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Abstract

The results presented in this paper relate to an application in aero-
nautical engineering, in particular, the use of weakly ionised plasma’s to
shield an aerospace vehicle from Radar by the absorption of microwave
radiation. It is well known that the absorption of an electromagnetic
wave with angular frequency ω over a distance x by a conductor with
constant conductivity σ is determined by exp(−x

√
ωµ0σ/2) where µ0

is the permeability of free space. The conductivity of a weakly ionised
plasma is determined by its electron number density. Thus in order to
evaluate the radar screening effects of a weakly ionised plasma (which is
taken to reduce the Radar Cross Section of some aerospace vehicle), it
is necessary to compute the steady state electron number density pro-
file of the plasma subject to the axial flow of air over the vehicle. In
this paper we consider the case of an axial flow in both the sub-sonic
and super-sonic regimes obtained by evaluating the velocity potential
for both cases and coupling the result with the rate equation for the
plasma. This assumes that, to a good approximation, the plasma flows
with the air molecules while at the same time undergoing the processes
of ionisation, diffusion and recombination. It is assumed that the plasma
is generated by the application of a high energy electron beam, for ex-
ample, and, in this context, we consider the beam to be generated in
front of the aerospace vehicle, e.g. the nose cone.
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1 Introduction

Aerospace stealth technologies are well known and based on two principal as-
pects: (i) design features; (ii) radar absorbing materials and coatings [1], [2].
The geometry of the design is based on trying to minimise those features of
an aerospace vehicle that are responsible for reflecting microwave radiation in
such a way that the result can fly, a principle that was not practically viable
until real time digital avionic systems were available [3]. Obvious features in-
clude embedding the gas turbine engines deep into the structure of the aircraft
and introducing facets - diamond shaped flat surfaces - that reflect the mi-
crowave radiation away from the source. However, one of the principal factors
for reducing the Radar Cross Section (RCS) is to minimise the profile of the
aircraft while maximising the ‘smoothness’ of the design as observed in the
Northrop Grumman B-2 Spirit Stealth Bomber, for example [4].

Another possible approach to developing ‘stealth planes’ is through the
generation of a plasma screen. The idea was first proposed by A. Eldredge in
1956 and is the basis for a US patent granted in 1964 entitled Object Camou-
flage Method and Apparatus and proposed using a particle accelerator in an
aircraft to create a cloud of ionised gas that would ‘...absorb incident radar
beams’ [5]. This idea has a connection with the ‘radio silence’ phenomenon
that occurs during re-entry of a spacecraft. This occurs when a plasma is
formed around the spacecraft due to the ‘friction’ of the Earth’s atmosphere.

The reduction of the RCS of an aerospace vehicle through the generation of
a plasma requires control of plasma properties in order to design a functioning
plasma stealth device. A principal property is the (carrier) frequency of an
incoming Radar signal as a plasma will reflect microwaves below a certain
frequency (which depends on the plasma properties) [6]. Another important
aspect is how the ionised electrons travel away from the source with the air
flow while simultaneously undergoing diffusion and recombination. This is an
electron transport problem whose solution is required in order to evaluate the
distribution of electrons (specifically the electron number density) around the
skin of the vehicle away from the source, i.e. to compute the steady state
distribution of the ‘plasma cloud’.

A fundamental parameter of any plasma is the ‘plasma (angular) frequency’
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ωp given by [7]

ωp =

(
4πne2

m

) 1
2

where e is the charge of an electron (1.6 × 10−19 C), m is the mass of an
electron (0.91× 10−30kg) and n is the number density of electrons in m−3. For
a plane Electromagnetic wave incident on a plasma, Maxwell’s equations (for
transverse EM waves) yield the dispersion relation

k =
1

c0

√
ω2 − ω2

p

where k is the wavenumber (= 2π/λ for wavelength λ) and c0 is the velocity
of light in a vacuum (' 3 × 108 m/sec). A cut-off occurs when ω = ωp, i.e.
when there is a critical number density

nc =
mω2

4πe2
.

Radio waves can only propagate through a plasma when ω > ωp. For a typical
laboratory plasma with n = 1012cm−3, a cut-off occurs when

fp =
ωp

2π
∼ 104

√
n = 10GHz

which is in the microwave range. This effect is used as method of measuring
the density of laboratory plasmas.

