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Abstract

The notion of strongly concave set-valued maps is introduced and
some properties of it are presented. In particular, a Kuhn-type result
as well as Bernstein-Doetsch and Sierpinski-type theorems for strongly
midconcave set-valued maps are obtained. A representation of strongly
concave set-valued maps in inner product spaces is given.
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1 Introduction

Let (X,||-]|) be a normed space, D be a convex subset of X and let ¢ > 0. A
function f : D — R is called strongly convex with modulus c¢ if

fltoy + (1= t)zs) < tf(21) + (1= 1) f(22) — ct(1 = t)[[zr —wal* (1)

for all 1,29 € D and t € [0, 1]; f is called strongly concave with modulus ¢ if
— f is strongly convex with modulus c.

Strongly convex functions were introduced in [16] and many properties and
applications of them can be found in the literature (see, for instance [1], [10],
[11], [14], [15], [19], [20], [21], and the references therein). Recently, Huang
[5], [6] extended the definition (1) of strong convexity to set-valued maps (see
also [4], [9]). In this note we introduce the notion of strongly concave (t-
concave, midconcave) set-valued maps and present some properties of them.
In particular, we prove a Kuhn-type result stating that strongly ¢-concave set-
valued maps are strongly midconcave and give conditions under which strongly
midconcave set-valued maps are continuous and strongly concave. We give
also some representation of strongly concave set-valued maps in inner product
spaces and present a characterization of inner product spaces involving this
representation. Our paper is strictly related to [9] where analogous results for
strongly convex set-valued maps are presented

For real-valued functions properties of strongly convex and strongly concave
functions are quite analogous and, in view of the fact that f is strongly concave
if and only if —f is strongly convex, it is not needed to investigate functions
of these two kinds individually. However, in the case of set-valued maps the
situation is different. If F' is strongly convex then —F' is also strongly convex
and even if some properties of strongly convex and strongly concave set-valued
maps are similar, they hold, in general, under different assumptions and have
to be proved separately.

2 Preliminary Notes

Let (X, ||-]|) and (Y, |- ||) be real normed spaces and D be a convex subset of
X. Throughout this paper B denotes the closed unit ball in Y. We denote by
n(Y’) the family of all nonempty subsets of Y, and by conv(Y) and cconv(Y)
the subfamilies of n(Y") of all convex and compact convex sets, respectively.

Definition 2.1 Let t € (0,1) and ¢ > 0. We say that a set-valued map
F: D — n(Y) is strongly t-concave with modulus ¢ if

F(tr; + (1 — t)zs) + ct(1 — t)||zy — 22| 2B C tF(z)) + (1 — ) F(w),  (2)
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for all x1,29 € D. F 1is called strongly concave with modulus c if it satisfies
(2) for every t € [0,1] and all 1,29 € D.

Definition 2.2 We say that F is strongly midconcave with modulus ¢ if
it satisfies (2) with t = 1/2, that is

T+ c 1 1
F( . 5 2) +Z||951 —2|°B C §F($1)+§F($2)> (3)

for all xy,29 € D.

Clearly, the above definitions are motivated by the definition (1) of strongly
convex functions. The standard definition of concave set-valued maps corre-
sponds to (2) with ¢ =0 (cf. e.g. [2], [12], [17]).

Example 2.3 Let f1,fo : D — R and fi(x) < fo(x), = € D. Then the
set-valued map F : D — cconv(R) defined by F(x) = [fi(x), fa(z)], v € D,
is strongly concave with modulus ¢ if and only if fi is strongly concave with
modulus ¢ and fo is strongly convex with modulus c.

Example 2.4 Let I C R be an interval. The set-valued map F : I —
conv(Y') defined by F(s) = s*B is strongly concave with modulus 1. More
general, if A C Y is convex and ¢cB C A for some ¢ > 0, then F(s) =
s?A, s €1, is strongly concave with modulus c.

Example 2.5 IfG : I — n(Y) is concave, then F(s) = G(s)+cs’B, s € I,
is strongly concave with modulus c. In particular, if Ay, Ay € n(Y), then
F(s) = A; + sAy + ¢s*B, s € I, is strongly concave with modulus c.

