
Mathematica Aeterna, Vol. 6, 2016, no. 1, 19 - 23

Structure of 3-Lie algebra J27
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Abstract

In this paper, the 3-Lie algebra J27 is constructed by 2-cubic matrices

over a field F with chF = 0, and the structure of it is studied. It is

proved that the 3-Lie algebra J27 is solvable but non-nilpotent 3-Lie

algebra with two dimensional center, and the concrete expression of all

derivations and inner derivations is given.
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1 Introduction

We know that the 3-Lie algebra [1] has wide applications in mathematics and
mathematical physics [2, 3]. The realization of 3-Lie algebras is always a
hard task in the structural study of 3-Lie algebras. Authors constructed 3-
Lie algebras by Lie algebras, associative algebras, pre-Lie algebras and linear
functions in [4], and also realized 3-Lie algebras by commutative associative
algebras and their derivations and involutions in [5]. In this paper, we continue
to construct 3-Lie algebras by 2-cubic matrices [6]. In the following, we suppose
that F is a field with characteristic zero, 〈x1, · · · , xs〉 denotes the subspace
generated by vectors x1, · · · , xs, and in the multiplication table of a 3-Lie
algebra, we omit the zero product of basis vectors.
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2 N-cubic matrix

An N -order cubic matrix A = (aijk) (see [6] ) over a field F is an ordered object
which the elements with 3 indices, and the element in the position (i, j, k) is
(A)ijk = aijk ∈ F, 1 ≤ i, j, k ≤ N . Denote the set of all cubic matrix over a
field F by Ω. Then Ω is an N3-dimensional vector space over F with

A +B = (aijk + bijk) ∈ Ω, λA = (λaijk) ∈ Ω,

for all A = (aijk), B = (bijk) ∈ Ω, λ ∈ F , that is,

(A+B)ijk = aijk + bijk, (λA)ijk = λaijk.

Denote Eijk a cubic matrix with the element in the position (i, j, k) is 1
and elsewhere are zero. Then {Eijk, 1 ≤ i, j, k ≤ N} is a basis of Ω, and for
every A = (aijk) ∈ Ω, A =

∑

1≤i,j,k≤N

aijkEijk, aijk ∈ F.

For all A = (aijk), B = (bijk) ∈ Ω, define the multiplication ∗27 in Ω by

(A ∗27 B)ijk =
N
∑

p,q=1

aqjkbipk, 1 ≤ i, j, k ≤ N,

then (Ω, ∗27) is an associative algebra, and in the basis {Eijk|1 ≤ i, j, k ≤ N},
we have

Eijk ∗27 Elmn = δknEljk, 1 ≤ i, j, k, l,m, n ≤ N,

where δij is 1 in the cases i = j, and others are zero, 1 ≤ i, j ≤ N.

Define linear function 〈 〉0 : Ω → F by 〈A〉0 =
N
∑

p,q,r=1
apqr, Then we have

〈A ∗27 B〉0 = 〈B ∗27 A〉0. (1)

So we define the multiplication [, , ]27 : Ω ∧ Ω ∧ Ω → Ω as follows:
[A,B,C]27 = 〈A〉0(B ∗27 C − C ∗27 B)

+〈B〉0(C ∗27 A− A ∗27 C) + 〈C〉0(A ∗27 B − B ∗27 A). (2)

3 The structure of J27

First we give the following lemma.
Theorem 1[6] The linear space Ω is a 3-Lie algebra in the multiplication

[, , ]27, which is denoted by J27.
In the following we suppose N = 2. For simplifying the multiplication of

the 3-Lie algebra J27, we need to find a new basis of Ω. Denote
e1 = E111, e2 = E112 −E111, e3 = E111 − E121, e4 = E112 − E122,

e5 = E211 −E111, e6 = E212 − E112, e7 = E211 − E221 − E111 + E121,
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e8 = E212 −E222 −E112 + E122.
Then {e1, · · · , e8} is a basis of Ω.