In principle, if an aerospace vehicle of any type, irrespective of the design,
could be covered in a plasma cloud with a plasma frequency ∼ 10GHz then
it would become completely impervious to detection by conventional Radar.
The idea of shielding an aerospace vehicle with a self-generated plasma at
an appropriate critical number density that is maintained in the presence of
an airflow is not a practical proposition. However, partial plasma screening of
specific features which are good radar point-scatterers is possible, one example
being the point on the ‘nose-cone’ of a missile, for example.

In this paper, we develop the basis for a numerical simulation of a plasma
that is generated by some source of electrons which ionise the air and undergo
the effects of diffusion and recombination subject to a flow of air in both
the sub-sonic and super-sonic regimes. The purpose of this is to compute
electron density maps that simulate the steady-state distribution of electrons
in order to assess the design of electron source configurations with regard to
maximising the spatial extent of the screening effect. In order to contextualise
the problem, we refer to Figure 1 which shows the primary and residual shock
fronts generated by a X-15 travelling from left-to-right at Mach=3.5. We
consider the idea that if a weakly ionised plasma could be produced where
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the electrons ‘surf’ the primary shock front illustrated in Figure 1 then the
aerospace vehicle could be fully impervious to detection of a ‘forward-looking
Radar’ due to the absorption of this radiation from the presence of a plasma
that fully ‘cloaks’ the vehicle along the cone of the (primary) shock front.
The results presented in this paper represent a first attempt to investigate the
viability of this concept although no specific conclusion is made in this respect.

Figure 1: An X-15 travelling from left-to-right at Mach 3.5.

2 Conductivity of a Plasma

The conductivity of a plasma depends upon whether we consider it to be weakly
or strongly ionised. A weakly ionised plasma is one in which the frequency of
collisions ν of electrons (e) and ions (i) with atoms (a) greatly exceeds that of
collisions of these particle with one another, i.e.

νea >> νee, νei; νia >> νii, νie.

A highly ionised plasma is described by the reverse of these inequalities.
The conductivity of a weakly ionised plasma is given by [7]

σ =
ne2

meνea
+

2ne2

miνia

where me and mi are the masses of an electron and ion, respectively. This
expression for the conductivity is dominated by the first term which describes
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the conductivity for the electron component of the plasma. The reason for this
is that mi >> me always. Clearly, in this case, the conductivity is proportional
to the electron number density n and the conductivity of a weakly ionised
plasma can be approximated by

σ =
ne2

meνea
∼ 10−9 n

νea

where νea is the frequency of collisions between electrons and atoms. In the
context of the problem considered in this paper, the ratio n/νea will vary con-
siderably from one regime (altitude, flight speed etc.) to another, although the
values of n and νea may tend to off-set each other. Assuming that the plasma
is generated by some electron beam (e-beam) breakdown of the atmosphere, at
ambient atmospheric pressures, n will be large as will νea. At higher altitudes,
n will be less but so will νae. Finally, above the atmosphere there will be rel-
atively few atoms to break down and the collision frequency will be relatively
small.

Since the conductivity of the plasma screen is linearly proportional to the
electron number density, a principal problem is to determine the number den-
sity distribution for a given configuration (of source and aerospace vehicle).
Thus, we are required to develop a model that predicts the generation and
transport of electrons subject to a variety of processes such ionisation, recom-
bination, diffusion, radiative losses, air flow, etc. This can be accomplished by
considering the macroscopic properties of the plasma which are governed by
the dynamics of the growth process, a process that involves avalanche electron
multiplication (an exponential process), i.e. the ionisation rate per initial elec-
tron. A limiting mechanism for the growth of the cascade is taken to be due
to the (ambipolar) diffusion of electrons out the volume of the e-beam. Away
from the plasma source, the electron number density is taken to be determined
primarily by the recombination rate, radiative losses or bremsstrahlung radi-
ation and flow regime. The ionisation mechanism is taken to include inverse
bremsstrahlung processes.

3 Rate Equation for a Weakly Ionised Plasma

For electron number density n we consider the non-linear rate equation for a
weakly ionised plasma given by [7]

∂

∂t
n(r, t) = B(r) + In(r, t) +D∇2n(r, t)−Rn2(r, t) (1)

where B(r) is the electron beam profile (which is assumed not to vary with
time), I is the ionisation rate per initial electron, D is the (Ambipolar) Diffu-
sion Coefficient of electrons and R is the Recombination Coefficient (r being
the spatial vector and t, the time).
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The rate equation above, has two source terms and two loss terms. The
source terms are B and In which describe the initial population density of
electrons produced by the e-beam alone and the population density generated
by the cascade process. The loss terms D∇2n and Rn2 describe losses due to
the processes of diffusion and recombination, respectively. Each term has a
specific physical basis which is briefly reviewed in the following sections.

