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Abstract

The notion of strongly concave set-valued maps is introduced and

some properties of it are presented. In particular, a Kuhn-type result

as well as Bernstein-Doetsch and Sierpiński-type theorems for strongly

midconcave set-valued maps are obtained. A representation of strongly

concave set-valued maps in inner product spaces is given.
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1 Introduction

Let (X, || · ||) be a normed space, D be a convex subset of X and let c > 0. A
function f : D → R is called strongly convex with modulus c if

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) − ct(1 − t)||x1 − x2||2 (1)

for all x1, x2 ∈ D and t ∈ [0, 1]; f is called strongly concave with modulus c if
−f is strongly convex with modulus c.

Strongly convex functions were introduced in [16] and many properties and
applications of them can be found in the literature (see, for instance [1], [10],
[11], [14], [15], [19], [20], [21], and the references therein). Recently, Huang
[5], [6] extended the definition (1) of strong convexity to set-valued maps (see
also [4], [9]). In this note we introduce the notion of strongly concave (t-
concave, midconcave) set-valued maps and present some properties of them.
In particular, we prove a Kuhn-type result stating that strongly t-concave set-
valued maps are strongly midconcave and give conditions under which strongly
midconcave set-valued maps are continuous and strongly concave. We give
also some representation of strongly concave set-valued maps in inner product
spaces and present a characterization of inner product spaces involving this
representation. Our paper is strictly related to [9] where analogous results for
strongly convex set-valued maps are presented

For real-valued functions properties of strongly convex and strongly concave
functions are quite analogous and, in view of the fact that f is strongly concave
if and only if −f is strongly convex, it is not needed to investigate functions
of these two kinds individually. However, in the case of set-valued maps the
situation is different. If F is strongly convex then −F is also strongly convex
and even if some properties of strongly convex and strongly concave set-valued
maps are similar, they hold, in general, under different assumptions and have
to be proved separately.

2 Preliminary Notes

Let (X, || · ||) and (Y, || · ||) be real normed spaces and D be a convex subset of
X . Throughout this paper B denotes the closed unit ball in Y . We denote by
n(Y ) the family of all nonempty subsets of Y , and by conv(Y ) and cconv(Y )
the subfamilies of n(Y ) of all convex and compact convex sets, respectively.

Definition 2.1 Let t ∈ (0, 1) and c > 0. We say that a set-valued map
F : D → n(Y ) is strongly t-concave with modulus c if

F (tx1 + (1 − t)x2) + ct(1 − t)||x1 − x2||2B ⊂ tF (x1) + (1 − t)F (x2), (2)
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for all x1, x2 ∈ D. F is called strongly concave with modulus c if it satisfies
(2) for every t ∈ [0, 1] and all x1, x2 ∈ D.

Definition 2.2 We say that F is strongly midconcave with modulus c if
it satisfies (2) with t = 1/2, that is

F

(

x1 + x2

2

)

+
c

4
||x1 − x2||2B ⊂ 1

2
F (x1) +

1

2
F (x2), (3)

for all x1, x2 ∈ D.

Clearly, the above definitions are motivated by the definition (1) of strongly
convex functions. The standard definition of concave set-valued maps corre-
sponds to (2) with c = 0 (cf. e.g. [2], [12], [17]).

Example 2.3 Let f1, f2 : D → R and f1(x) ≤ f2(x), x ∈ D. Then the
set-valued map F : D → cconv(R) defined by F (x) = [f1(x), f2(x)], x ∈ D,
is strongly concave with modulus c if and only if f1 is strongly concave with
modulus c and f2 is strongly convex with modulus c.

Example 2.4 Let I ⊂ R be an interval. The set-valued map F : I →
conv(Y ) defined by F (s) = s2B is strongly concave with modulus 1. More
general, if A ⊂ Y is convex and cB ⊂ A for some c > 0, then F (s) =
s2A, s ∈ I, is strongly concave with modulus c.

Example 2.5 If G : I → n(Y ) is concave, then F (s) = G(s)+cs2B, s ∈ I,
is strongly concave with modulus c. In particular, if A1, A2 ∈ n(Y ), then
F (s) = A1 + sA2 + cs2B, s ∈ I, is strongly concave with modulus c.

The following lemma will be used in the sequel.