Theorem 2 The multiplication of 3-Lie algebra J27 in the basis {e1, · · · , e8}
is as follows











[e1, e2, e3] = e3, [e1, e2, e4] = −e4,

[e1, e3, e5] = e7, [e1, e2, e5] = −e5,

[e1, e2, e6] = e6, [e1, e4, e6] = e8.

(3)

Proof The result follows from a direction computation according to the
multiplication ∗27 and Eq. (1). We omit the computing process.

Theorem 3 The 3-Lie algebra J27 is solvable but non-nilpotent, and it
satisfies that

1) J27 is an indecomposable 3-Lie algebra with two dimensional center
〈e7, e8〉, and derived algebra J1

27 =< e3, e4, e5, e6, e7, e8 >.
2) H =< e1, e2, e7, e8 > is a Cartan subalgebra of J27, and the decomposi-

tion of J27 associate to H is

J27 = H+̇Lα+̇L−α,

where Lα = {x ∈ J27 | ad(h1, h2)x = α(h1, h2)x, ∀h1, h2 ∈ H} =< e3, e6 >,
L−α = {x ∈ J27 | ad(h1, h2)x = −α(h1, h2)x, ∀h1, h2 ∈ H} =< e4, e5 >,

and the linear function α : H ∧H → F is defined by α(e1, e2) = 1 and others
are zero.

Proof By the definition of ∗27 and Eq.(3), the derived algebra J1
27 =

[J27, J27, J27] = < e3, · · · , e8 >, and the center of J27 is
Z(J27) = {x ∈ J27|[x, J27, J27 = 0]} =< e7, e8 > .

Since J27 can not be decompose into the direct sum of proper ideals, J27 is an
indecomposable 3-Lie algebra.

From Eq.(3), the derived series J
(1)
27 = [J27, J27, J27] = J1

27,

J
(2)
27 = [J

(1)
27 , J

(1)
27 , J27] = {e7, e8}, J

(3)
27 = [J

(2)
27 , J

(2)
27 , J27] = 0.

We obtain that J27 is solvable. Thanks to the descend center series Js+1
27 =

[Js
27, J27, J27] = J1

27 6= 0 for all s ≥ 1, the 3-Lie algebra J27 is non-nilpotent.
From the multiplication (3), H = (e1, e4, e5, e8) is a nilpotent subalgebra of

J27, and if [x,H, J27] ⊆ H for x ∈ J27, then x ∈ H . Therefore, H is a Cartan
subalgebra. Define linear function α : H ∧H → F by α(e1, e2) = 1 and others
are zero. Then we have L0 = H, Lα =< e3, e6 >, L−α =< e4, e5 >. The proof
is completed.

Now we study the inner derivation algebra adJ27. For ei, ej ∈ Ω, denote

ad(ei, ej)ek =
8

∑

l=1

a
ij
klel, where a

ij
kl = −a

ji
kl ∈ F.

Then the matrix form of ad(ei, ej) in the basis e1, · · · , e8 is
8
∑

k,l=1
a
ij
klEkl, where

Ekl are 8× 8-matrix units.
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Theorem 4 Let J27 be the 3-Lie algebra in Theorem 1. Then we have
1) The dimension of inner derivation algebra adJ27 is 11, and {X1 = E33−

E44 − E55 + E66, X2 = −E23 + E57, X3 = E24 + E68, X4 = E25 − E37,

X5 = E26 + E48, X6 = E13, X7 = E14, X8 = E15, X9 = E16, X10 = E17,

X11 = E18} is a basis of adJ27, the multiplication in it is










[X1, X2] = −X2, [X1, X3] = X3, [X1, X4] = X4, [X1, X5] = −X5

[X1, X6] = −X6, [X1, X7] = X7, [X1, X8] = X8, [X1, X9] = −X9

[X2, X8] = −X10, [X3, X9] = −X11, [X4, X6] = X10, [X5, X7] = −X11.