3.1 Electron Beam Profile

The multi-electron ionisation rate is taken to be due to an e-beam which is
responsible for the production of the initial electron density from which a
cascade process develops as discussed in the following section. This ionisation
will depend on the distance of the beam away from the source, the beam energy,
its diameter and profile. Typical parameters include an electron beam energy
of 100keV, a (Gaussian) beam diameter of less than 5mm with a loss of 1keV
per cm operating in air (over a range of atmospheric pressures) depending on
the presence of ‘additives’ such as water vapour, for example.

3.2 Ionisation

The ionisation of a neutral gas by an electron beam, for example, is determined
by a cascade process that produces an exponential growth in the electron
number density. Thus, suppose that for a given volume, we require the e-beam
to produce 1013 electrons say and that this number should be produced from
an initial value of n0 = 10 electrons that have been ionised by electrons from
the e-beam alone, then ln(n/n0) ∼ 28. In other words, the cascade process
requires 28 generations to produce 1013 electrons from just 10 of them. This
number is not strongly dependent on the assumed value of the initial density
within reasonable bounds. The electron density becomes large only near the
end of the cascade process; 99% of the ionisation is produced from the last
7 generations. Therefore, quantities such as the growth and losses from the
cascade and the time to breakdown are determined by the conditions at times
when the electron density is small.

The ionisation rate will be determined by two principal processes: the
ionisation rate due to collisions of neutral atoms or molecules with electrons
that have absorbed energy in the inverse bremsstrahlung process; and the loss
of potential ionising electrons due to electron attachment with an ion. The
process of inverse bremsstrahlung involves raising a free electron to a higher
energy state in the continuum of states available to it. The energy is a result
of the absorption of a photon due to bremsstrahlung radiation which is itself
produced by the acceleration of charged particles involved in elastic collisions.
This absorption must occur in a simultaneous interaction with a heavy particle
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(atom, molecule or ion) in order that momentum is conserved.

3.3 Diffusion

Losses in electron number density due to diffusion can dominate over losses
from recombination after beam initiation, and we can consider the electron
density to be determined by the solution to

∂n

∂t
= D∇2n+ In.

For the characteristic diffusion length Λ of the breakdown, we may replace ∇2

by −1/Λ2 to obtain a solution of the form

n = n0 exp[(I −D/Λ2)t].

This solution illustrates exponential growth of electrons, subject to exponen-
tial damping due to diffusion. Clearly, for a given coefficient of diffusion, the
characteristic diffusion length should be low in order to achieve a high concen-
tration of electrons.

3.4 Recombination

Electron-ion collisions may lead to recombination, i.e. the production of a
neutral atom as a result of the capture of an electron by an ion. The efficiency
of the processes responsible for recombination is considerable at low electron
energies at which the electron-ion interaction time is sufficiently large. Accord-
ingly, at low electron temperatures (i.e. much less than the ionisation energy)
these processes strongly affect the balance of the charged plasma particles.
The rate of charged particle removal due to recombination in a volume is de-
termined by the total recombination cross section and depends of the number
densities of both ions ni and electrons ne. Thus the rate equation is given by

∂n

∂t
= −Rnine = −Rn2

where R is the recombination coefficient. The minus sign is introduced here
because the process is lossy. This nonlinear equation has a simple analytical
solution which can be obtained by inspection and is given by

1

n
=

1

n0

+Rt

where n0 is the initial number density. After the density has fallen far below
its initial value, it decays reciprocally with time, i.e.

n ∝ 1

Rt
.
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This is a fundamentally different behaviour from the exponential decay associ-
ated with diffusive processes and exponential growth associated with ionisation
processes. Since the recombination rate is proportional to n2, for high values
of n it can be expected to be the dominant process.

In addition to diffusion processes, the quadratic recombination term sub-
stantially affects the plasma decay, the rate equation taking the form

∂n

∂t
= ∇2n+ In−Rn2

or, in terms of the characteristic length of diffusion,

dn

dt
= −

(
D

Λ2
− I
)
n−Rn2.

The solution to this equation is [7]

n(t) =

(
D
Λ2 − I

)
n0 exp

(
It− D

Λ2 t
)(

D
Λ2 − I

)
+Rn0

[
1− exp

(
It− D

Λ2 t
)] .

