Mathematica Aeterna, Vol. 5, 2015, no. 3, 515 - 520

Stable Analysis for a Class of Multi-Step Iteration Scheme

Wei-Jie Wang

Z3825@163.com Computer & Network Center Guangdong Polytechnic Normal University Guangzhou 510665, P. R. China

Abstract

In this paper we consider a multi-step iteration scheme derived from the numerical solutions for systems of linear equations. By making use of the inequality method for vectors, we get a couple of criteria to guarantee the computing stability, including boundedness and convergence.

Mathematics Subject Classification: 65Q10, 65L10.

Keywords: Multi-step; Iteration; Stability; Invariant set; Spectral radius.

1 Introduction

As is well known, there had been celebrated means to solve the numerical solutions for the system of the form

$$x = Bx + f,\tag{1}$$

such as the Jacobi method, Gauss-Seidel method and the successive overrelaxation method, see [3] for the details. We observe that all the methods mentioned above are single step, that is, the new approximation x(k + 1)depends only on the previous approximation x(k). For example, the Jacobi iteration is given by

$$x(k+1) = Bx(k) + f, \ k = 0, 1, 2, \dots$$

To use the previous values much more, we now consider a multi-step scheme as follows

$$x(k+1) = (1-\omega)x(k) + \omega B(\alpha x(k) - \beta x(k-1)) + \omega f, \ k = 0, 1, 2, \cdots, \ (2)$$

where $\omega \in (0, 1)$, $\alpha > 0$ and $\beta \ge 0$ with $\alpha = \beta + 1$, $B \in \mathbb{R}^{n \times n}$, $f \in \mathbb{R}^n$ and n is the order of (1).

For any given initial vectors $x(-1) = x_{-1}, x(0) = x_0 \in \mathbb{R}^n$, there exists a unique vector sequence $\{x(k)\}_{k\geq 1}$ defined by (2), which will be called a solution of (2). In general, the solution of (2) may be viewed as $\{x(k)\}_{k\geq -1}$, or $\{x(k)\}$ for short. Note that the solution of (2) depends on the initial vectors. To reflect this relationship, we introduce some symbols as follows. Let the integer set $\{a, a+1, a+2, ..., b\}$ be denoted by $\mathbb{Z}[a, b]$ and $\{a, a+1, a+2, ...\}$ by $\mathbb{Z}[a, \infty)$. Let $\varphi : \mathbb{Z}[-1, 0] \to \mathbb{R}^n$ and $C(\mathbb{Z}[-1, 0], \mathbb{R}^n)$ denote the set of all such φs . Then, when the initial vectors $x_{-1} = \varphi(-1), x_0 = \varphi(0)$, the corresponding solution of (2) can be represented by $\{x(k; \varphi)\}_{k\geq -1}$. For convenience, $\{x(k; \varphi)\}_{k\geq -1}$ is called a solution of (2) through φ .

Throughout this paper, we will make use of the conceptions of absolute values and inequalities in \mathbb{R}^n (or $\mathbb{R}^{n \times n}$). Let $x, y \in \mathbb{R}^n$ and $x = (x_1, x_2, ..., x_n)^T$, $y = (y_1, y_2, ..., y_n)^T$. Then the symbol |x| means the vector $|x| = (|x_1|, |x_2|, ..., |x_n|)^T$ and $x \leq y$ indicates $x_i \leq y_i$ for all $i \in \mathbb{Z}[1, n]$. The symbols $x < y, x \geq y$, etc. have similar meanings, and $x \leq y$ (or x < y) in $\mathbb{R}^{n \times n}$ can be defined likewise.

Let I be an identity matrix. In the sequel the inequality property of matrices is important, we quote as follows.

Lemma 1.1 [2] Let $A \in \mathbb{R}^{m \times m}$ and $\rho(A)$ denote the spectral radius of A. If $A \ge 0$ and $\rho(A) < 1$, then I - A is inverse and $(I - A)^{-1} \ge 0$.

Definition 1.2 [4] Let $\mathbb{S} \subset \mathbb{R}^n$ be bounded. If for any $\varphi \in C(\mathbb{Z}[-1,0],\mathbb{S})$, the solution $\{x(k;\varphi)\}$ of (2) satisfies that $x(k;\varphi) \in \mathbb{S}$ for all $k \in \mathbb{Z}[-1,\infty)$, then the set \mathbb{S} is said to be invariant of (2).