Lemma 2.6 If F : D → conv(Y ) is strongly midconcave with modulus c
then

F

(

k

2n
x1 +

(

1 − k

2n

)

x2

)

+ c
k

2n

(

1 − k

2n

)

||x1 − x2||2B

⊂ k

2n
F (x1) +

(

1 − k

2n

)

F (x2), (4)

for all x1, x2 ∈ D and k, n ∈ N such that k < 2n.

The proof of the above lemma is similar to the proof of an analogous result
for strongly convex set-valued maps (see [9], Lemma 1), therefore we omit it.
Note, however, that in contrast with the case of strongly convex set-valued
maps (where F : D → n(Y ) ), we assume now that F has convex values. The
example below shows that without this assumption the assertion of Lemma
2.6 is not true.
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Example 2.7 Let G : R → n(R2) be given by

G(s) =

{

B if s = 0
S if s 6= 0,

where B = {y ∈ R2 : ||y|| ≤ 1} and S = {y ∈ R2 : ||y|| = 1}. Define
F (s) = G(s) + s2B, s ∈ R. It is clear that G is midconcave (note that
1

2
(S + S) = B) and, consequently, F is strongly midconcave with modulus 1.

However, if p ∈ R is such that 0 < p <
√

1/6 and x1 = −3p, x2 = p, then

F
(1

4
(−3p) +

3

4
p
)

+
1

4

3

4
(4p)2B = F (0) + 3p2B = (1 + 3p2)B

*
1

4
F (−3p) +

3

4
F (p) =

1

4
(S + 9p2B) +

3

4
(S + p2B) =

1

4
S +

3

4
S + 3p2B,

(because 0 ∈ (1 + 3p2)B\(1
4
S + 3

4
S + 3p2B) for 0 < 3p2 < 1

2
). Thus (4) does

not hold for F .

Recall also the R̊adstrm cancelation law [18] which is a useful tool in our
investigations.

Lemma 2.8 Let A1, A2, C be subsets of X such that A1 + C ⊂ A2 + C.
If A2 is closed convex and C is bounded and nonempty, then A1 ⊂ A2.

3 Kuhn-type result

It is known by the Kuhn theorem that t-convex functions (with arbitrarily fixed
t ∈ (0, 1)) are midconvex. Similar results hold also for t-convex set-valued maps
(see [3]) and strongly t-convex set-valued maps (see [9]). In this section we
present a counterpart of those results for strongly t-concave set-valued maps.
The idea of the proof is taken from [8], Lemma 1.

Theorem 3.1 Let D be a convex subset of X and t ∈ (0, 1) be a fixed
number. If a set-valued map F : D → cconv(Y ) is strongly t-concave with
modulus c, then it is strongly midconcave with modulus c.

Proof. Fix x1, x2 ∈ D and put z := x1+x2

2
, u := (1 − t)x1 + tz and v :=

(1 − t)z + tx2. Note that z = tu + (1 − t)v. Since

||x1 − z|| = ||z − x2|| = ||u− v|| =
1

2
||x1 − x2||,

we have

1

2
t(1 − t)||x1 − x2||2B

= t2(1 − t)||x1 − z||2B + t(1 − t)2||z − x2||2B + t(1 − t)||u− v||2B.
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Using this equality and applying three times condition (2) in the definition
of strong t-concavity, we obtain

2t(1 − t)F (z) +
1

2
t(1 − t)c||x1 − x2||2B + tF (u) + (1 − t)F (v) + F (z)

= 2t(1 − t)F (z) + c[t2(1 − t)||x1 − z||2B + t(1 − t)2||z − x2||2B
+1(1 − t)||u− v||2B] + tF (u) + (1 − t)F (v) + F (z)

= 2t(1 − t)F (z) + t[F (u) + ct(1 − t)||x1 − z||2B] + (1 − t)[F (v)

+c(1 − t)t||z − x2||2B] + [F (z) + ct(1 − t)||u− v||2B]

⊂ 2t(1 − t)F (z) + t(tF (z) + (1 − t)F (x1)) + (1 − t)(tF (x2) + (1 − t)F (z))

+tF (u) + (1 − t)F (v)

= t(1 − t)F (x1) + t(1 − t)F (x2) + 2t(1 − t)F (z) + t2F (z) + (1 − t)2F (z)

+tF (u) + (1 − t)F (v)

= t(1 − t)F (x1) + t(1 − t)F (x2) + F (z) + tF (u) + (1 − t)F (v).

By Lemma 2.8, we get

2t(1 − t)F

(

x1 + x2

2

)

+
1

2
t(1 − t)c||x1 − x2||2B ⊂ t(1 − t)F (x1) + t(1 − t)F (x2).