The following lemma will be used in the sequel.

Lemma 2.6 If F' : D — conv(Y) is strongly midconcave with modulus c

then
k k k k
F (Q—nxl + (1 - 2—n) :52) + Com (1 - 2—n) ||z, — z||*B

k k
for all xy,29 € D and k,n € N such that k < 2™.

The proof of the above lemma is similar to the proof of an analogous result
for strongly convex set-valued maps (see [9], Lemma 1), therefore we omit it.
Note, however, that in contrast with the case of strongly convex set-valued
maps (where F': D — n(Y) ), we assume now that F' has convex values. The
example below shows that without this assumption the assertion of Lemma
2.6 is not true.
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Example 2.7 Let G : R — n(R?) be given by
(B if s=0
G<S)_{ S if 540,

where B = {y € R? : ||y|| < 1} and S = {y € R? : ||ly|| = 1}. Define
F(s) = G(s) + s*B, s € R. 1t is clear that G is midconcave (note that
5(S+S5) = B) and, consequently, F is strongly midconcave with modulus 1.

However, if p € R is such that 0 < p < \/1/6 and v1 = —3p, x5 = p, then

F(l(—?)p) + §p> + lé(4p)2B = F(0)+3p°B = (1+3p*)B

4 4 44
1 3 1 o 3 s 1. 3 ,

(because 0 € (1 + 3p?)B\(35 + 25+ 3p?B) for 0 < 3p> < ). Thus (4) does
not hold for F.

Recall also the Radstrm cancelation law [18] which is a useful tool in our
investigations.

Lemma 2.8 Let Ay, Ay, C be subsets of X such that Ay +C C As + C.
If Ay is closed convex and C' is bounded and nonempty, then Ay C As.

3 Kuhn-type result

It is known by the Kuhn theorem that ¢-convex functions (with arbitrarily fixed
t € (0,1)) are midconvex. Similar results hold also for t-convex set-valued maps
(see [3]) and strongly t-convex set-valued maps (see [9]). In this section we
present a counterpart of those results for strongly t-concave set-valued maps.
The idea of the proof is taken from [8], Lemma 1.

Theorem 3.1 Let D be a conver subset of X and t € (0,1) be a fived
number. If a set-valued map F : D — cconv(Y) is strongly t-concave with
modulus ¢, then it is strongly midconcave with modulus c.

Proof. Fix x1,22 € D and put z := #8322 ¢ := (1 — t)x; + tz and v :=

(1 —t)z + txy. Note that z = tu + (1 — t)v. Since
1
21 = 2]l = |z = 22|l = |lu = v]| = Fllar = 22,
we have
1
St = Ollz — 2B
=t*(1 —t)||z1 — 2| B +t(1 — t)?||z — 22||*B + t(1 — t)||u — v||*B.
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Using this equality and applying three times condition (2) in the definition
of strong t-concavity, we obtain

2t(1 —t)F(2) + t(l—t)c||x1—x2H B+tF(u)+ (1 —t)F(v) + F(z)
=2t(1 —t)F(z )+c[t2(1—t)||x1—z|| B+t(1—t)?|z — x||*B

+1(1 = t)||u — v||?B] + tF(u) + (1 — t)F(v) + F(2)
20(1 — ) F(2) + t[F(u) + ct(1 = t)]|z1 — 2[[*B] + (1 — )[F (v)

(

(

+c Vt||z — 2| |PB] + [F(2) + ct(1 — t)||u — v|[*B]
JF(2) +t(tF(2) + (1 = ) F(21)) + (1 = 1) (tF (v2) + (1 = ) F'(2))
tF(u)+ (1 =1)F(v)
= t(l — ) F(z1) +t(1 — t)F(zg) + 2t(1 — t)F(2) + t*F(2) + (1 — t)*F(2)
+tF(u) + (1 —t)F(v)
=t(1—t)F(x1) +t(1 —t)F(x2) + F(2) + tF(u) + (1 — t)F(v).

1
1—-t
1—-t¢
t(1—t

By Lemma 2.8, we get

2%(1 — t)F (5’31 ‘2”“"2) n %t(l — )| — 2| 2B € (1 — ) F (1) + (1 — £)F ().