Definition 1.3 [4] Let $\{x(k; \varphi_0)\}$ be a solution of (2) through φ_0 . If for any $\varphi \in C(\mathbb{Z}[-1,0], \mathbb{R}^n)$, the solution $\{x(k; \varphi)\}$ of (2) satisfies that

 $\varphi \to \varphi_0 \Rightarrow x(k;\varphi) \to x(k;\varphi_0) \text{ for all } k \in \mathbb{Z}[-1,\infty),$

then $\{x(k;\varphi_0)\}$ is said to be stable. If for any φ_0 , $\{x(k;\varphi_0)\}$ is stable, then (2) is said to be stable.

2 Main Results

Next we discuss the convergence and the computing stabilities for (2). Before doing so, we note that (2) can be rewritten in the difference manner [1] as

$$\Delta x(k) = -\omega x(k) + \omega B(\alpha x(k) - \beta x(k-1)) + \omega f.$$
(3)

Then, for any $\varphi \in C(\mathbb{Z}[-1,0],\mathbb{R}^n)$, the corresponding solution $\{x(k;\varphi)\}_{k\geq -1}$ of (2) satisfies that

$$x(k) = (1-\omega)^k \varphi(0) + \omega \sum_{s=0}^{k-1} (1-\omega)^{k-s-1} \left[\alpha B x(s) - \beta B x(s-1) + f \right].$$
(4)

The formula (4) can be verified straightforwardly. Indeed, we have from (4) that

$$\begin{split} \Delta x(k) &= x(k+1) - x(k) \\ &= (1-\omega)^{k+1}\varphi(0) + \omega \sum_{s=0}^{k} (1-\omega)^{k-s} \left[\alpha B x(s) - \beta B x(s-1) + f \right] \\ &- \left((1-\omega)^{k} \varphi(0) + \omega \sum_{s=0}^{k-1} (1-\omega)^{k-s-1} \left[\alpha B x(s) - \beta B x(s-1) + f \right] \right) \\ &= -\omega (1-\omega)^{k} \varphi(0) + \omega B (\alpha x(k) - \beta x(k-1)) + \omega f \\ &- \omega^{2} \sum_{s=0}^{k-1} (1-\omega)^{k-s-1} \left[\alpha B x(s) - \beta B x(s-1) + f \right] \\ &= -\omega x(k) + \omega B (\alpha (x(k) - \beta x(k-1)) + \omega f, \end{split}$$

which means our assertion (4) holds.

Theorem 2.1 Suppose that $B \in \mathbb{R}^{n \times n}$ with $\rho(|B|) < \frac{1}{\alpha + \beta}$. Then, (i) $\mathbb{S} = \{s \in \mathbb{R}^n : |s| \leq [I - (\alpha + \beta)|B|]^{-1}|f|\}$ is an invariant set of (2); (ii) the solution $\{x(k;\varphi)\}$ of (2) is bounded for any $\varphi \in C(\mathbb{Z}[-1,0],\mathbb{R}^n)$.

Proof. (i) Let

$$U = [I - (\alpha + \beta)|B|]^{-1}|f|.$$
 (5)

Since $\rho(|B|) < \frac{1}{\alpha + \beta}$, Lemma 1.1 implies that $U \ge 0$, which means $\mathbb{S} \neq \phi$.

Suppose to the contrary that, there exists an $m \in \mathbb{Z}[1,\infty)$ and a solution $\{x(k;\varphi)\}$ of (2) through $\varphi \in \mathbb{S}$ such that

$$|x(k;\varphi)| \le U \text{ for all } k \in \mathbb{Z}[-1,m-1]$$
(6)

and some component $x_v(m;\varphi)$ of $x(m;\varphi)$ satisfies

$$|x_v(m;\varphi)| > U_v,\tag{7}$$

where U_v denote the v-th component of U. Then, by (4) we have

$$\begin{aligned} |x(m;\varphi)| &\leq (1-\omega)^{m} |\varphi(0)| + [1-(1-\omega)^{m}][(\alpha+\beta)|B|U+|f|] \\ &= (1-\omega)^{m} U - (1-\omega)^{m} [(\alpha+\beta)|B|U+|f|] + (\alpha+\beta)|B|U+|f| \\ &= [I-(\alpha+\beta)|B|]^{-1} |f|, \end{aligned}$$

which contradicts (7). Hence, $|x(k;\varphi)| \leq U$ for all $k \in \mathbb{Z}[-1,\infty)$ when $\varphi \in C(\mathbb{Z}[-1,0],\mathbb{S})$. In other words, we have proven that \mathbb{S} is an invariant set of (2).