Note that when D/Λ2 − I >> Rn this solution changes into an exponen-
tial form that is characteristic of ionisation growth and diffusion decay; alter-
natively, when Rn >> D/Λ2 − I the electron density is determined by the
equation.

1

n
=

1

n0

+Rt.

3.5 Other Effects

Another effect that can be considered is loss through radiative processes. How-
ever, for weakly ionised plasmas, it is reasonable to assume that this effect is
relatively small compared to diffusion and recombination. These losses will
also be proportional to n2 since the total power P radiated per unit volume
by a plasma is given by [8]

P ∼ 1.5× 10−38Z2neniT
1
2
e (Watts/m3)

where n is in m−3 and Te is in eV. Because the radiated power is proportional
to the square of the atomic number Z, a low Z plasma dissipate less energy
through radiation.

4 Plasma Flow

If the plasma is generated in a flow of air then, to a good approximation,
we can consider the electrons to flow with the air and thus conform to the
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conservation equation [9]
∂n

∂t
= ∇ · (nv)

where v is the velocity of the plasma flow which is taken to be the same of the
air flow. Thus, defining the velocity potential u in terms of the equation

v = ∇u

then from equation (1) we obtain the plasma flow equation

D∇2n+B + In−Rn2 −∇ · (n∇u) = 0 (2)

Noting that
∇ · (n∇u) = ∇n · ∇u+ n∇2u

and that
∇u · ∇n = ∇ · (u∇n)− u∇2n

we can write
∇ · (n∇u) = ∇ · (u∇n)− u∇2n+ n∇2u (3)

Incompressible flows conform to the Laplace equation [10]

∇2u = 0 (4)

and with this result, from equation (3) we can write equation (2), in the form

(D + u)∇2n+B + In−Rn2 −∇ · (u∇n) = 0 (5)

Given equation (5), the problem is to find n given u which requires the velocity
potential to be computed a priori by solving equation (4).

By computing the velocity potential for air (in the absence of a plasma)
we consider a model in which the flow of the plasma is characterised by this
potential alone. In other words, we consider the plasma to flow away from
the plasma source (while at the same time undergoing the effects of ionisation,
diffusion and recombination) in a manner that is determined by the stream
lines associated with the air flow. Equation (5) is thus the steady state equa-
tion for the electron number density n subject to a flow regime characterised
by velocity potential u. The velocity potential that is used in the compu-
tation of n via equation (5) depends upon the flow regime. In this paper,
we consider both sub-sonic and super-sonic (but not transonic or hypersonic)
flows. For small angles of attack and thin bodies, the difference is compounded,
respectively, in the solution to the Laplace equation - equation (4) - and the
linearised small-perturbation potential equation given by (for super-sonic axial
and compressible flow along the x-coordinate) [11]

∇2u = M2∂
2u

∂x2
(6)
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where M is the Mach number of the incoming free stream (given by the velocity
of the incoming free stream divided by the speed of sound of the medium). In
this case, equation (5) includes an additional term, i.e. equation (5) becomes

(D + u)∇2n+B + In−Rn2 −∇ · (u∇n) +M2∂
2u

∂x2
= 0 (7)

Equation (6) may be recast into Laplace’s equation by a simple coordinate
transformation. Solutions to the Laplace equation will be considered later
together with the effect of incorporating a shock front for the super-sonic case.
In the following section, we consider a solution to equation (5) given that the
velocity potential is known a priori.

5 Fundamental Solution to Equation (5)

The fundamental solution to equation (5) can be obtained by via a convolution
integral with the Green’s function g which is the solution of

∇2g(r | r′) = −δ(r− r′)

This approach provides a solution of the form

n = g ⊗
[

B

u+D
+

In

u+D
− Rn2

u+D
− ∇ · (u∇n)

u+D

]
(8)

where ⊗ denotes the convolution integral. The dimensions of this convolution
integral depends upon the dimension in which the solution is required as does
the Green’s function. For the three-dimensional case the Green’s function is
given by [10]

g(r) =
1

4πr
(9)

and for the two-dimensional case

g(r) =
1

2π
log(r) (10)

where r ≡| r |. In either case, the solution to equation (8) requires an iterative
approach. To this end, we consider a solution in which the iterations are taken
to be in the same order as the physical processes that determine the character-
istics of the plasma, i.e. initial electron generation by the e-beam, ionisation,
recombination and flow. Thus, we consider the following iterative process:

Electron generation

n1 = g ⊗ B

u+D
(11)
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Ionisation

n2 = n1 + g ⊗ In1

u+D
(12)

Recombination

n3 = n1 + n2 − g ⊗
Rn2

2

u+D
(13)

Flow

n4 = n1 + n2 − n3 − g ⊗
∇ · (u∇n3)

u+D

The fundamental solution given by equation (8) is based on application of the
following (homogenous) boundary conditions on the domain Ω ⊂ R3:

n(r) = 0,∀r ∈ ∂Ω and n̂ · ∇n(r) = 0,∀r ∈ ∂Ω

where n̂ is normal to the boundary ∂Ω. These boundary conditions are consis-
tent with the solution for the number density being taken to be in the infinite
domain which in turn is consistent with the plasma generation being external
to a body subject to an external flow.

For an axial flow, it is reasonable to assume that the divergence of the vector
u∇n is negligible and it is under this assumption that we may consider the
evaluation of the number density n3 alone as given by equation (13), subject
to the computation of the number densities n1 and n2 given by equations
(11) and (12), respectively. From equation (13) it is clear that the number
density can be expected to decrease if the Diffusivity of the electrons and/or
the Velocity Potential is large, i.e. n1 is characterised by the reciprocal of the
sum of the Diffusivity and Velocity Potential. For constant Diffusivity, the
spatial distribution of the electrons will therefore be determined by the spatial
variations in the Velocity Potential and in the following section, an algorithm
for computing this potential is considered.

6 Evaluation of the Velocity Potential

6.1 Velocity Potential for an Incompressible Flow

For an incompressible flow, the Velocity Potential requires the solution to
equation (4). Numerical solutions to the Laplace equation are common to a
range of problems in fluid dynamics (e.g. [12], [13] and [14]). In this section,
we consider an approach which yields a solution that is compatible with the
fundamental solution to equation (5), i.e. convolution with the two- or three-
dimensional Green’s function for the Laplace operator.
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It is well known that the Green’s function solution to the Laplace equation
is given by [12]

u(r) =

∮
∂Ω

[g(r | r′)∇u(r′)− u(r′)∇g(r | r′)] · n̂d2r′

to which we can apply the boundary condition (assuming an external flow)

u(r) = 0,∀r ∈ ∂Ω

Using the divergence theorem we then have

u(r) =

∫
R3

∇ · [g(r | r′)∇u(r′)]d2r′

or, using the convolution integral operator notation,

u(r) = g(r)⊗∇2u(r) +∇g(r)⊗ ·∇u(r) (14)

Equation (14) requires an iterative scheme in order to solve for the Velocity
Potential u. For a flow that is external (or internal) to an object of compact
support in the domain Ω ⊂ R3, it is clear that u(r) = 0,∀r ∈ R3. Suppose
that

∇2u(r) = f(r) =

{
0, r ∈ R3

1, r /∈ R3

We can then consider the series solution

u(r) = [g(r)⊗ f(r)]f(r) + {∇g(r)⊗ ·∇[g(r)⊗ f(r)]f(r)}f(r) + ...

the first order solution being given by

u(r) ∼ [g(r)⊗ f(r)]f(r) (15)

The binary function f distinguishes between the domains in which the flow can
exist or otherwise where it is noted the convolution with the Green’s function
is over both domains. In this context, for equations (11)-(13) to be compatible
with the computation of the Velocity Potential considered here, it is necessary
to condition the solutions for n1, n2 and n3 by multiplication with this same
binary function.
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6.2 Velocity Potential for a Compressible Flow

In the context of the problem considered in this paper, compressible flows
occur when the the aerospace vehicle is travelling above the speed of sound.
Given, that we are confining the problem to the evaluation of n3 - equation
(13) - it is necessary to compute the Velocity Potential for a compressible flow.
This requires the solution to equation (6) which can be written in the form(

β2 ∂
2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
uc(x, y, z) = 0 (16)

where β =
√
| 1−M2 |,M > 1 is the Prandtl-Glauert Factor [15], [16] and uc

denotes the compressible Velocity Potential. It is then clear that we can solve
equation (16) using equation (15) but where we are required to introduce the
coordinate transform x := x/β which manifests itself in terms of the Green’s
function that is used in equation (15). In this case, the Green’s function is
not symmetric but ‘stretched’ along the x-coordinate relative to the other
coordinates.

