H is a Cartan subalgebra. Define linear function $\alpha: H \wedge H \rightarrow F$ by $\alpha\left(e_{1}, e_{2}\right)=1$ and others are zero. Then we have $L_{0}=H, L_{\alpha}=<e_{3}, e_{6}>, L_{-\alpha}=<e_{4}, e_{5}>$. The proof is completed.

Now we study the inner derivation algebra $a d J_{27}$. For $e_{i}, e_{j} \in \Omega$, denote

$$
a d\left(e_{i}, e_{j}\right) e_{k}=\sum_{l=1}^{8} a_{k l}^{i j} e_{l}, \text { where } a_{k l}^{i j}=-a_{k l}^{j i} \in F
$$

Then the matrix form of $a d\left(e_{i}, e_{j}\right)$ in the basis e_{1}, \cdots, e_{8} is $\sum_{k, l=1}^{8} a_{k l}^{i j} E_{k l}$, where $E_{k l}$ are 8×8-matrix units.

Theorem 4 Let J_{27} be the 3-Lie algebra in Theorem 1. Then we have

1) The dimension of inner derivation algebra ad J_{27} is 11, and $\left\{X_{1}=E_{33}\right.$ -$E_{44}-E_{55}+E_{66}, X_{2}=-E_{23}+E_{57}, X_{3}=E_{24}+E_{68}, X_{4}=E_{25}-E_{37}$, $X_{5}=E_{26}+E_{48}, X_{6}=E_{13}, X_{7}=E_{14}, X_{8}=E_{15}, X_{9}=E_{16}, X_{10}=E_{17}$, $\left.X_{11}=E_{18}\right\}$ is a basis of adJ J_{27}, the multiplication in it is

$$
\left\{\begin{array}{l}
{\left[X_{1}, X_{2}\right]=-X_{2},\left[X_{1}, X_{3}\right]=X_{3},\left[X_{1}, X_{4}\right]=X_{4},\left[X_{1}, X_{5}\right]=-X_{5}} \\
{\left[X_{1}, X_{6}\right]=-X_{6},\left[X_{1}, X_{7}\right]=X_{7},\left[X_{1}, X_{8}\right]=X_{8},\left[X_{1}, X_{9}\right]=-X_{9}} \\
{\left[X_{2}, X_{8}\right]=-X_{10},\left[X_{3}, X_{9}\right]=-X_{11},\left[X_{4}, X_{6}\right]=X_{10},\left[X_{5}, X_{7}\right]=-X_{11} .}
\end{array}\right.
$$

2) adJ J_{27} is a solvable and indecomposable Lie algebra.

Proof By a direct computation according to Eq.(3) we have $\operatorname{ad}\left(e_{1}, e_{2}\right)=$ $E_{33}-E_{44}-E_{55}+E_{66}, a d\left(e_{1}, e_{3}\right)=-E_{23}+E_{57}, a d\left(e_{1}, e_{4}\right)=E_{24}+E_{68}$, $a d\left(e_{1}, e_{5}\right)=E_{25}-E_{37}, a d\left(e_{1}, e_{6}\right)=-E_{26}-E_{48}, a d\left(e_{2}, e_{3}\right)=E_{13}, a d\left(e_{2}, e_{4}\right)=$ $-E_{14}, a d\left(e_{2}, e_{5}\right)=-E_{15}, a d\left(e_{2}, e_{6}\right)=E_{16}, a d\left(e_{3}, e_{5}\right)=E_{17}, a d\left(e_{4}, e_{6}\right)=E_{18}$, and others are zero.

Denote $\left\{X_{1}=E_{33}-E_{44}-E_{55}+E_{66}, X_{2}=-E_{23}+E_{57}, X_{3}=E_{24}+E_{68}\right.$, $X_{4}=E_{25}-E_{37}, X_{5}=E_{26}+E_{48}, X_{6}=E_{13}, X_{7}=E_{14}, X_{8}=E_{15}, X_{9}=$ $\left.E_{16}, X_{10}=E_{17}, X_{11}=E_{18}\right\}$, then $\left\{X_{1}, \cdots, X_{11}\right\}$ is a basis of adJ J_{27}. From $\left[a d\left(e_{i}, e_{j}\right), a d\left(e_{k}, e_{l}\right)\right]=a d\left(\left[e_{i}, e_{j}, e_{k}\right], e_{l}\right)+a d\left(e_{k},\left[e_{i}, e_{j}, e_{l}\right]\right)$.

From the above discussion, $a d J_{27}$ is an indecomposable solvable Lie algebra. The proof is completed.

Theorem 5 The dimension of derivation algebra Der J_{27} is 18, and Der J_{27} with a basis $\left\{X_{1}, \cdots, X_{18}\right\}$, where $X_{12}=E_{11}-E_{22}+E_{77}+E_{88}, X_{13}=E_{33}+E_{77}$, $X_{14}=E_{44}+E_{88}, X_{15}=E_{55}+E_{77}, X_{16}=E_{28}, X_{17}=E_{12}, X_{18}=E_{27}$, and X_{i} for $1 \leq i \leq 11$ are defined in Theorem 4. The multiplication in the basis is