(ii) Let U be defined as in (5). To prove the second, we first note that we can find a vector $\tilde{f} \in \mathbb{R}^n$ with $|\tilde{f}| > 0$ such that $|f| \leq |\tilde{f}|$. For simplicity, we assume that |f| > 0, then U > 0. For given $\varphi \in C(\mathbb{Z}[-1,0],\mathbb{R}^n)$, there exists a $\lambda \geq 1$ such that $|\varphi(\theta)| \leq \lambda U$ for $\theta \in \mathbb{Z}[-1,0]$. Next we show that $|x(k;\varphi)| \leq \lambda U$ for all $k \in \mathbb{Z}[-1,\infty)$. Otherwise, there exists $m \in \mathbb{Z}[1,\infty)$ such that

$$|x(k;\varphi)| \le \lambda U \text{ for all } k \in \mathbb{Z}[-1,m-1]$$
(8)

but

$$|x_v(m;\varphi)| > \lambda U_v,\tag{9}$$

where the subscript has the same meaning as above. Then, similar to the proof of (i), we reach that

$$|x(m;\varphi)| \le (1-\omega)^m |\varphi(0)| + [1-(1-\omega)^m] (\lambda(\alpha+\beta)|B|U+\lambda|f|) \le (1-\omega)^m \lambda U - (1-\omega)^m (\lambda(\alpha+\beta)|B|U+\lambda|f|) + \lambda(\alpha+\beta)|B|U+\lambda|f| = \lambda U,$$

which is contrary to (9). As thus, $\{x(k;\varphi)\}$ is bounded. The proof is complete.

Theorem 2.2 Suppose that $\rho(|B|) < \frac{1}{\alpha+\beta}$. Then any solution $\{x(k;\varphi)\}$ of (2) converges to the root x^* of (1).

Proof. In the following discussion, we view the term $x(k;\varphi)$ of $\{x(k;\varphi)\}$ as x(k).

Note that Theorem 2.1(ii) implies that $\{x(k) - x^*\}$ is bounded. Hence we can set

$$\limsup_{k \to \infty} |x(k) - x^*|$$

$$= (\limsup_{k \to \infty} |x_1(k) - x_1^*|, \limsup_{k \to \infty} |x_2(k) - x_2^*|, \dots, \limsup_{k \to \infty} |x_n(k) - x_n^*|)^T$$

$$= \overline{x}.$$

Now from (1)–(2) we have

$$x(k+1) - x^* = (1-\omega)(x(k) - x^*) + \omega \alpha B(x(k) - x^*) - \omega \beta B(x(k-1) - x^*),$$

which yields that

$$\overline{x} \le (1-\omega)\overline{x} + \omega|B|(\alpha+\beta)\overline{x},$$

and this results in

$$(I - (\alpha + \beta)|B|)\overline{x} \le 0.$$
(10)

Now invoking $\rho(|B|) < \frac{1}{\alpha+\beta}$, from (10) we learn $\overline{x} = 0$ and therefore, $\lim_{k\to\infty} x(k) = x^*$, which ends our proof.

Theorem 2.3 Suppose that $\rho(|B|) < \frac{1}{\alpha+\beta}$. Then (2) is stable.

Proof. For any given $\varphi_0 \in C(\mathbb{Z}[-1,0],\mathbb{R}^n)$, we consider the stability of the solution $\{x(k;\varphi_0)\}$ of (2). For this purpose, we employ the other solution $\{x(k;\varphi)\}$ of (2) through $\varphi \in C(\mathbb{Z}[-1,0],\mathbb{R}^n)$. In view of (4) it follows that

$$x(k;\varphi) - x(k;\varphi_0) = (1 - \omega)^k (\varphi(0) - \varphi_0(0)) + \omega \sum_{s=0}^{k-1} (1 - \omega)^{k-s-1} \{ \alpha B[x(s;\varphi) - x(s;\varphi_0)] - \beta B[x(s-1;\varphi) - x(s-1;\varphi_0)] \}.$$
(11)

