Mathematica Aeterna, Vol. 3, 2013, no. 2, 115-119

# STRONG INSERTION OF A CONTINUOUS FUNCTION BETWEEN TWO COMPARABLE b-CONTINUOUS FUNCTIONS 

MAJID MIRMIRAN<br>Department of Mathematics<br>University of Isfahan<br>Isfahan 81746-73441, Iran<br>e-mail: mirmir@sci.ui.ac.ir


#### Abstract

A sufficient condition in terms of lower cut sets are given for the strong insertion of a continuous function between two comparable $b$-continuous real-valued functions.


Mathematics Subject Classification (2010): Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30

Keywords:Strong insertion, Strong binary relation, b-open set, Lower cut set.

## 1 Introduction

The concept of a preopen set in a topological space was introduced by H. H. Corson and E. Michael in 1964 [3]. A subset $A$ of a topological space ( $X, \tau$ ) is called preopen or locally dense or nearly open if $A \subseteq \operatorname{Int}(C l(A))$. A set $A$ is called preclosed if its complement is preopen or equivalently if $C l(\operatorname{Int}(A)) \subseteq A$. The term , preopen, was used for the first time by A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb [11], while the concept of a , locally dense, set was introduced by H. H. Corson and E. Michael [3].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [10]. A subset $A$ of a topological space ( $X, \tau$ ) is called semiopen [10] if $A \subseteq C l(\operatorname{Int}(A))$. A set $A$ is called semi-closed if its complement is semi-open or equivalently if $\operatorname{Int}(C l(A)) \subseteq A$.
D. Andrijevic introduced a new class of generalized open sets in a topological space, so called $b-$ open sets [1]. This type of sets discussed by A. A. El-Atik under the name of $\gamma$-open sets [5]. This class is closed under arbitrary
union. The class of $b-$ open sets contains all semi-open sets and preopen sets. The class of $b$-open sets generates the same topology as the class of preopen sets. D. Andrijevic studied several fundamental and interesting properties of $b-$ open sets. A subset $A$ of a topological space $(X, \tau)$ is called $b-o p e n$ if $A \subseteq C l(\operatorname{Int}(A)) \cup \operatorname{Int}(C l(A))[1]$. A set $A$ is called $b-$ closed if its complement is $b$-open or equivalently if $C l(\operatorname{Int}(A)) \cap \operatorname{Int}(C l(A)) \subseteq A$.

Recall that a real-valued function $f$ defined on a topological space $X$ is called $A$-continuous [12] if the preimage of every open subset of $R$ belongs to $A$, where $A$ is a collection of subset of $X$. Most of the definitions of function used throughout this paper are consequences of the definition of $A$-continuity. However, for unknown concepts the reader may refer to $[4,6]$.

Hence, a real-valued function $f$ defined on a topological space $X$ is called $b-$ continuous if the preimage of every open subset of $R$ is a $b$-open subset of $X$.

Results of Katětov [7, 8] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a sufficient condition for the strong insertion of a continuous function between two comparable $b$-continuous real-valued functions.

If $g$ and $f$ are real-valued functions defined on a space $X$, we write $g \leq f$ in case $g(x) \leq f(x)$ for all $x$ in $X$.

The following definitions are modifications of conditions considered in [9].
A property $P$ defined relative to a real-valued function on a topological space is a $c$-property provided that any constant function has property $P$ and provided that the sum of a function with property $P$ and any continuous function also has property $P$. If $P_{1}$ and $P_{2}$ are $c$-property, the following terminology is used:(i) A space $X$ has the weak insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions $g$ and $f$ on $X$ such that $g \leq f, g$ has property $P_{1}$ and $f$ has property $P_{2}$, then there exists a continuous function $h$ such that $g \leq h \leq f$.(ii) A space $X$ has the strong insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions $g$ and $f$ on $X$ such that $g \leq f, g$ has property $P_{1}$ and $f$ has property $P_{2}$, then there exists a continuous function $h$ such that $g \leq h \leq f$ and if $g(x)<f(x)$ for any x in X , then $g(x)<h(x)<f(x)$.

In this paper, is given a sufficient condition for the weak insertion property. Also for a space with the weak insertion property, we give a sufficient condition for the space to have the strong insertion property.

## 2 Main Results

Before giving a sufficient condition for insertability of a continuous function, the necessary definitions and terminology are stated.

Let ( $X, \tau$ ) be a topological space, the family of all $b$-open and $b$-closed will be denoted by $b O(X, \tau)$ and $b C(X, \tau)$, respectively.