Hence,

T+ c 1 1
F( ! 5 2) +Z||ZL'1—ZL'2||2BC §F(ZL'1)—|—§F(ZL'2),

which finishes the proof.
O

4 Bernstein-Doetsch and Sierpinski-type re-
sults

A set-valued function F': D — n(Y) is said to be continuous (with respect to
the Hausdorff topology on n(Y')) at a point zy € D if for every € > 0 there
exists a 0 > 0 such that

F(zo) C F(x)+¢B (5)
and
F(z) C F(xy) +¢eB (6)

for every x € D such that ||z — zg|| < §. If we assume only condition (5)
(condition (6)) F is said to be lower semicontinuous (upper semicontinuous)
at xzg.
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The next theorem gives a condition under which strongly midconcave set-
valued maps with compact convex values are strongly concave. Analogous
result for strongly midconvex set-valued maps with bounded closed values is
presented in [9].

Theorem 4.1 If F': D — cconv(Y) is strongly midconcave with modulus
¢ and lower semicontinuous on D, then it is strongly concave with modulus c.

Proof. Let x1,29 € D and t € (0,1). Take a sequence (g,) of dyadic
numbers in (0, 1) tending to ¢ and fix an € > 0. Since the set-valued functions
of the form R 3 s — sA € n(Y') are continuous provided the set A is bounded
(see e.g. [13], Lemma 3.2), we have

G F(x1) CtF(x1) + eB, (7)
(1 — qn)F<SL’2) C (1 — t)F(SL’g) +eB (8)

and
ct(1 —t)||zy — 22||*B C cqn(1 — qn)||21 — 22||*B + B (9)

for all n > n;. By the lower semicontinuity of F' at the point txy + (1 — t)zo,
we get

F(txl + (1 - t)$2) - F(anl + (1 - Qn)x2> + €B, (10>
for all n > ny. Hence, using (7), (8), (9), (10) and Lemma 2.6, we obtain

F(tzy + (1 —t)xg) + ct(1 — t)||z) — 22| |*B

C F(gua1 + (1 — ¢,)22) + cqn(1 — qu)||71 — 22||*B + 2¢B
C qnF(x1)+ (1 — qn)F(22) + 2¢B

CtF(x)+eB+ (1 —t)F(x3)+eB+ 2B

=tF(x1) + (1 —t)F(x2) + 4¢B,

for all n > max{ny,ne}. Since the above inclusions hold for every € > 0, we
have also

F(tzy + (1 —t)xg) + ct(1 — t)||zy — 22|’ B
C () (tF(z1) + (1 — t)F(2) + 4eB)

= cl(tF(z1) + (1 — t)F(x2))
= tF (1) + (1 —t)F(a2).
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This shows that I is strongly concave with modulus ¢ and completes the
proof.
O
It is known that midconcave set-valued maps that satisfy some regularity
assumptions, such as upper semicontinuity at a point or boundedness on a set
with nonempty interior or measurability are continuous in the interior of their
domains (see, for instance, [2], [12], [13], [17]). Therefore, as a consequence of
Theorem 3.1, Theorem 4.1 and those results we obtain the following corollaries.
Here D is assumed to be an open convex subset of X.

Corollary 4.2 Lett € (0,1). If a set-valued map F : D — cconv(Y') is
strongly t-concave with modulus ¢ and upper semicontinuous at a point of D,
then it is continuous and strongly concave with modulus c.

A set-valued map F' : D — n(Y) is said to be bounded on a set A C D if
there is a constant M > 0 such that ||y|| < M for every y € F(z) and = € A.
F:R"D> D — n(Y) is said to be Lebesgue measurable if for every open set
U CY theset {x € D: F(zx) C U} is measurable in the sense of Lebesgue.

The next two corollaries are counterparts of the celebrated Bernstain-

Doetsch and Sierpiriski theorems for midconvex real functions (see, e.g. [7],
[19]; cf. also [4]).

Corollary 4.3 Let t € (0,1). If a set-valued map F : D — cconv(Y') is
strongly t-concave with modulus ¢ and bounded on a set A C D with a nonempty
interior, then it is continuous and strongly concave with modulus c.

