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Abstract

The purpose of this paper is to examine a range of results that can
be derived from Einstein’s evolution equation focusing on (but not in
an exclusive sense) the effect of introducing a Lévy distribution. In
this context, we examine the derivation (as derived from the Einstein’s
evolution equation) of the classical and fractional diffusion equations,
the classical and generalised Kolmogorov-Feller equations, the evolution
of self-affine stochastic fields through the fractional diffusion equation
and the fractional Schrödinger equation, the fractional Poisson equation
(for the time independent case), and, a derivation of the Lyapunov
exponent. In this way, we provide a collection of results (e.g. the
derivation of certain partial differential equations) that are fundamental
to the stochastic modelling associated with elastic scattering problems
obtained under a unifying theme, namely, Einstein’s evolution equation.
The approach is based on a multi-dimensional analysis of stochastic
fields governed by a symmetric (zero-mean) Gaussian distribution and
a Lévy distribution characterised by the Lévy index γ ∈ [0, 2].
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1 Introduction

We consider the principal field equation of statistical mechanics for the three-
dimensional elastic scattering problem. The traditional context of this study is



with regard to the random motion of discrete particles through classical scat-
tering processes, and, the time evolution of the density field that represents the
concentration of such particles in a macroscopic sense. In a three-dimensional
space, each particle is taken to be undergoing a random walk in which the di-
rection that a particle ‘propagates’ after any scattering event is arbitrary, the
scattering (solid) angle θ say being uniformly distributed for θ ∈ [0, 4π], and,
the distance travelled between scattering events is determined by some other
(or similar) distribution whose mean value describes the mean free path. The
stochastic field equation considered is of value in modelling the diffusion of
wave-fields when propagating through a dense complex of scatterers including
the ‘diffusion’ of acoustic and electromagnetic waves, for example, and was the
basis for Einstein’s original study of Brownian motion in 1905 [1] albeit for the
one-dimensional case [2].

The focus of this paper is to derive a range of equations and metrics via,
primarily, a three-dimensional version of Einstein’s evolution equation in or-
der to demonstrate connectivity and association in a unified sense. These
equations include the classical diffusion equation, the classical and gener-
alised Kolmogorov-Feller equations, the evolution of self-affine stochastic fields
through the fractional diffusion equation and the fractional Schrödinger equa-
tion. The fractional form of these equations is shown to be a direct consequence
of introducing a Lévy distribution as a ‘governor’ for the ‘statistical mechanics’
under which the scattering processes occur. For a constant a, the characteristic
function (i.e. the Fourier transform of the corresponding probability density
function) for a symmetric Lévy distribution is given by P (k) = exp(−a | k |γ)
where and γ ∈ [0, 2] is the Lévy index. This distribution can be considered
to be a generalisation of the Gaussian distribution when γ = 2. The effect of
taking γ < 2 is to produce stochastic processes whose probability density func-
tions have longer tails than those associated with a Gaussian process, and, as
shall be demonstrated in this paper, yield stochastic partial differential equa-
tions that are of a fractional type whose solutions exhibit random self-affine
characteristics.

2 Einstein’s Evolution Equation

Let p(r), r ≡| r | denote the Probability Density Function (PDF) associated
with the position in a three-dimensional space r ∈ R

3 where a particle can
exist as a result of some ‘random walk’ generated by a sequence of ‘elastic
scattering’ processes (with other like particles in a three-dimensional space).
Let u(r, t) denote the density function of a canonical assemble of particles all
undergoing the same random walk process involving elastic scattering events
(i.e. the number of particles per unit volume). Suppose we consider an infinite
concentration of such particles at a time t = 0 located at an origin r = 0
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which can thereby be described by a perfect spatial impulse so that we can
write u(r, 0) = δ3(r), δ3 being the three-dimensional Direc delta function. The
impulse response function of this system at a short time later t = τ << 1 can
then be taken to be given by

u(r, τ) = p(r)⊗r u(r, 0) = p(r)⊗r δ
3(r) = p(r)

where ⊗r denotes the convolution integral over all r. Thus, at any time t, the
density field at some later time t+ τ will be given by

u(r, t+ τ) = p(r)⊗r u(r, t) (1)

where (λ being taken to be a scalar with dimensions of length and components
λx, λy and λz)

p(r)⊗r u(r, t) ≡
∞
∫

−∞

p(λ)u(r− λ, t)dλ

and (the normalization condition for any and all PDFs)

∞
∫

−∞

p(λ)dλ = 1

Equation (1) is Einstein’s (multi-dimensional) evolution equation and is a ‘mas-
ter equation’ for elastic scattering processes in statistical mechanics from which
can be derive a variety of field equations such as the classical diffusion equation
as considered in the following section.

