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Abstract

In this paper we consider a multi-step iteration scheme derived from
the numerical solutions for systems of linear equations. By making use
of the inequality method for vectors, we get a couple of criteria to guar-
antee the computing stability, including boundedness and convergence.
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1 Introduction

As is well known, there had been celebrated means to solve the numerical
solutions for the system of the form

r = Bxr+ f, (1)

such as the Jacobi method, Gauss-Seidel method and the successive over-
relaxation method, see [3] for the details. We observe that all the methods
mentioned above are single step, that is, the new approximation x(k + 1)
depends only on the previous approximation x(k). For example, the Jacobi
iteration is given by

x(k+1)=Bx(k)+ f, k=0,1,2,....

To use the previous values much more, we now consider a multi-step scheme
as follows

r(k+1)=(1—-w)x(k) +wB(axk) — fx(k—1)) +wf, k=0,1,2,---, (2)
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where w € (0,1), a >0 and >0 witha=8+1, B€R"™™, fe€R"and n
is the order of (1).

For any given initial vectors x(—1) = z_1,x(0) = zg € R", there exists a
unique vector sequence {x(k)}>1 defined by (2), which will be called a solution
of (2). In general, the solution of (2) may be viewed as {x(k)}x>_1, or {z(k)}
for short. Note that the solution of (2) depends on the initial vectors. To
reflect this relationship, we introduce some symbols as follows. Let the integer
set {a,a+1,a+2,...,b} be denoted by Z|a, b] and {a, a+1,a+2, ...} by Z|a, c0).
Let ¢ : Z[—1,0] — R™ and C(Z[—1, 0], R™) denote the set of all such ¢s. Then,
when the initial vectors z_; = ¢(—1),z9 = ¢(0), the corresponding solution
of (2) can be represented by {z(k;¢)}r>—1. For convenience, {x(k;¢)}r>—1 is
called a solution of (2) through ¢.

Throughout this paper, we will make use of the conceptions of absolute val-
ues and inequalities in R™ (or R™*"). Let x,y € R and z = (1, 9, .., z,) T,y =
(Y1, %2, -, Yn)T. Then the symbol |z| means the vector |z| = (|z1|, |22|, .., |2n])T
and = < y indicates z; < y; for all i € Z[1,n]. The symbols z < y,z > y, etc.
have similar meanings, and x < y (or z < y) in R™*" can be defined likewise.

Let I be an identity matrix. In the sequel the inequality property of ma-
trices is important, we quote as follows.

Lemma 1.1 /2] Let A € R™ and p(A) denote the spectral radius of A.
If A>0 and p(A) < 1, then I — A is inverse and (I — A)~t > 0.

Definition 1.2 [4] Let S C R™ be bounded. If for any ¢ € C(Z[—-1,0],S),
the solution {x(k; )} of (2) satisfies that x(k;p) € S for all k € Z[—1,00),
then the set S is said to be invariant of (2).

Definition 1.3 [}/ Let {x(k; o)} be a solution of (2) through yo. If for
any ¢ € C(Z]—1,0],R™), the solution {x(k; )} of (2) satisfies that

© = o = x(k; ) = x(k; o) for all k € Z[—1, 00),
then {x(k; o)} is said to be stable. If for any o, {x(k; o)} is stable, then

(2) is said to be stable.

2 Main Results

Next we discuss the convergence and the computing stabilities for (2). Before
doing so, we note that (2) can be rewritten in the difference manner[1] as

Azx(k) = —wz(k) + wB(ax(k) — fz(k — 1)) + wf. (3)
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Then, for any ¢ € C(Z[—1,0],R"™), the corresponding solution {x(k;¢)}k>—1
of (2) satisfies that

k—1

2(k) = (1 —w)*e(0) +w Y (1= w)* " [aBx(s) — BBx(s — 1)+ f]. (4)

s=0

The formula (4) can be verified straightforwardly. Indeed, we have from (4)
that

Ax(k) = z(k+1)—ax(k)

k

= (1-w)"p(0) +w ) (1 —w)**[aBx(s) — BBx(s — 1) + f]

s=0

— ((1 —w)k —Huz Y=t [aBx(s) — fBx(s — 1) +f]>

= —w( - )80(0)+w3(a93( )= Pk —1)) +wf

k-1
—w? Y=~ [aBx(s) — fBx(s — 1) + f]
5= 0
= —wz(k) +wB(a(z(k) — fx(k — 1)) + wf,
which means our assertion (4) holds.

Theorem 2.1 Suppose that B € R™*"™ with p(|B|) < TB Then,

(1)S={seR":|s| <[I — (a+ B)|B||7f|} is an invariant set of (2);
(i1) the solution {z(k; )} of (2) is bounded for any ¢ € C(Z[—1,0],R").

Proof. (i) Let
U=[I—(a+B)B]"Ifl ()

Since p(|B|) < a+ﬁ, Lemma 1.1 implies that U > 0, which means S # ¢.

