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Abstract

In this paper we consider a multi-step iteration scheme derived from

the numerical solutions for systems of linear equations. By making use

of the inequality method for vectors, we get a couple of criteria to guar-

antee the computing stability, including boundedness and convergence.
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1 Introduction

As is well known, there had been celebrated means to solve the numerical
solutions for the system of the form

x = Bx+ f, (1)

such as the Jacobi method, Gauss-Seidel method and the successive over-
relaxation method, see [3] for the details. We observe that all the methods
mentioned above are single step, that is, the new approximation x(k + 1)
depends only on the previous approximation x(k). For example, the Jacobi
iteration is given by

x(k + 1) = Bx(k) + f, k = 0, 1, 2, ... .

To use the previous values much more, we now consider a multi-step scheme
as follows

x(k + 1) = (1− ω)x(k) + ωB(αx(k)− βx(k − 1)) + ωf, k = 0, 1, 2, · · · , (2)
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where ω ∈ (0, 1), α > 0 and β ≥ 0 with α = β + 1, B ∈ R
n×n, f ∈ R

n and n
is the order of (1).

For any given initial vectors x(−1) = x−1, x(0) = x0 ∈ R
n, there exists a

unique vector sequence {x(k)}k≥1 defined by (2), which will be called a solution
of (2). In general, the solution of (2) may be viewed as {x(k)}k≥−1, or {x(k)}
for short. Note that the solution of (2) depends on the initial vectors. To
reflect this relationship, we introduce some symbols as follows. Let the integer
set {a, a+1, a+2, ..., b} be denoted by Z[a, b] and {a, a+1, a+2, ...} by Z[a,∞).
Let ϕ : Z[−1, 0] → R

n and C(Z[−1, 0],Rn) denote the set of all such ϕs. Then,
when the initial vectors x−1 = ϕ(−1), x0 = ϕ(0), the corresponding solution
of (2) can be represented by {x(k;ϕ)}k≥−1. For convenience, {x(k;ϕ)}k≥−1 is
called a solution of (2) through ϕ.

Throughout this paper, we will make use of the conceptions of absolute val-
ues and inequalities in R

n (or Rn×n). Let x, y ∈ R
n and x = (x1, x2, .., xn)

T , y =
(y1, y2, .., yn)

T . Then the symbol |x| means the vector |x| = (|x1|, |x2|, .., |xn|)
T

and x ≤ y indicates xi ≤ yi for all i ∈ Z[1, n]. The symbols x < y, x ≥ y, etc.
have similar meanings, and x ≤ y (or x < y) in R

n×n can be defined likewise.

Let I be an identity matrix. In the sequel the inequality property of ma-
trices is important, we quote as follows.

Lemma 1.1 [2] Let A ∈ R
m×m and ρ(A) denote the spectral radius of A.

If A ≥ 0 and ρ(A) < 1, then I − A is inverse and (I −A)−1 ≥ 0.

Definition 1.2 [4] Let S ⊂ R
n be bounded. If for any ϕ ∈ C(Z[−1, 0], S),

the solution {x(k;ϕ)} of (2) satisfies that x(k;ϕ) ∈ S for all k ∈ Z[−1,∞),
then the set S is said to be invariant of (2).

Definition 1.3 [4] Let {x(k;ϕ0)} be a solution of (2) through ϕ0. If for
any ϕ ∈ C(Z[−1, 0],Rn), the solution {x(k;ϕ)} of (2) satisfies that

ϕ → ϕ0 ⇒ x(k;ϕ) → x(k;ϕ0) for all k ∈ Z[−1,∞),

then {x(k;ϕ0)} is said to be stable. If for any ϕ0, {x(k;ϕ0)} is stable, then
(2) is said to be stable.