3 The Diffusion Equation

The purpose of this section is to present a derivation of the diffusion equation
based on Equation (1), a derivation which is usually attributed to Albert
Einstein [1].

3.1 PDF Independent Derivation

By way of providing a (historical) context, consider the one-dimensional case,
when r ∈ R

1, and, Equation (1) can be written for the one-dimensional (x)
domain, given a symmetric PDF, as

u(x, t+ τ) =

∞
∫

−∞

p(λ)u(x− λ, t)dλ =

∞
∫

−∞

p(λ)u(x+ λ, t)dλ, p(λ) = p(−λ)
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Taylor expanding u(x, t) to first order in time, and, to second order in space,
we then obtain

u(x, t) + τ
∂

∂t
u(x, t) =

∞
∫

−∞

dλp(λ)

[

u(x) + λ
∂

∂x
u(x, t) +

λ2

2

∂2

∂x2
u(x, t)

]

= u(x, t)

∞
∫

−∞

p(λ)dλ+
∂

∂x
u(x, t)

∞
∫

−∞

λp(λ)dλ+
∂2

∂x2
u(x, t)

∞
∫

−∞

λ2

2
p(λ)dλ

= u(x, t) +
∂2

∂x2
u(x, t)

∞
∫

−∞

λ2

2
p(λ)dλ

since
∞
∫

−∞

p(λ)dλ = 1 and

∞
∫

−∞

λp(λ)dλ = 0

Thus we can write the equation

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t)

where

D =

∞
∫

−∞

λ2

2τ
p(λ)dλ

which is the one-dimensional diffusion equation for Diffusivity D and has the
Green’s function solution (for initial condition u0 and where ⊗x denotes the
convolution integral over x) [3]

u(x, t) =
1√
4πDt

exp

(

− x2

4Dt

)

⊗x u0(x), u0(x) ≡ u(x, t = 0)

For completeness, the equivalent three-dimensional domain derivation is pro-
vided in Appendix A.

Irrespective of dimension of the spatial domain that is considered, the
derivation given above (and in Appendix A) depends upon ignoring higher
order terms in the Taylor expansion of Equation (1). Note, however, that this
derivation does not rely on the specification of a PDF, only that the PDF is
assumed to be symmetric.
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3.2 PDF Dependent Derivation

Another approach to deriving the diffusion equation is to specify the form of
the PDF. Suppose we assume that, for r ∈ R

1,

p(x) =
1√
2πσ2

exp

(

− x2

2σ2

)

,

a zero-mean normal (Gaussian) distribution with Standard Deviation σ and
Variance σ2. Taylor expansion to first order of Equation (1), and, application
of the convolution theorem yields

U(k, t) + τ
∂

∂t
U(k, t) = P (k)U(k, t) (2)

where

U(k, t) =

∞
∫

−∞

u(x, t) exp(−ikx)dx

and

P (k) =

∞
∫

−∞

p(x) exp(−ikx)dx = exp

(

−σ2k2

2

)

,

P (k) being the characteristic function. Suppose we now consider the case when
the Variance is small, i.e. σ2 << 1. Then

P (k) ≃ 1− σ2k2

2

and Equation (2) can be written as

∂

∂t
U(k, t) = −U(k, t)

σ2k2

2τ

through which we again obtain the diffusion equation (via application of the
convolution theorem)

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t) where D =

σ2

2τ

In this case, the ‘key’ to the derivation of the diffusion equation is the as-
sumption that the variance of a normal distribution is small and that τ << 1.
We note that an identical analysis in the three dimensional domain yields the
three-dimensional diffusion equation

∂

∂t
u(r, t) = D∇2u(r, t)

Stochastic Modelling for Lévy Distributed Systems 197



3.3 The Schrödinger Equation

Using an identical approach to that given in the previous section, if t → it
(analytic continuation to imaginary time), then, on a phenomenological basis,
we can derive the homogenous Schrödinger equation with the introduction of
the following: τ := ~ and σ2 := ~

2/m where m is mass and ~ is the Dirac
constant. This provides the homogeneous Schrödinger Equation (for r ∈ R

3)

i~
∂

∂t
Ψ(r, t) = − ~

2

2m
∇2Ψ(r, t)

via application of Equation (1) with u(r, t) → Ψ(r, it) for P (k) = exp(−σ2 |
k |2 /2). In this sense, Schrödinger’s Equation (which is a phenomenological
equation anyway) is seen to be a ‘by-product’ of Einstein’s evolution equation
for a normal (zero-mean) distribution, the approximations used being well
satisfied given that ~ ∼ 10−34 Js, and, taking the mass of an electron to be
∼ 10−30 kg, σ2 ∼ 10−38.