$$
\begin{aligned}
& {\left[X_{1}, X_{2}\right]=-X_{2},\left[X_{1}, X_{3}\right]=X_{3},\left[X_{2}, X_{8}\right]=-X_{10}, \quad\left[X_{18}, X_{17}\right]=-X_{10},} \\
& {\left[X_{1}, X_{6}\right]=-X_{6},\left[X_{1}, X_{7}\right]=X_{7},\left[X_{4}, X_{6}\right]=X_{10}, \quad\left[X_{18}, X_{12}\right]=2 X_{18},} \\
& {\left[X_{1}, X_{5}\right]=X_{5},\left[X_{1}, X_{4}\right]=X_{4},\left[X_{3}, X_{9}\right]=-X_{11}, \quad\left[X_{1}, X_{8}\right]=X_{8},} \\
& {\left[X_{2}, X_{12}\right]=X_{2},\left[X_{3}, X_{12}\right]=X_{3},\left[X_{5}, X_{12}\right]=X_{5}, \quad\left[X_{6}, X_{12}\right]=-X_{6},} \\
& {\left[X_{2}, X_{13}\right]=X_{2},\left[X_{4}, X_{15}\right]=X_{4},\left[X_{8}, X_{12}\right]=-X_{8},\left[X_{9}, X_{12}\right]=-X_{9},} \\
& {\left[X_{4}, X_{12}\right]=X_{4},\left[X_{3}, X_{14}\right]=X_{3},\left[X_{16}, X_{12}\right]=2 X_{16},\left[X_{1}, X_{9}\right]=-X_{9},} \\
& {\left[X_{6}, X_{13}\right]=X_{6},\left[X_{10}, X_{13}\right]=X_{10},\left[X_{18}, X_{13}\right]=X_{18},\left[X_{3}, X_{17}\right]=-X_{7},} \\
& {\left[X_{7}, X_{14}\right]=X_{7},\left[X_{11}, X_{14}\right]=X_{11},\left[X_{16}, X_{14}\right]=X_{16},\left[X_{5}, X_{7}\right]=-X_{11},} \\
& {\left[X_{8}, X_{15}\right]=X_{8},\left[X_{10}, X_{15}\right]=X_{10},\left[X_{18}, X_{15}\right]=X_{18},} \\
& {\left[X_{2}, X_{17}\right]=X_{6},\left[X_{4}, X_{17}\right]=-X_{8},\left[X_{5}, X_{17}\right]=-X_{9},} \\
& {\left[X_{17}, X_{12}\right]=-2 X_{17},\left[X_{7}, X_{12}\right]=-X_{7},\left[X_{16}, X_{17}\right]=-X_{11} .}
\end{aligned}
$$

Proof The result follows from a direct computation.
Theorem 6 The subalgebra $H=<X_{1}, X_{12}, X_{13}, X_{14}, X_{15}>$ is a Cartan subalgebra of Der J_{27}, and the decomposition of Der J_{27} associate to H is

$$
\operatorname{Der} J_{27}=H \dot{+} \text { Der }^{1} J_{27}=H \dot{+} L_{\alpha_{1}} \dot{+} L_{\alpha_{2}} \dot{+} L_{\alpha_{3}} \dot{+} L_{\alpha_{4}} \dot{+} L_{\alpha_{5}} \dot{+} \sum_{i=1}^{8} L_{\beta_{i}},
$$

where $\alpha_{i}, \beta_{j} \in H^{*}$, and the form of vectors of $\alpha_{i}, \beta_{j}, 1 \leq i \leq 5,1 \leq j \leq 8$
under the basis $X_{1}, X_{12}, X_{13}, X_{14}, X_{15}$ are as follows

$$
\begin{gathered}
\alpha_{1}=(-1,-1,-1,0,0), \alpha_{2}=(1,-1,0,-1,0), \alpha_{3}=(1,-1,0,0,-1), \\
\alpha_{4}=(-1,-1,0,0,0), \alpha_{5}=(-1,1,-1,0,0), \\
\beta_{1}=-\alpha_{1}+\alpha_{2}+\alpha_{5}, \beta_{2}=-\alpha_{1}+\alpha_{3}+\alpha_{5}, \beta_{3}=-\alpha_{1}+\alpha_{4}+\alpha_{5}, \beta_{4}=\alpha_{3}+\alpha_{5}, \\
\beta_{5}=-\alpha_{1}+\alpha_{2}+\alpha_{4}+\alpha_{5}, \beta_{6}=-\alpha_{1}+\alpha_{5}, \beta_{7}=\alpha_{1}+\alpha_{3}, \beta_{8}=\alpha_{2}+\alpha_{4} .
\end{gathered}
$$

The corresponding root subspace is $L_{\alpha_{1}}=<X_{2}>, L_{\alpha_{2}}=<X_{3}>, \quad L_{\alpha_{3}}=<$ $X_{4}>, L_{\alpha_{4}}=<X_{5}>, L_{\alpha_{5}}=<X_{6}>, L_{\beta_{1}}=<X_{7}>, L_{\beta_{2}}=<X_{8}>, L_{\beta_{3}}=<$ $X_{9}>, L_{\beta_{4}}=<X_{10}>, L_{\beta_{5}}=<X_{11}>, L_{\beta_{6}}=<X_{17}>, L_{\beta_{7}}=<X_{18}>$, $L_{\beta_{8}}=<X_{16}>$.

Proof The result follows from Theorem 5.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

[1] V. FILIPPOV, n-Lie algebras, Sib. Mat. Zh., 1985, 26 (6): 126-140.
[2] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 1994, 160: 295-315.
[3] J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 2008, 77, 065008.
[4] R. Bai, C. Bai, J. Wang, Realizations of 3-Lie algebras, Journal of Mathematical Physics, 2010, 51,063505.
[5] R. Bai, Y. Gao, W. Guo, A class of 3-Lie algebras realized by Lie algebras, Mathematica Aeterna, 2015, 5(2): 263C267.
[6] R. Bai, H. LIU, M. ZHANG, 3-Lie Algebras Realized by Cubic Matrices, Chin.Ann. Math.,35B(2): 2014,261-270.