Definition 2.1. Let $A$ be a subset of a topological space $(X, \tau)$. Respectively, we define the $b$-closure and $b$-interior of a set $A$, denoted by $b C l(A)$ and $b \operatorname{Int}(A)$ as follows:
$b C l(A)=\cap\{F: F \supseteq A, F \in b C(X, \tau)\}$ and
$b \operatorname{Int}(A)=\cup\{O: O \subseteq A, O \in b O(X, \tau)\}$.
Proposition 2.1. (D. Andrijevic [1]) (i) The union of any family of $b-$ open sets is a $b$ open set.
(ii) The intersection of an open and a $b-$ open is a $b$-open set.

Hence, by Proposition 2.1, we have $b C l(A)$ is $b-$ closed and $b \operatorname{Int}(A)$ is $b-$ open.

The following first two definitions are modifications of conditions considered in $[7,8]$.

Definition 2.2. If $\rho$ is a binary relation in a set $S$ then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any $u$ and $v$ in $S$.

Definition 2.3. A binary relation $\rho$ in the power set $P(X)$ of a topological space $X$ is called a strong binary relation in $P(X)$ in case $\rho$ satisfies each of the following conditions:

1) If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set $C$ in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
2) If $A \subseteq B$, then $A \bar{\rho} B$.
3) If $A \rho B$, then $C l(A) \subseteq B$ and $A \subseteq \operatorname{Int}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If $f$ is a real-valued function defined on a space $X$ and if $\{x \in X: f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leq \ell\}$ for a real number $\ell$, then $A(f, \ell)$ is called a lower indefinite cut set in the domain of $f$ at the level $\ell$.
We now give the following main result:
Theorem 2.1. Let $g$ and $f$ be real-valued functions on a topological space $X$ with $g \leq f$. If there exists a strong binary relation $\rho$ on the power set of $X$ and if there exist lower indefinite cut sets $A(f, t)$
and $A(g, t)$ in the domain of $f$ and $g$ at the level $t$ for each rational number $t$ such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a continuous function $h$ defined on $X$ such that $g \leq h \leq f$.

Proof. Theorem 1 of [7].

## 3 Applications

The abbreviation $b c$ is used for $b$-continuous.
Corollary 3.1. If for each pair of disjoint $b$-closed sets $F_{1}, F_{2}$ of $X$, there exist open sets $G_{1}$ and $G_{2}$ of $X$ such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=$, then $X$ has the weak insertion property for ( $b c, b c$ ).

Proof. Let $g$ and $f$ be real-valued functions defined on the $X$, such that $f$ and $g$ are $b c$, and $g \leq f$.If a binary relation $\rho$ is defined by $A \rho B$ in case $b C l(A) \subseteq b \operatorname{Int}(B)$, then by hypothesis $\rho$ is a strong binary relation in the power set of $X$. If $t_{1}$ and $t_{2}$ are any elements of $Q$ with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right) ;
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is a $b$-closed set and since $\left\{x \in X: g(x)<t_{2}\right\}$ is a $b$-open set, it follows that $b C l\left(A\left(f, t_{1}\right)\right) \subseteq b \operatorname{Int}\left(A\left(g, t_{2}\right)\right)$. Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint $b$-closed sets $F_{1}, F_{2}$, there exist open sets $G_{1}$ and $G_{2}$ such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=$ then every $b$-continuous function is continuous.

Proof. Let $f$ be a real-valued $b$-continuous function defined on the $X$. By setting $g=f$, then by Corollary 3.1, there exists a continuous function $h$ such that $g=h=f$.

Corollary 3.3. If for each pair of disjoint $b$-closed sets $F_{1}, F_{2}$ of $X$, there exist open sets $G_{1}$ and $G_{2}$ of $X$ such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=$ then $X$ has the strong insertion property for ( $b c, b c$ ).

Proof. Let $g$ and $f$ be real-valued functions defined on the $X$, such that $f$ and $g$ are $b c$, and $g \leq f$. By setting $h=(f+g) / 2$, thus $g \leq h \leq f$ and if $g(x)<f(x)$ for any $\mathbf{x}$ in X, then $g(x)<h(x)<f(x)$. Also, by

Corollary 3.2, since $g$ and $f$ are continuous functions hence $h$ is a continuous function.

## ACKNOWLEDGEMENTS.

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

## References

[1] D. Andrijevic, On b-open sets, Mat. Vesnik., 48 (1996), 59-64.
[2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78 (1971), 1007-1010.
[3] H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8 (1964), 351-360.
[4] J. Dontchev, The characterization of some peculiar topological space via $\alpha-$ and $\beta$-sets, Acta Math. Hungar., 69 (1-2) (1995), 67-71.
[5] A. A. El-Atik, A study of some types of mappings on topological spaces, M. Sc. Thesis, Tanta Univ., (1997).
[6] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56 (3-4) (1990), 299-301.
[7] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38 (1951), 85-91.
[8] M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
[9] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
[10] N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70 (1963), 36-41.
[11] A. S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
[12] M. Przemski, A decomposition of continuity and $\alpha$-continuity, Acta Math. Hungar., 61 (1-2)(1993), 93-98.