2 Main Results

Next we discuss the convergence and the computing stabilities for (2). Before
doing so, we note that (2) can be rewritten in the difference manner[1] as

∆x(k) = −ωx(k) + ωB(αx(k)− βx(k − 1)) + ωf. (3)
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Then, for any ϕ ∈ C(Z[−1, 0],Rn), the corresponding solution {x(k;ϕ)}k≥−1

of (2) satisfies that

x(k) = (1− ω)kϕ(0) + ω
k−1∑

s=0

(1− ω)k−s−1 [αBx(s)− βBx(s− 1) + f ] . (4)

The formula (4) can be verified straightforwardly. Indeed, we have from (4)
that

∆x(k) = x(k + 1)− x(k)

= (1− ω)k+1ϕ(0) + ω

k∑

s=0

(1− ω)k−s [αBx(s)− βBx(s− 1) + f ]

−

(
(1− ω)kϕ(0) + ω

k−1∑

s=0

(1− ω)k−s−1 [αBx(s)− βBx(s− 1) + f ]

)

= −ω(1− ω)kϕ(0) + ωB(αx(k)− βx(k − 1)) + ωf

−ω2

k−1∑

s=0

(1− ω)k−s−1 [αBx(s)− βBx(s− 1) + f ]

= −ωx(k) + ωB(α(x(k)− βx(k − 1)) + ωf,

which means our assertion (4) holds.

Theorem 2.1 Suppose that B ∈ R
n×n with ρ(|B|) < 1

α+β
. Then,

(i) S = {s ∈ R
n : |s| ≤ [I − (α + β)|B|]−1|f |} is an invariant set of (2);

(ii) the solution {x(k;ϕ)} of (2) is bounded for any ϕ ∈ C(Z[−1, 0],Rn).

Proof. (i) Let
U = [I − (α + β)|B|]−1|f |. (5)

Since ρ(|B|) < 1

α+β
, Lemma 1.1 implies that U ≥ 0, which means S 6= φ.

Suppose to the contrary that, there exists an m ∈ Z[1,∞) and a solution
{x(k;ϕ)} of (2) through ϕ ∈ S such that

|x(k;ϕ)| ≤ U for all k ∈ Z[−1, m− 1] (6)

and some component xv(m;ϕ) of x(m;ϕ) satisfies

|xv(m;ϕ)| > Uv, (7)

where Uv denote the v-th component of U . Then, by (4) we have

|x(m;ϕ)| ≤ (1− ω)m|ϕ(0)|+ [1− (1− ω)m][(α + β)|B|U + |f |]

= (1− ω)mU − (1− ω)m [(α + β)|B|U + |f |] + (α + β)|B|U + |f |

= [I − (α + β)|B|]−1|f |,
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which contradicts (7). Hence, |x(k;ϕ)| ≤ U for all k ∈ Z[−1,∞) when ϕ ∈
C(Z[−1, 0], S). In other words, we have proven that S is an invariant set of
(2).

(ii) Let U be defined as in (5). To prove the second, we first note that we

can find a vector f̃ ∈ R
n with |f̃ | > 0 such that |f | ≤ |f̃ |. For simplicity,

we assume that |f | > 0, then U > 0. For given ϕ ∈ C(Z[−1, 0],Rn), there
exists a λ ≥ 1 such that |ϕ(θ)| ≤ λU for θ ∈ Z[−1, 0]. Next we show that
|x(k;ϕ)| ≤ λU for all k ∈ Z[−1,∞). Otherwise, there exists m ∈ Z[1,∞) such
that

|x(k;ϕ)| ≤ λU for all k ∈ Z[−1, m− 1] (8)

but
|xv(m;ϕ)| > λUv, (9)

where the subscript has the same meaning as above. Then, similar to the proof
of (i), we reach that

|x(m;ϕ)|

≤ (1− ω)m|ϕ(0)|+ [1− (1− ω)m](λ(α + β)|B|U + λ|f |)

≤ (1− ω)mλU − (1− ω)m(λ(α + β)|B|U + λ|f |) + λ(α+ β)|B|U + λ|f |

= λU,

which is contrary to (9). As thus, {x(k;ϕ)} is bounded. The proof is complete.

Theorem 2.2 Suppose that ρ(|B|) < 1

α+β
. Then any solution {x(k;ϕ)} of

(2) converges to the root x∗ of (1).

Proof. In the following discussion, we view the term x(k;ϕ) of {x(k;ϕ)}
as x(k).

Note that Theorem 2.1(ii) implies that {x(k)− x∗} is bounded. Hence we
can set

lim sup
k→∞

|x(k)− x∗|

= (lim sup
k→∞

|x1(k)− x∗
1|, lim sup

k→∞

|x2(k)− x∗
2|, ..., lim sup

k→∞

|xn(k)− x∗
n|)

T

= x.