4 The Kolmogorov-Feller Equation

4.1 The Classical Kolmogorov-Feller Equation

Consider the Taylor series for the function u(r, t+ τ) in Equation (1)

u(r, t+ τ) = u(r, t) + τ
∂

∂t
u(r, t) +

τ 2

2!

∂2

∂t2
u(r, t) + ...

For τ << 1

u(r, t+ τ) ≃ u(r, t) + τ
∂

∂t
u(r, t)

and we obtain the Classical Kolmogorov-Feller Equation (CKFE), [4], [5]

τ
∂

∂t
u(r, t) = −u(r, t) + u(r, t)⊗r p(r) (3)

As with the derivation of the diffusion equation given in the previous section,
Equation (3) is based on a critical assumption which is that the time evolution
of the density field u(r, t) is influenced only by short term events and that
longer term events have no influence on the behaviour of the field at any
time t, i.e. the ‘system’ described by Equation (3) has no ‘memory’. This
statement is the physical basis upon which the condition τ << 1 is imposed
thereby allowing the Taylor series expansion of the function u(r, t + τ) to be
made to first order.
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4.2 The Generalised Kolmogorov-Feller Equation

Given that Equation (3) is memory invariant, the question arises as to how
longer term temporal influences can be modelled, other than by taking an
increasingly larger number of terms in the Taylor expansion of u(r, t + τ)
which is not of practical analytical value, i.e. writing Equation (1) in the form

τ
∂

∂t
u(r, t) +

τ 2

2!

∂2

∂t2
u(r, t) + ... = −u(r, t) + u(r, t)⊗r p(r)

The key to solving this problem is to express the infinite series on the left hand
side of the equation above in terms of a ‘memory function’ mem(t), say, and
write

τmem(t)⊗t
∂

∂t
u(r, t) = −u(r, t) + u(r, t)⊗r p(r) (4)

where ⊗t is taken to denote the convolution integral over t. This is the Gener-
alised Kolmogorov-Feller Equation (GKFE) which reduces to the CKFE when
mem(t) = δ(t).

4.3 The GKFE for an Orthonormal Memory Function

For any inverse function or class of inverse functions of the type mem−1(t),
say, such that

mem−1(t)⊗t mem(t) = δ(t)

the GKFE can be written in the form

τ
∂

∂t
u(r, t) = −mem−1(t)⊗t u(r, t) + mem−1(t)⊗t u(r, t)⊗r p(r)

where the CKFE is again recovered when mem−1(t) = δ(t) given that δ(t)⊗t

δ(t) = δ(t).

5 Self-affine Stochastic Fields

Consider Equation (1) with an additional stochastic source function s(r, t) so
that the evolution equation is now

u(r, t+ τ) = p(r)⊗r u(r, t) + s(r, t) (5)

where | S(k, t) |2= 1 and

S(k, t) =

∞
∫

−∞

s(r, t) exp(−ik · r)d3r
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Suppose we consider a Lévy characteristic function (for constant a) of the type

P (k) = exp(−a | k |γ) = 1− a | k |γ, a << 1, γ ∈ [0, 2]

where

P (k) =

∞
∫

−∞

p(r) exp(−ik · r)d3r, k ≡| k |

and p(r) is a (symmetric) Lévy PDF. Using the convolution theorem, for τ <<
1, we can write Equation (5) in the form

τ
∂

∂t
U(k, t) = −a | k |γ U(k, t) + S(k, t)

and using the Reisz definition of a Fractional Laplacian derive the field equation

∇γu(r, t) =
τ

a

∂

∂t
u(r, t)− 1

a
s(r, t) (6)

where (↔ denoting the Fourier transform pair)

∇γu(r) ↔ − | k |γ U(k)

5.1 The Fractional Poisson Equation

The time independent version of Equation (6) yields the field equation for
a self-affine stochastic field or random scaling fractal, namely (and ignoring
scaling by 1/a), the fractional Poisson equation

∇γu(r) = s(r) (7)

which characterises fractional Brownian motion [6], and, for r ∈ R
2, is the

equation for a Mandelbrot surface [7]; the geometric and physical interpreta-
tion of a fractional derivative having been considered by many other authors,
e.g. [8] and [9].