Suppose to the contrary that, there exists an m € Z[1,00) and a solution
{z(k; )} of (2) through ¢ € S such that

|z(k; )| < U for all k € Z[—1,m — 1] (6)
and some component x,(m; @) of x(m;p) satisfies
|zo(m; )| > U, (7)
where U, denote the v-th component of U. Then, by (4) we have

z(m; )] < (1T=w)™[e(0)] + [1 = (1 = w)"][(a+ B)[B|U +|f]]
= (1=w)"U =1 =w)™[a+B)B|IU+|fl]+ (a+ B)B|U + ||
= [I=(a+B)IBIIf,
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which contradicts (7). Hence, |z(k;p)| < U for all k € Z[—1,00) when ¢ €
C(Z]-1,0],S). In other words, we have proven that S is an invariant set of

(2).
(ii) Let U be defined as in (5). To prove the second, we first note that we

can find a vector f € R™ with |f| > 0 such that |f| < |f]. For simplicity,
we assume that |f| > 0, then U > 0. For given ¢ € C(Z[-1,0],R"), there
exists a A > 1 such that |¢(f)| < AU for 6 € Z[—1,0]. Next we show that
|z(k; )| < AU for all k € Z[—1,00). Otherwise, there exists m € Z[1, c0) such
that

lz(k; )| < AU for all k € Z|—1,m — 1] (8)

but
2o (m; )| > AU, 9)

where the subscript has the same meaning as above. Then, similar to the proof
of (i), we reach that

|z

(1- uJ)ml O) +[1 = (1 =w)"[(Me+ B)|BIU + Al f])

(1 =w)" AU = (1 = w)™(Ma + B)[B|U + Al f]) + M+ B)[BIU + Al f|
AU,

IA A

which is contrary to (9). As thus, {z(k;¢)} is bounded. The proof is complete.

Theorem 2.2 Suppose that p(|B|) < #B Then any solution {z(k; @)} of
(2) converges to the root x* of (1).

Proof. In the following discussion, we view the term z(k; @) of {z(k; )}
as z(k).

Note that Theorem 2.1(ii) implies that {z(k) — 2*} is bounded. Hence we
can set

|

limsup |z(k) — x

k—o0

= (limsup |a1 (k) — 3], limsup |zo(k) — o3|, ..., limsup |z, (k) — 2 )T
k—o0 k—o0 k—o0

= 7.

Now from (1)—(2) we have

x(k+1) -2z
= (1 —-w)(z(k)—2") +waB(z(k) —x*) —wBB(z(k — 1) — z*),

which yields that
7 < (1 —w)T +w|Bl(a + p)7,
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and this results in
(= (a+AIBpE <0 (10)

Now invoking p(|B|) < from (10) we learn T = 0 and therefore,

et
limy 00 (k) = 2*, which ends our proof.
Theorem 2.3 Suppose that p(|B|) < m Then (2) is stable.

Proof. For any given ¢q € C(Z[—1,0],R"), we consider the stability of
the solution {z(k; o)} of (2). For this purpose,we employ the other solution
{z(k; )} of (2) through p € C(Z[-1,0],R™). In view of (4) it follows that

z(k; ) — x(k; ¢o)
= (1—w)*((0) — ¢0(0))

+ wY I—wr*HaBx(s;) — z(s;p0)] — BBx(s — L) — x(s — L))} -

8 (1)

o
—_

Il
=)

For any vector € € R" with € > 0, let
Ue) =[I —(a+p)B[]™"

Then, our hypothesis p(|B|) < m implies U(g) > 0. We assert that |p(6) —

wo(0)] < Ule) for 6 € Z[—1,0] induces that |z(k; ) — z(k; po)| < U(e) for all
k € Z[—1,00). Otherwise, there exists m € Z[1, 00) such that

(ks @) — x(k; @o)| < Ule), k € Z[0,m — 1] (12)

and the component x,(m; ) — x,(m; @) of x(m;p) — x(m; py) satisfies that

|0 (m; @) — 20 (m; @o)| > Un(e), (13)

Analogous to the proof in Theorem 2.1, it follows fromt (11) that

|2(m; ) — x(m; o))
< (1—w) |£(0) = o(0)[ + [1 = (1 —w)™[(|B|lU(e) + €)

(1 —w)™U(e) - (1—W)m[(a+5)IBIU(€)+€]+(a+ﬁ)|BIU(€)+€
= [[—(a+p)B]™"

which contradicts (13). Since the ¢ is arbitrary, we have proved that
© = o= z(k;p) = wx(k;po) for all k € Z[—1,00).

Note that ¢ is arbitrary, the proof is complete.
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We remark that if the solution {z(k; )} of (2) converges to the root x* of
(1), then, it follows from Theorem 2.1-2.2 that

|| < [I = (a+B)B]'|f].
Next we end up our discussions with an example.

Example 2.4 Suppose in (1) that

o[t ] o= (2)

w=0.99, a=12 =02

If we choose

and take the initial values

0= (03 ) «0=(7),

1=t alE = (3o)g ) #1BD =5 <

and, by (2) we obtain
2.0945 2.4361 2.5011 2.5
2(1) = < 1.3648 ) o(2) = < 1.4787 ) (3) = ( 1.5004 ) ~ < 15 ) ’

which verifies our observation.

then
1

a+p
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