Hence,

F

(

x1 + x2

2

)

+
c

4
||x1 − x2||2B ⊂ 1

2
F (x1) +

1

2
F (x2),

which finishes the proof.
�

4 Bernstein-Doetsch and Sierpiński-type re-

sults

A set-valued function F : D → n(Y ) is said to be continuous (with respect to
the Hausdorff topology on n(Y )) at a point x0 ∈ D if for every ε > 0 there
exists a δ > 0 such that

F (x0) ⊂ F (x) + εB (5)

and

F (x) ⊂ F (x0) + εB (6)

for every x ∈ D such that ||x − x0|| < δ. If we assume only condition (5)
(condition (6)) F is said to be lower semicontinuous (upper semicontinuous)
at x0.
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The next theorem gives a condition under which strongly midconcave set-
valued maps with compact convex values are strongly concave. Analogous
result for strongly midconvex set-valued maps with bounded closed values is
presented in [9].

Theorem 4.1 If F : D → cconv(Y ) is strongly midconcave with modulus
c and lower semicontinuous on D, then it is strongly concave with modulus c.

Proof. Let x1, x2 ∈ D and t ∈ (0, 1). Take a sequence (qn) of dyadic
numbers in (0, 1) tending to t and fix an ε > 0. Since the set-valued functions
of the form R ∋ s → sA ∈ n(Y ) are continuous provided the set A is bounded
(see e.g. [13], Lemma 3.2), we have

qnF (x1) ⊂ tF (x1) + εB, (7)

(1 − qn)F (x2) ⊂ (1 − t)F (x2) + εB (8)

and

ct(1 − t)||x1 − x2||2B ⊂ cqn(1 − qn)||x1 − x2||2B + εB (9)

for all n ≥ n1. By the lower semicontinuity of F at the point tx1 + (1 − t)x2,
we get

F (tx1 + (1 − t)x2) ⊂ F (qnx1 + (1 − qn)x2) + εB, (10)

for all n ≥ n2. Hence, using (7), (8), (9), (10) and Lemma 2.6, we obtain

F (tx1 + (1 − t)x2) + ct(1 − t)||x1 − x2||2B
⊂ F (qnx1 + (1 − qn)x2) + cqn(1 − qn)||x1 − x2||2B + 2εB

⊂ qnF (x1) + (1 − qn)F (x2) + 2εB

⊂ tF (x1) + εB + (1 − t)F (x2) + εB + 2εB

= tF (x1) + (1 − t)F (x2) + 4εB,

for all n ≥ max{n1, n2}. Since the above inclusions hold for every ε > 0, we
have also

F (tx1 + (1 − t)x2) + ct(1 − t)||x1 − x2||2B
⊂

⋂

ε>0

(tF (x1) + (1 − t)F (x2) + 4εB)

= cl(tF (x1) + (1 − t)F (x2))

= tF (x1) + (1 − t)F (x2).
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This shows that F is strongly concave with modulus c and completes the
proof.

�

It is known that midconcave set-valued maps that satisfy some regularity
assumptions, such as upper semicontinuity at a point or boundedness on a set
with nonempty interior or measurability are continuous in the interior of their
domains (see, for instance, [2], [12], [13], [17]). Therefore, as a consequence of
Theorem 3.1, Theorem 4.1 and those results we obtain the following corollaries.
Here D is assumed to be an open convex subset of X .

Corollary 4.2 Let t ∈ (0, 1). If a set-valued map F : D → cconv(Y ) is
strongly t-concave with modulus c and upper semicontinuous at a point of D,
then it is continuous and strongly concave with modulus c.

A set-valued map F : D → n(Y ) is said to be bounded on a set A ⊂ D if
there is a constant M > 0 such that ||y|| < M for every y ∈ F (x) and x ∈ A.
F : Rn ⊃ D → n(Y ) is said to be Lebesgue measurable if for every open set
U ⊂ Y the set {x ∈ D : F (x) ⊂ U} is measurable in the sense of Lebesgue.

The next two corollaries are counterparts of the celebrated Bernstain-
Doetsch and Sierpiński theorems for midconvex real functions (see, e.g. [7],
[19]; cf. also [4]).

Corollary 4.3 Let t ∈ (0, 1). If a set-valued map F : D → cconv(Y ) is
strongly t-concave with modulus c and bounded on a set A ⊂ D with a nonempty
interior, then it is continuous and strongly concave with modulus c.