For any vector $\varepsilon \in \mathbb{R}^n$ with $\varepsilon > 0$, let

$$U(\varepsilon) = [I - (\alpha + \beta)|B|]^{-1}\varepsilon.$$

Then, our hypothesis $\rho(|B|) < \frac{1}{\alpha+\beta}$ implies $U(\varepsilon) \ge 0$. We assert that $|\varphi(\theta) - \varphi_0(\theta)| \le U(\varepsilon)$ for $\theta \in \mathbb{Z}[-1,0]$ induces that $|x(k;\varphi) - x(k;\varphi_0)| \le U(\varepsilon)$ for all $k \in \mathbb{Z}[-1,\infty)$. Otherwise, there exists $m \in \mathbb{Z}[1,\infty)$ such that

$$|x(k;\varphi) - x(k;\varphi_0)| \le U(\varepsilon), k \in \mathbf{Z}[0,m-1]$$
(12)

and the component $x_v(m;\varphi) - x_v(m;\varphi_0)$ of $x(m;\varphi) - x(m;\varphi_0)$ satisfies that

$$|x_v(m;\varphi) - x_v(m;\varphi_0)| > U_v(\varepsilon), \tag{13}$$

Analogous to the proof in Theorem 2.1, it follows from (11) that

$$\begin{aligned} &|x(m;\varphi) - x(m;\varphi_0)| \\ \leq & (1-\omega)^m |\varphi(0) - \varphi_0(0)| + [1-(1-\omega)^m] (|B|U(\varepsilon) + \varepsilon) \\ = & (1-\omega)^m U(\varepsilon) - (1-\omega)^m [(\alpha+\beta)|B|U(\varepsilon) + \varepsilon] + (\alpha+\beta)|B|U(\varepsilon) + \varepsilon \\ = & [I-(\alpha+\beta)|B|]^{-1}\varepsilon, \end{aligned}$$

which contradicts (13). Since the ε is arbitrary, we have proved that

$$\varphi \to \varphi_0 \Rightarrow x(k;\varphi) \to x(k;\varphi_0) \text{ for all } k \in \mathbb{Z}[-1,\infty).$$

Note that φ is arbitrary, the proof is complete.

We remark that if the solution $\{x(k; \varphi)\}$ of (2) converges to the root x^* of (1), then, it follows from Theorem 2.1–2.2 that

$$|x^*| \le [I - (\alpha + \beta)|B|]^{-1}|f|.$$

Next we end up our discussions with an example.

Example 2.4 Suppose in (1) that

$$B = \begin{bmatrix} 0 & 1 \\ 0 & 1/3 \end{bmatrix}, \quad f = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

If we choose

$$\omega=0.995, \quad \alpha=1.2, \quad \beta=0.2$$

and take the initial values

$$x(-1) = \begin{pmatrix} 0.5\\ 0.5 \end{pmatrix}, \quad x(0) = \begin{pmatrix} 1\\ 1 \end{pmatrix},$$

then

$$[I - (\alpha + \beta)|B|]^{-1}|f| = \begin{pmatrix} 29/8\\15/8 \end{pmatrix}, \quad \rho(|B|) = \frac{1}{3} < \frac{1}{\alpha + \beta}$$

and, by (2) we obtain

$$x(1) = \begin{pmatrix} 2.0945\\ 1.3648 \end{pmatrix}, \ x(2) = \begin{pmatrix} 2.4361\\ 1.4787 \end{pmatrix}, \ x(3) = \begin{pmatrix} 2.5011\\ 1.5004 \end{pmatrix} \rightarrow \begin{pmatrix} 2.5\\ 1.5 \end{pmatrix},$$

which verifies our observation.

ACKNOWLEDGEMENTS. Thank the NNSF of China (no. 11271379) for his support in this research.

References

- [1] S. S. Cheng, Partial Difference Equations, Tayor & Francis, 2003.
- [2] R. A. Horn, C. R. Johnson, Matrix Analysis, Combridge University Press, London 1990.
- [3] R. Kress, Numerical Analysis, Springer-Verlag New York, Inc., 1998.
- [4] Z. Q. Zhu, S. S. Cheng, Stability analysis for multistep computational schemes, Comput. Math. Appl. 55 (2008), 2753–2761.

Received: June, 2015