2) adJ27 is a solvable and indecomposable Lie algebra.
Proof By a direct computation according to Eq.(3) we have ad(e1, e2) =

E33 − E44 − E55 + E66, ad(e1, e3) = −E23 + E57, ad(e1, e4) = E24 + E68,

ad(e1, e5) = E25 − E37, ad(e1, e6) = −E26 − E48, ad(e2, e3) = E13, ad(e2, e4) =
−E14, ad(e2, e5) = −E15, ad(e2, e6) = E16, ad(e3, e5) = E17, ad(e4, e6) = E18,

and others are zero.
Denote {X1 = E33 − E44 − E55 + E66, X2 = −E23 + E57, X3 = E24 + E68,

X4 = E25 − E37, X5 = E26 + E48, X6 = E13, X7 = E14, X8 = E15, X9 =
E16, X10 = E17, X11 = E18}, then {X1, · · · , X11} is a basis of adJ27. From
[ad(ei, ej), ad(ek, el)]= ad([ei, ej , ek], el) + ad(ek, [ei, ej , el]).

From the above discussion, adJ27 is an indecomposable solvable Lie algebra.
The proof is completed.

Theorem 5 The dimension of derivation algebra DerJ27 is 18, and DerJ27

with a basis {X1, · · · , X18}, where X12 = E11−E22+E77+E88, X13 = E33+E77,

X14 = E44 +E88, X15 = E55 +E77, X16 = E28, X17 = E12, X18 = E27, and Xi

for 1 ≤ i ≤ 11 are defined in Theorem 4. The multiplication in the basis is
[X1, X2] = −X2, [X1, X3] = X3, [X2, X8] = −X10, [X18, X17] = −X10,

[X1, X6] = −X6, [X1, X7] = X7, [X4, X6] = X10, [X18, X12] = 2X18,

[X1, X5] = X5, [X1, X4] = X4, [X3, X9] = −X11, [X1, X8] = X8,

[X2, X12] = X2, [X3, X12] = X3, [X5, X12] = X5, [X6, X12] = −X6,

[X2, X13] = X2, [X4, X15] = X4, [X8, X12] = −X8, [X9, X12] = −X9,

[X4, X12] = X4, [X3, X14] = X3, [X16, X12] = 2X16, [X1, X9] = −X9,

[X6, X13] = X6, [X10, X13] = X10, [X18, X13] = X18, [X3, X17] = −X7,

[X7, X14] = X7, [X11, X14] = X11, [X16, X14] = X16, [X5, X7] = −X11,

[X8, X15] = X8, [X10, X15] = X10, [X18, X15] = X18,

[X2, X17] = X6, [X4, X17] = −X8, [X5, X17] = −X9,

[X17, X12] = −2X17, [X7, X12] = −X7, [X16, X17] = −X11.

Proof The result follows from a direct computation.
Theorem 6 The subalgebra H =< X1, X12, X13, X14, X15 > is a Cartan

subalgebra of DerJ27, and the decomposition of DerJ27 associate to H is

DerJ27 = H+̇Der1J27 = H+̇Lα1
+̇Lα2

+̇Lα3
+̇Lα4

+̇Lα5
+̇

8
∑

i=1

Lβi
,

where αi, βj ∈ H∗, and the form of vectors of αi, βj, 1 ≤ i ≤ 5, 1 ≤ j ≤ 8
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under the basis X1, X12, X13, X14, X15 are as follows

α1 = (−1,−1,−1, 0, 0), α2 = (1,−1, 0,−1, 0), α3 = (1,−1, 0, 0,−1),

α4 = (−1,−1, 0, 0, 0), α5 = (−1, 1,−1, 0, 0),

β1 = −α1 + α2 + α5, β2 = −α1 + α3 + α5, β3 = −α1 + α4 + α5, β4 = α3 + α5,

β5 = −α1 + α2 + α4 + α5, β6 = −α1 + α5, β7 = α1 + α3, β8 = α2 + α4.

The corresponding root subspace is Lα1
=< X2 >, Lα2

=< X3 >, Lα3
=<

X4 >, Lα4
=< X5 >, Lα5

=< X6 >, Lβ1
=< X7 >, Lβ2

=< X8 >, Lβ3
=<

X9 >, Lβ4
=< X10 >, Lβ5

=< X11 >, Lβ6
=< X17 >, Lβ7

=< X18 >,

Lβ8
=< X16 > .

Proof The result follows from Theorem 5.
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