Corollary 4.4 Lett € (0,1). If a set-valued map F : R™ D D — cconv(Y)
15 strongly t-concave with modulus ¢ and Lebesgue measurable, then it is con-
tinuous and strongly concave with modulus c.

5 A representation Theorem

In the case where (X, ||-]|) is a real inner product space (that is the norm || - ||
is induced by an inner product ||z|| = /< z,x >), there is a strict relationship
between strongly concave and concave set-valued maps. Namely, the following
theorem holds.

Theorem 5.1 Let (X,||-||) be a real inner product space, D be a convex
subset of X and ¢ be a positive number. If G : D — n(Y') is concave, then the
set-valued map F : D — n(Y) defined by F(x) = G(z) + ¢||z|]*B,z € D, is
strongly concave with modulus c. Conversely, if F': D — cconv(Y') defined by
F(z) = G(z) + c||z||?B,x € D is strongly concave with modulus c, then G is
concave.
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Proof. Assume first that GG is concave, that is
G(try + (1 —t)za) CtG(z) + (1 —t)G(xg), x1,290 € D, t €[0,1].
Since
tlla]* + (1= 2| = t(1 = t)lfer — ao* + [[tar + (1 = O)ao|’,  (11)
we have

F(tzy + (1 —t)ag) + ct(1 — )|z — xo||*B

= G(tzy + (1 —t)wy) + ct(1 — t)||zy — 22| B + ¢tz + (1 — t)x5||* B
C G (1) + (1 = 1)G(w2) + c(tl|a||* + (1 — )] |22|*) B

= t[G(21) + cl|21|[*B] + (1 — )[G(z2) + cl |22 B]

=tF(x1) + (1 — t)F(x2),

which proves that F' is strongly concave with modulus c.
Conversely, if F' is strongly concave with modulus ¢, then

F(try + (1 = )ag) + ct(1 — t)||zy — 2o||*B C tF(x1) + (1 — t)F(zy).
By the definition of F' we get

G(toy + (1 — t)ag) + cl|tey + (1 — )as||*B + ct(1 — t)||z1 — x5||*B
C t[G(x1) + cllz1|[*B] + (1 — 1)[G(2) + | |22 B]

and hence, by (11),

G(twr + (1 = )za) + cftlaa|* + (1 = t)]|2|*] B
CtG(x1) + (1 = 1)G(@2) + cft]|21|* + (1 — 1) |2|]*] B.

Using Lemma 2.8 we obtain
G(try + (1 —t)x2) C tG(z1) + (1 — t)G(22),

which shows that G is concave.
O
As a consequence of the above theorem we obtain the following characteri-
zation of inner product spaces among normed spaces. Similar characterizations

involving strongly convex functions and strongly convex set-valued maps were
obtained in [14] and [9].

Theorem 5.2 Let (X, || -||) be a real normed space. The following condi-
tions are equivalent:
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1. (X, || -]]) is an inner product space;

2. For every ¢ > 0 and for every concave set-valued map G : D — n(Y')
defined on a convexr set D C X, the set-valued map F(z) = G(z) +
c||z||*B is strongly concave with modulus c.

3. The set-valued map F(x) = ||z||?B, = € X, is strongly concave with
modulus 1.

Proof. (1) = (2) follows from Theorem 5.1.

To show that (2) = (3) it is enough to take G(z) = {0}, = € X.

To prove (3) = (1), observe that by the strong concavity of F'(-) = || -||*B
with modulus 1, we get

2
l’l—l—l’g

2

1 1 1
B+ 4l = 22l*B € Sllaill*B + 5|zl B

for all 1,25 € X. Hence
(llzr + @2|[? + |loy = 22[|*) B C (2]an|* + 2[[x2|[*) B
and, consequently,
|21+ @o| [P+ |1 — 2l[* < 2[|a1[]? + 2 |22] %, 21,22 € X.

Simple substitutions show that the converse inequality also holds. Thus,
|| || satisfies the parallelogram law and, by the Jordan-von Neumann Theorem,
(X, ]| - ||) is an inner product space.

O
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