Now from (1)–(2) we have

x(k + 1)− x∗

= (1− ω)(x(k)− x∗) + ωαB(x(k)− x∗)− ωβB(x(k − 1)− x∗),

which yields that
x ≤ (1− ω)x+ ω|B|(α+ β)x,
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and this results in
(I − (α + β)|B|)x ≤ 0. (10)

Now invoking ρ(|B|) < 1

α+β
, from (10) we learn x = 0 and therefore,

limk→∞ x(k) = x∗, which ends our proof.

Theorem 2.3 Suppose that ρ(|B|) < 1

α+β
. Then (2) is stable.

Proof. For any given ϕ0 ∈ C(Z[−1, 0],Rn), we consider the stability of
the solution {x(k;ϕ0)} of (2). For this purpose,we employ the other solution
{x(k;ϕ)} of (2) through ϕ ∈ C(Z[−1, 0],Rn). In view of (4) it follows that

x(k;ϕ)− x(k;ϕ0)

= (1− ω)k(ϕ(0)− ϕ0(0))

+ ω

k−1∑

s=0

(1− ω)k−s−1 {αB[x(s;ϕ)− x(s;ϕ0)]− βB[x(s− 1;ϕ)− x(s− 1;ϕ0)]} .

(11)

For any vector ε ∈ R
n with ε > 0, let

U(ε) = [I − (α + β)|B|]−1ε.

Then, our hypothesis ρ(|B|) < 1

α+β
implies U(ε) ≥ 0. We assert that |ϕ(θ)−

ϕ0(θ)| ≤ U(ε) for θ ∈ Z[−1, 0] induces that |x(k;ϕ)− x(k;ϕ0)| ≤ U(ε) for all
k ∈ Z[−1,∞). Otherwise, there exists m ∈ Z[1,∞) such that

|x(k;ϕ)− x(k;ϕ0)| ≤ U(ε), k ∈ Z[0, m− 1] (12)

and the component xv(m;ϕ)− xv(m;ϕ0) of x(m;ϕ)− x(m;ϕ0) satisfies that

|xv(m;ϕ)− xv(m;ϕ0)| > Uv(ε), (13)

Analogous to the proof in Theorem 2.1, it follows fromt (11) that

|x(m;ϕ)− x(m;ϕ0)|

≤ (1− ω)m|ϕ(0)− ϕ0(0)|+ [1− (1− ω)m](|B|U(ε) + ε)

= (1− ω)mU(ε)− (1− ω)m[(α + β)|B|U(ε) + ε] + (α + β)|B|U(ε) + ε

= [I − (α + β)|B|]−1ε,

which contradicts (13). Since the ε is arbitrary, we have proved that

ϕ → ϕ0 ⇒ x(k;ϕ) → x(k;ϕ0) for all k ∈ Z[−1,∞).

Note that ϕ is arbitrary, the proof is complete.
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We remark that if the solution {x(k;ϕ)} of (2) converges to the root x∗ of
(1), then, it follows from Theorem 2.1–2.2 that

|x∗| ≤ [I − (α + β)|B|]−1|f |.

Next we end up our discussions with an example.

Example 2.4 Suppose in (1) that

B =

[
0 1
0 1/3

]
, f =

(
1
1

)
.

If we choose
ω = 0.995, α = 1.2, β = 0.2

and take the initial values

x(−1) =

(
0.5
0.5

)
, x(0) =

(
1
1

)
,

then

[I − (α + β)|B|]−1|f | =

(
29/8
15/8

)
, ρ(|B|) =

1

3
<

1

α + β

and, by (2) we obtain

x(1) =

(
2.0945
1.3648

)
, x(2) =

(
2.4361
1.4787

)
, x(3) =

(
2.5011
1.5004

)
→

(
2.5
1.5

)
,

which verifies our observation.

ACKNOWLEDGEMENTS. Thank the NNSF of China (no. 11271379)
for his support in this research.

References

[1] S. S. Cheng, Partial Difference Equations, Tayor & Francis, 2003.

[2] R. A. Horn, C. R. Johnson, Matrix Analysis, Combridge University Press,
London 1990.

[3] R. Kress, Numerical Analysis, Springer-Verlag New York, Inc., 1998.

[4] Z. Q. Zhu, S. S. Cheng, Stability analysis for multistep computational
schemes, Comput. Math. Appl. 55 (2008), 2753–2761.

Received: June, 2015