6.3 Wave Velocity Potential

In the supersonic regime, shock waves are generated. For an object taken to
be in the domain R3, this effect can be modelled in terms of a solution to the
wave equation [17]

(∇2 + k2)uw(r, k) = −s(r) (17)

where uw is Wave Velocity Potential, k = ω/c̄ (for angular frequency ω and
average speed of sound c̄) and

s(r) =

{
1, ∀r ∈ ∂Ω;

0, ∀r /∈ ∂Ω.

The source function s is taken to be given by the surface of the domain R3 and
thus, is characterised in terms of the gradient of the binary function f . i.e.

s(r) = n̂ · ∇f(r)

Each point on this surface is taken to generate a wave function, the combination
of all such functions thereby generating a shock front that is determined by
the ‘geometry’ of the source function s. The fundamental solution to equation
(17) is [10]

uw(r) = [G(r)⊗ s(r)]f(r) (18)

where it is assumed that u(r) = 0,∀r ∈ R3 and where G is the Green’s function
for the Helmholtz operator given by (for constant k)

G(r) =
exp(ikr)

4πr
, r ∈ R3
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and

G(r) =
exp(iπ/4)√

8π

exp(ikr)√
kr

, kr >> 1, r ∈ R2

for the two- and three-dimensional cases, respectively.
In the Fresnel zone where the scale length L > r, these Green’s functions

become [10]

G(r) =
1

4πL
exp(ikL) exp(−ikm̂ · r) exp(iαr2)

and

G(r) =
exp(iπ/4)√

8πkL
exp(ikL) exp(−ikm̂ · r) exp(iαr2)

respectively, where m̂ = L/L and for wavelength λ

α =
k

2L
=

π

λL

However, noting that [18]

ik

2L
| L− r |2=

ik

2L
(L2 + r2 − 2L · r) =

ikL

2
+
ikr2

2L
− ikm̂ · r

then, ignoring scaling constants, from equation (18) we have

uw(r) = [exp(iαr2)⊗ s(r)]f(r) (19)

Given that equation (19) ignores scaling constants and that, in practice,
the Wave Velocity Potential of a shock wave is non-negative, for the purpose
of simulating the combined Velocity Potential, we consider the combined field

u(r) = γuc(r) + (1− γ){uw(r)+ | min[uw(r)] |} (20)

where γ ∈ [0, 1] determines the relative contribution of each term.

7 Results: Example Simulations

We present example simulations of the electron number density profile for the
two-dimensional domain and the quasi-three dimensional domain based on
software developed using a MATLAB environment [19]. The convolution op-
eration is performed using the MATLAB function conv2 and the option ‘same’
which returns the central part of the convolution. The function s required to
evaluate uw given in equation (19) is computed using a Prewitt Edge Detector
which is also based on the convolution operation. Thus the principal numerical
process associated with implementing the simulator is based on computing a
convolution sum.
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7.1 Two-Dimensional Simulation

Computation of equations (11), (12), (13) and (15) for the two-dimensional
domain is based on the normalised Impulse Response Function (IRF)

log(r)

‖ log(r)‖∞
, ∀r ∈ (0+, 1]

as shown in Figure 2 (left) for a 256×256 rectangular (uniformly sampled) grid.
The second IRF that must be used is for the computation of uw in equation
(19). For this purpose, given that both s are uw are taken to be real, we use
the function cos(αr2) an example of which is shown in Figure 2 (right) for the
case of α = 0.001.

Figure 2: Left: Surface plot of the Impulse Response Function used for the
two-dimensional computation of equations (11), (12), (13) and (15). Right:
Impulse Response Function used for the two-dimensional computation of equa-
tion (19).

The simulation requires a binary function f(r) to be constructed which
defines the domain of the external axial flow. We consider the simple cone
given in Figure 3 (left) where the flow is taken to occur in the horizontal
direction and from right to left (based on a regularly sampled 256× 256 grid).
An initial source of electrons generated by an electron beam emanating from
the tip of the cone is shown in Figure 3 (left). The beam is taken to be
radially and axially uniform over its spatial extent with B = 1 (in practice, the
electron number density of the beam may be expected to be radially Gaussian
and decay along its axis as briefly discussed in Section 3.1). Figure 3 (right)
provides a map of the electron number density computed using equation (13)
(for D = I = R = 1) subject to ‘conditioning’ with the binary function f
of equations (11)-(13) and where the Velocity Potential is computed using
equation (15). In comparison, Figure 4 provides maps of the electron number
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density using the same parameter settings but for the case of a compressible
flow using equation (20) for M = 2 and M = 3 with α = 0.001 and γ = 0.01.
The result shows the emergence of a bifurcation from the source in which the
maximum number density becomes separated from the beam axis.