5.2 The Fractional Schrödinger Equation

By following the analysis given in Section 3.3 for the case when P (k) = 1−a |
k |γ and with a = Lγ~

2/2m, Lγ having the dimension of Length2+γ, we can
write (e.g. [10] and [11])

i~
∂

∂t
Ψ(r, t) = −Lγ~

2

2m
∇γΨ(r, t)
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5.3 Lévy Distributed Field Equations

The analysis provide so far is based on assuming that a << 1 for the PDF
P (k) = exp(−a | k |γ), from which the Fractional Poisson and Fractional
Schrödinger Equation can be derived as shown. In the former case, the general
solution to Equation (7) is given by (using Fourier transformation, the Reisz
definition of a fractional Laplacian and the convolution theorem)

u(r) =
1

(2π)3

∫

S(k)d3k

| k |γ = s(r)⊗r q(r)

where, using spherical polar coordinates

q(r) =
1

(2π)3

2π
∫

0

dφ

1
∫

−1

d(cos θ)

∞
∫

0

dkk2eikr cos θ
1

| k |γ

=
1

2π2r

∞
∫

0

dkk
sin(kr)

| k |γ = − 1

2π2r

∂

∂r

∞
∫

0

dk
cos(kr)

| k |γ

= − 1

2πr

∂

∂r

Re

2π

∞
∫

−∞

dk
H(k) exp(ikr)

| k |γ = − 1

2πr

∂

∂r
Re

[

1

Γ(γ)r1−γ
⊗r

(

δ(r) +
i

πr

)]

=
1− γ

2πΓ(γ)

1

r3−γ

where

H(k) =

{

1, k ≥ 0;

0, k < 0.

and we have used the results:

H(r) ↔ δ(r) +
i

πr
, r ∈ R

1

and
1

Γ(γ)r1−γ
↔ 1

| k |γ , r ∈ R
1, γ > 0

where Γ(γ) is the Gamma function.
In the case when the condition a << 1 is not valid, and, for the time inde-

pendent case, from Equation (5), with τ << 1, we are required to evaluated
the integral

u(r) =
1

(2π)3

∞
∫

−∞

S(k) exp(ik · r)d3k
1− exp(−a | k |γ)
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=
1

(2π)3

∞
∑

n=0

∞
∫

−∞

S(k) exp(ik·r) exp(−an | k |γ)d3k ∼ s(r)+s(r)⊗r

1

r3+γ
, r → ∞

using the result provide in Appendix B.

6 The Lyapunov Exponent

Consider Equation (1) for r ∈ R
1 and uniform discretisation in space and time

so that we can write

u(xm, tn+1) = p(xm)⊗x u(xm, tn)

where xm, m = 1, 2, ...; tn, n = 1, 2, ... and ⊗x is taken to denote the ‘convo-
lution sum’. Suppose that after many time steps, this iteration converges to
the function φ(xm, t∞), say. We can then represent the iteration in the form

u(xm, tn+1) = φ(xm, t∞) + ǫ(xm, tn)

where ǫ(xm, tn) denotes the error at any time step n. Convergence to the
function φ(xm, t∞) then occurs if ǫ(xm, tn) → 0∀m as n → ∞. If we now
consider a model for the error at each time step given by (for some real constant
ε)

ǫ(xm, tn+1) = ε exp(λtn)

with tn = n∆t (where ∆ is the time sampling interval) it is clear that we can
then write

ǫ(xm, tn+1) = ǫ(xm, tn) exp(λ∆t)

Hence, with ∆t = 1, the condition for convergence (i.e. λ < 0) is compounded
in the following expression for λ:

λ = lim
N→∞

1

N

N
∑

n=1

log

∣

∣

∣

∣

ǭ(tn+1)

ǭ(tn)