Corollary 4.4 Let t ∈ (0, 1). If a set-valued map F : Rn ⊃ D → cconv(Y )
is strongly t-concave with modulus c and Lebesgue measurable, then it is con-
tinuous and strongly concave with modulus c.

5 A representation Theorem

In the case where (X, || · ||) is a real inner product space (that is the norm || · ||
is induced by an inner product ||x|| =

√
< x, x >), there is a strict relationship

between strongly concave and concave set-valued maps. Namely, the following
theorem holds.

Theorem 5.1 Let (X, || · ||) be a real inner product space, D be a convex
subset of X and c be a positive number. If G : D → n(Y ) is concave, then the
set-valued map F : D → n(Y ) defined by F (x) = G(x) + c||x||2B, x ∈ D, is
strongly concave with modulus c. Conversely, if F : D → cconv(Y ) defined by
F (x) = G(x) + c||x||2B, x ∈ D is strongly concave with modulus c, then G is
concave.
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Proof. Assume first that G is concave, that is

G(tx1 + (1 − t)x2) ⊂ tG(x1) + (1 − t)G(x2), x1, x2 ∈ D, t ∈ [0, 1].

Since

t||x1||2 + (1 − t)||x2||2 = t(1 − t)||x1 − x2||2 + ||tx1 + (1 − t)x2||2, (11)

we have

F (tx1 + (1 − t)x2) + ct(1 − t)||x1 − x2||2B
= G(tx1 + (1 − t)x2) + ct(1 − t)||x1 − x2||2B + c||tx1 + (1 − t)x2||2B
⊂ tG(x1) + (1 − t)G(x2) + c(t||x1||2 + (1 − t)||x2||2)B
= t[G(x1) + c||x1||2B] + (1 − t)[G(x2) + c||x2||2B]

= tF (x1) + (1 − t)F (x2),

which proves that F is strongly concave with modulus c.
Conversely, if F is strongly concave with modulus c, then

F (tx1 + (1 − t)x2) + ct(1 − t)||x1 − x2||2B ⊂ tF (x1) + (1 − t)F (x2).

By the definition of F we get

G(tx1 + (1 − t)x2) + c||tx1 + (1 − t)x2||2B + ct(1 − t)||x1 − x2||2B
⊂ t[G(x1) + c||x1||2B] + (1 − t)[G(x2) + c||x2||2B]

and hence, by (11),

G(tx1 + (1 − t)x2) + c[t||x1||2 + (1 − t)||x2||2]B
⊂ tG(x1) + (1 − t)G(x2) + c[t||x1||2 + (1 − t)||x2||2]B.

Using Lemma 2.8 we obtain

G(tx1 + (1 − t)x2) ⊂ tG(x1) + (1 − t)G(x2),

which shows that G is concave.
�

As a consequence of the above theorem we obtain the following characteri-
zation of inner product spaces among normed spaces. Similar characterizations
involving strongly convex functions and strongly convex set-valued maps were
obtained in [14] and [9].

Theorem 5.2 Let (X, || · ||) be a real normed space. The following condi-
tions are equivalent:
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1. (X, || · ||) is an inner product space;

2. For every c > 0 and for every concave set-valued map G : D → n(Y )
defined on a convex set D ⊂ X, the set-valued map F (x) = G(x) +
c||x||2B is strongly concave with modulus c.

3. The set-valued map F (x) = ||x||2B, x ∈ X, is strongly concave with
modulus 1.

Proof. (1) ⇒ (2) follows from Theorem 5.1.
To show that (2) ⇒ (3) it is enough to take G(x) = {0}, x ∈ X .
To prove (3) ⇒ (1), observe that by the strong concavity of F (·) = || · ||2B

with modulus 1, we get

∣

∣

∣

∣

∣

∣

∣

∣

x1 + x2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

B +
1

4
||x1 − x2||2B ⊂ 1

2
||x1||2B +

1

2
||x2||2B

for all x1, x2 ∈ X . Hence

(||x1 + x2||2 + ||x1 − x2||2)B ⊂ (2||x1||2 + 2||x2||2)B

and, consequently,

||x1 + x2||2 + ||x1 − x2||2 ≤ 2||x1||2 + 2||x2||2, x1, x2 ∈ X.

Simple substitutions show that the converse inequality also holds. Thus,
||·|| satisfies the parallelogram law and, by the Jordan-von Neumann Theorem,
(X, || · ||) is an inner product space.

�
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