Figure 3: Left: Configuration of the nose cone (black) and uniform electron
beam. Right: Electron number density computed using equation (13).

7.2 Quasi-Three-Dimensional Simulation

Simulating three dimensional flows is computationally intensive and is not
addressed in this paper. However, in order to investigate three-dimensional
effects in the context of the methods and results given in the previous section,
and, under the assumption that the airflow is radially symmetric, we consider
the case when the binary function f is taken to be an infinitely thin slice in the
xy-plane thereby allowing us to write f(x, y, z) = f(x, y)δ(z). From equation
(15), it is then clear that we have

u(x, y, z) =

[
1

4π
√
x2 + y2 + z2

⊗ f(x, y)

]
f(x, y)δ(z)

where ⊗ is taken to denote the convolution integral over x and y only. If we
then consider the computation of u at z = 0 we obtain

u(x, y) =

[
1

4π
√
x2 + y2

⊗ f(x, y)

]
f(x, y)δ(0)
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Figure 4: Left: Electron number density for M = 2. Right: Electron number
density for M = 3.

Similarly, with B := Bδ(z), I := Iδ(z), R := Rδ(z), the evaluation of equations
(11)-(13) at z = 0 becomes predicated on a two-dimensional convolution where

g(x, y) =
1

4π
√
x2 + y2

This three-dimensional to two-dimensional transformation allows us to con-
sider an identical simulation procedure to that described in the previous section
except that the IRF now takes the normalised form

r−1

‖r−1, ‖∞
∀r ∈ (0+, 1]

By way of an example, we show an effect that is not evident in the two-
dimensional simulation for the same parameter settings and the same beam
profile (as given in Figure 3). This is provided in Figure 5 which illustrates the
influence of the wave pattern on the electron number density using this Quasi-
Three-Dimensional (Q3D) approach. The localisation of the electron number
density shown in this figure either side of the cone is due to the presence of
a standing node where the Velocity Potential associated with the shock wave
forms a local minimum. This is an example of the possibility for electron
transport to provide a plasma screen that is spatially distinct from the locality
of source.
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Figure 5: Left: Q3D electron number density for M = 2. Right: Q3D electron
number density for M = 3.

8 Conclusions

The application of aerospace plasma screening relies on a weakly ionised plasma
in which the conductivity of the plasma is determined by the electron number
density of the plasma. However, a very weakly ionised plasma can still signifi-
cantly reduce the RCS. For a plasma with a conductivity of say 1 siemens/metre,
the skin depth is 1 mm, i.e. the length over which the electric field strength
has decayed by exp−1 or by ∼ 63%. The basic problem is to understand how
the plasma is distributed over the skin of an aerospace vehicle from its source
in the presence of air flow. It is intuitive to assume that as the plasma streams
away from the source the effects of airflow, diffusion and recombination will
significantly reduce the electron number density. This is evident from the
simulations that have been presented in Section 7 for a pencil line e-beam.

The extent of the plasma sheath that forms over the immediate boundary
of the nose cone is quite noticeable when air flow is present, an extent that is
strongly determined by the magnitude of the recombination coefficient and air
flow for a given beam energy and coefficient of ionisation. Actual values for R
along with I, D and the beam profile B (which will not be uniform as in the
idealised simulations presented here) and the flow rate depend on the operating
conditions that apply. These include the aerospace vehicle velocity, the plasma
medium, additives (readily ionisable or reactive species), the electron beam
energy, its diameter and profile.

In the supersonic case, there is evidence that the electron number density
profile is influenced by the wave patterns generated by the shock front in the
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locality of the source (for the Q3D case). However, it remains to be understood
whether it is possible to generate a more extensive plasma screen based on
electrons surfing the shock front further away from the source. It may be
expected that the plasma is partially distributed along the shock front and
thus, depending on the exact configuration of the aerospace vehicle, provide
a more extensive plasma screen. In this context the spatial distribution and
direction of the source is significant. Possible applications may include the
plasma screening of in-coming missiles, for example, against close proximity
anti-missile systems that use radar for targeting and control [20].
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