∣

∣

∣

∣

where

ǭ(tn) = lim
M→∞

1

M

M
∑

m=1

ǫ(xm, tn)

after first summing over xm.
If λ is negative, then the iterative process is stable since we can expect

that as N → ∞, | ǭ(tn+1)/ǭ(tn) |< 1 and thus log | ǭ(tn+1)/ǭ(tn) |< 0.
However, if λ is positive then the iterative process will diverge. This criterion
for convergence/divergence is of course dependent on the exponential model
used to represent the error function at each iteration, and, within this context,
λ is known as the Lyapunov exponent, e.g. [12], [13] and [14].
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7 Conclusions

The purpose of this paper has been to show the connectivity between Equa-
tion (1) and a range of partial differential equations that are important in the
modelling of stochastic systems characterised by elastic scattering processes.
For the characteristic function p(k) = exp(−a | k |γ), we have shown that
for the time independent case, and, for a stochastic source function s(r), the
evolution equation is given by

u(r) = p(r)⊗r u(r) + s(r), r ∈ R
n

Based on the results derived, and, by induction, we may then construct a
solution of the form

u(r) = q(r)⊗r s(r)

where

q(r) ∼
{

1
rn−γ , a << 1;
1

rn+γ , r → ∞.
n = 1, 2, 3; γ ∈ [0, 2]

Appendix A: Derivation of the Three-dimensional

Diffusion Equation

For the case when p(r) = p(−r), the equation (reproduced from [15] for com-
pleteness of this paper)

u(r, t+ τ) = p(r)⊗r u(r, t)

can be written out in the form (where λ is a scalar with dimensions of length
and components λx, λy and λz)

u(r, t+ τ) =

∞
∫

−∞

u(r+ λ, t)p(λ)dλ (A.1)

We may expand u(r, t + τ) as a Taylor series

u(r, t+ τ) = u(r, t) + τ
∂

∂t
u(r, t) +

τ 2

2!

∂2

∂t2
u(r, t) + ...

and also write u(r+ λ, t) in terms of the three-dimensional Taylor series

u(r+ λ, t) = u+ λx
∂u

∂x
+ λy

∂u

∂y
+ λz

∂u

∂z
+

λ2
x

2!

∂2u

∂x2
+

λ2
y

2!

∂2u

∂y2
+

λ2
z

2!

∂2u

∂z2
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+λxλy
∂2u

∂x∂y
+ λxλz

∂2u

∂x∂z
+ λyλz

∂2u

∂y∂z
+ ...

If, and only if, τ << 1, then higher order terms can be neglected and then the
distance travelled, λ, must also be small. Equation (A.1) may then be written
as

u+ τ
∂u

∂t
=

∞
∫

−∞

up(λ)dλ+

∞
∫

−∞

(

λx
∂u

∂x
+ λy

∂u

∂y
+ λz

∂u

∂z

)

p(λ)dλ

+

∞
∫

−∞

(

λ2
x

2!

∂2u

∂x2
+

λ2
y

2!

∂2u

∂y2
+

λ2
z

2!

∂2u

∂z2

)

p(λ)dλ

+

∞
∫

−∞

(

λxλy
∂2u

∂x∂y
+ λxλz

∂2u

∂x∂z
+ λyλz

∂2u

∂y∂z

)

p(λ)dλ

Let us assume that p(λ) is symmetric so that p(λ) = p(−λ) and that p(λ), is,
by default, normalised, i.e.

∞
∫

−∞

p(λ)dλ = 1

We can then write

τ
∂

∂t
u =

∞
∫

−∞

λ2
x

2

∂2u

∂x2
p(λ)dλ+

∞
∫

−∞

λxλy

2

∂2u

∂x∂y
p(λ)dλ+

∞
∫

−∞

λxλz

2

∂2u

∂x∂z
p(λ)dλ

+

∞
∫

−∞

λyλx

2

∂2u

∂y∂x
p(λ)dλ+

∞
∫

−∞

λ2
y

2

∂2u

∂y2
p(λ)dλ+

∞
∫

−∞

λyλz

2

∂2u

∂y∂z
p(λ)dλ

+

∞
∫

−∞

λzλx

2

∂2u

∂z∂x
p(λ)dλ+

∞
∫

−∞

λzλy

2

∂2u

∂z∂y
p(λ)dλ+

∞
∫

−∞

λ2
z

2

∂2u

∂z2
p(λ)dλ

+

∞
∫

−∞

λx
∂u

∂x
p(λ)dλ+

∞
∫

−∞

λy
∂u

∂y
p(λ)dλ+

∞
∫

−∞

λz
∂u

∂z
p(λ)dλ

which may be written in matrix form as

∂

∂t
u(r, t) = ∇ ·D∇u(r, t) +V · ∇u(r, t)

where D is the diffusion tensor given by

D =





Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



 , Dij =

∞
∫

−∞

λiλj

2τ
p(λ)dλ
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and V is a flow vector which describes any drift velocity that the particle
ensamble may have and is given by

V =





Vx

Vy

Vz



 , Vi =

∞
∫

−∞

λi

τ
p(λ)dλ

Note that as λiλj = λjλi, the diffusion tensor is diagonally symmetric (i.e.
Dij = Dji). For isotropic diffusion where 〈λiλj〉 = 0 for i 6= j and 〈λiλj〉 = 〈λ2〉
for i = j, and, with no drift velocity, so that V = 0, then

∂

∂t
u(r, t) = ∇ ·





D 0 0
0 D 0
0 0 D



∇u(r, t) = D∇2u(r, t)

where

D =

∞
∫

−∞

λ2

2τ
p(λ)dλ

Note that this derivation of the diffusion equation is independent of the PDF,
the only assumption being that the PDF is symmetric and normalised.

Appendix B: Three Dimensional Inverse Fourier

Transform of e−|k|γ , 0 < γ < 2

Theorem B.1 For r ∈ R
3

1

(2π)3

∞
∫

−∞

d3keik·re−|k|γ ≃
{

γ
4π3Γ(1−γ)r

[

1
r2

(

1
rγ

⊗r
1
r

)

− γ
(

1
r1+γ ⊗r

1
r

)]

, 0 < γ < 1;
γ(γ−1)(γ+1)
4π3Γ(2−γ)r

[

1
r
⊗r

1
r2+γ

]

, 1 < γ < 2.

where ⊗r denotes the (one-dimensional) convolution integral over r, r ∈ R
1.

Proof of Theorem B.1 The proof of this theorem requires application of the
following results (where ↔ denotes the Fourier pair):

(i)

H(r) ↔ δ(r) +
i

πr
, r ∈ R

1 (B.1)

where

H(k) =

{

1, k ≥ 0;

0, k < 0.
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(ii)
1

Γ(γ)r1−γ
↔ 1

| k |γ , r ∈ R
1, γ > 0 (B.2)

where Γ(γ) is the conventional Gamma function given by

Γ(γ) =

∞
∫

0

rγ−1e−rdr, γ > 0

(iii)

sgn(k) ↔ i

πr
(B.3)

where

sgn(k) =

{

1, k ≥ 0;

−1, k < 0.

For r ∈ R
n we use the following multi-dimensional Fourier operator notation:

F (k) = F̂n[F (r)] ≡
∞
∫

−∞

dnre−ik·rf(r), r ∈ R
n

f(r) = F̂−1
n [F (k)] ≡ 1

(2π)n

∞
∫

−∞

dnkeik·rF (k)

We start by using spherical polar coordinates so that with the application
of (B.1), we have

F̂−1
3 [e−|k|γ ] =

1

(2π)3

2π
∫

0

dφ

1
∫

−1

d(cos θ)

∞
∫

0

dkk2eikr cos θe−|k|γ

=
1

2π2r

∞
∫

0

dkk sin(kr)e−|k|γ = − 1

2π2r

∂

∂r

∞
∫

0

dk cos(kr)e−|k|γ

= − 1

2πr

∂

∂r
Re{F̂−1

1 [H(k)e−|k|γ ]} = − 1

2πr

∂

∂r
Re

{

F̂−1
1 [e−|k|γ ]⊗r

(

δ(r) +
i

πr

)}

= − 1

2πr

∂

∂r
Re

{

F̂−1
1 [e−|k|γ ] +

i

πr
⊗r F̂

−1
1 [e−|k|γ ]

}

(B.4)

through application of the convolution theorem. Thus we are required to
evaluate the one-dimensional inverse Fourier transform of e−|k|γ .
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For 0 < γ < 1, we can integrate by parts to obtain

F̂−1
1 [e−|k|γ ] =

1

2π





[

1

ir
eikre−|k|γ

]∞

k=−∞

− 1

ir

∞
∫

−∞

eikr(−γsgn(k) | k |γ−1 e−|k|γ)dk





=
γ

2πir

∞
∫

−∞

dksgn(k) | k |γ−1 e−|k|γeikr

which yields a singularity at k = 0. Hence, the greatest contribution to this
integral is the inverse Fourier transform of | k |γ−1. Thus, using (B.2) and
(B.3) together with the convolution theorem we can write,for 0 < γ < 1

F̂−1
1 [e−|k|γ ] ≃ γ

2πir

∞
∫

−∞

dk
sgn(k)

| k |1−γ
eikr =

γ

2πr

[

1

Γ(1− γ)rγ
⊗r

1

πr

]

(B.5)

For 1 < γ < 2, we can integrate by parts twice to obtain

F̂−1
1 [e−|k|γ ] =

γ

2πir

∞
∫

−∞

dksgn(k) | k |γ−1 e−|k|γeikr

=
γ

2πir

[

1

ir
sgn(k) | k |γ−1 e−|k|γeikr

]∞

k=−∞

+
γ

2πir2

∞
∫

−∞

dkeikr2δ(k) | k |γ−1 e−|k|γ

+
γ

2πir2

∞
∫

−∞

dkeikr[(γ − 1)sgn2(k) | k |γ−2 e−|k|γ − γsgn2(k)(| k |γ−1)2e−|k|γ ]

=
γ

2πir2

∞
∫

−∞

dkeikr[(γ − 1) | k |γ−2 e−|k|γ − γ(| k |γ−1)2e−|k|γ ]

given that sgn2(k) = 1. The first term of this integral is singular and therefore
provides the greatest contribution. Hence, we evaluate the inverse Fourier
transform of | k |γ−2 and using (B.2) we have

F̂−1
1 [e−|k|γ ] ≃ γ(γ − 1)

2πir2

∞
∫

−∞

eikr

| k |2−γ
dk =

γ(γ − 1)

2πir2

[

1

Γ(2− γ)rγ−1

]

=
γ(γ − 1)

2πir2

∞
∫

−∞

eikr

| k |2−γ
dk =

γ(γ − 1)

2πir2

[

1

Γ(2− γ)rγ−1

]
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=
γ(γ − 1)

2πi

[

1

Γ(2− γ)r1+γ

]

, 1 < γ < 2 (B.6)

Combining the results for 0 < γ < 1 and 1 < γ < 2, i.e. equation (B.5) and
(B.6), with equation (B.4) we finally obtain the result

F̂−1
3 [e−|k|γ ] ≃

{

γ
4π3Γ(1−γ)r

[

1
r2

(

1
rγ

⊗r
1
r

)

− γ
(

1
r1+γ ⊗r

1
r

)]

, 0 < γ < 1;
γ(γ−1)(γ+1)
4π3Γ(2−γ)r

[

1
r
⊗r

1
r2+γ

]

, 1 < γ < 2.
(B.7)

Corollary B.1 Form equations (B.5) and (B.6) we derive the asymptotic
scaling relationship

F̂−1
1 [e−|k|γ ] ∼ 1

r1+γ
, r → ∞

so that from equation (B.4),

F̂−1
3 [e−|k|γ ] ∼ 1

r3+γ
, r → ∞

Corollary B.2 For r ∈ R
2, using polar coordinates

F̂−1
2 [e−|k|γ ] =

1

(2π)2

2π
∫

0

dθ

∞
∫

0

dkke−|k|γeikr cos θ =
1

2π

∞
∫

0

e−|k|γJ0(kr)kdk (B.8)

where J0 is the Bessel function (of order 0) given by

J0(kr) =
1

2π

2π
∫

0

dθeikr cos θ

Equation (B.9) defines the (zero order) Hankel transform of e−|k|γ and by
induction we may postulate the result

F̂−1
2 [e−|k|γ ] ∼ 1

r2+γ
, r → ∞

leading to the generalised scaling relation

F̂−1
n [e−|k|γ ] ∼ 1

rn+γ
, r → ∞ (B.9)

Remark B.1 A verification of equation (B.9) may be resolved by considering
known results for the case when γ = 1. i.e.

F−1
1 [e−|k|] =

1

π(1 + r2)
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and, from equation (B.4),

F−1
3 [e−|k|] =

1

π2(1 + r2)2

Remark B.2 For the case when γ = 2,

F̂−1
n [e−k2] =

1

(4π)n/2
e−r2/4

Remark B.3 From equation (B.9), we note that for the characteristic function
e−|k|/ | k | the Hankel transform [16] exists and we can write,

F−1
2

[

e−|k|

| k |

]

=
1√

1 + r2

Remark B.4 For the case when γ = 0,

F−1
n [e−1] =

1

e
δn(r)
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