Spacelike Salkowski and anti-Salkowski curves with timelike principal normal in Minkowski 3-space

Ahmad T. Ali

King Abdul Aziz University, Faculty of Science,
Department of Mathematics, PO Box 80203,
Jeddah, 21589, Saudi Arabia.

Mathematics Department, Faculty of Science, Al-Azhar University,
Nasr City, 11884, Cairo, Egypt.
E-mail: atali71@yahoo.com

Abstract

A century ago, Salkowski [1] introduced a family of curves with constant curvature but non-constant torsion (Salkowski curves) and a family of curves with constant torsion but non-constant curvature (anti-Salkowski curves). Ali (2009–2010) [2], [3] adapted the definition of such curves in Minkowski 3-space and introduced an explicit parametrization of a timelike and a spacelike (with a spacelike principal normal vector) Salkowski and anti-Salkowski curves. In this paper, we introduce an explicit parametrization of a spaelike Salkowski and anti-Salkowski curves with a timelike principal normal vector in Minkowski 3-space. Moreover, we characterize them as a space curve with constant curvature or constant torsion and whose normal vector makes a constant angle with a fixed straight line.

Mathematics Subject Classification: 53C40, 53C50

Keywords: alkowski curves; curves of constant curvature or torsion; Minkowski 3-space.

1 Introduction

Salkowski (resp. anti-Salkowski) curves in Euclidean space \mathbf{E}^3 are generally known as family of curves with constant curvature (resp. torsion) but non-constant torsion (resp. curvature) with an explicit parametrization. They were

defined in an earlier paper [1] and retrieved, as an example of tangentially cubic curves [4], in a first version of Pottmann and Hofer [5]. Recently, Monterde [6] studied some of characterizations of these curves and he prove that the normal vector makes a constant angle with a fixed straight line. In (2009–2010), Ali [2], [3] adapted the definition of such curves in Minkowski 3-space. Also, he introduced an explicit parametrization of a timelike and a spacelike (with a spacelike principal normal vector) Salkowski and anti-Salkowski curves.

Analogously, in this paper, we introduce the explicit parametrization of a spacelike Salkowski and anti-Salkowski curves with a timelike principal normal vector in Minkowski space \mathbf{E}_1^3 and we study some characterizations of these curves.

2 Preliminaries

First, we briefly present theory of the curves in Minkowski 3-space as follows: The Minkowski three-dimensional space \mathbf{E}_1^3 is the real vector space \mathbf{R}^3 endowed with the standard flat Lorentzian metric given by:

$$\langle , \rangle = dx_1^2 + dx_2^2 - dx_3^2,$$

where (x_1, x_2, x_3) is a rectangular coordinate system of \mathbf{E}_1^3 . If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are arbitrary vectors in \mathbf{E}_1^3 , we define the (Lorentzian) vector product of \mathbf{u} and \mathbf{v} as the following:

$$u \times v = - \begin{vmatrix} i & j & -k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

An arbitrary vector $\mathbf{v} \in \mathbf{E}_1^3$ is said to be a spacelike if $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ or $\mathbf{v} = 0$, timelike if $\langle \mathbf{v}, \mathbf{v} \rangle < 0$, and lightlike (or null) if $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ and $\mathbf{v} \neq 0$. The norm (length) of a vector \mathbf{v} is given by $\|\mathbf{v}\| = \sqrt{|\langle \mathbf{v}, \mathbf{v} \rangle|}$. An arbitrary regular (smooth) curve $\alpha : I \subset \mathbf{R} \to \mathbf{E}_1^3$ is locally spacelike if all of its velocity vectors $\alpha'(t)$ are spacelike for each $t \in I \subset \mathbf{R}$. If α is spacelike, there exists a change of the parameter t, namely, s = s(t), such that $\|\alpha'(s)\| = 1$. We say then that α is a unit speed curve [7], [8], [9], [10], [11], [12], [13].

Given a unit speed curve α in Minkowski space \mathbf{E}_1^3 it is possible to define a Frenet frame $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)\}$ associated for each point s [14], [15]. Here \mathbf{T} , \mathbf{N} and \mathbf{B} are the tangent, principal normal and binormal vector field, respectively.

Now and in the next, we suppose that α is a spacelike curve with a timelike principal normal vector \mathbf{N} . Then $\mathbf{T}'(s) \neq 0$ is a spacelike vector independent with $\mathbf{T}(s)$. We define the curvature of α at s as $\kappa(s) = |\mathbf{T}'(s)|$. The principal normal vector $\mathbf{N}(s)$ and the binormal vector $\mathbf{B}(s)$ are defined as [16]:

$$\mathbf{N}(s) = \frac{\mathbf{T}'(s)}{\kappa(s)} = \frac{\alpha''}{|\alpha''|}, \ \mathbf{B}(s) = -\mathbf{T}(s) \times \mathbf{N}(s),$$

where the vector $\mathbf{N}(s)$ is unitary and timelike. For each s, $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is an orthonormal base of \mathbf{E}_1^3 which is called the Frenet trihedron of α . We define the torsion of α at s as:

$$\tau(s) = \langle \mathbf{N}'(s), \mathbf{B}(s) \rangle.$$

Then the Frenet formula is

$$\begin{bmatrix} \mathbf{T}' \\ \mathbf{N}' \\ \mathbf{B}' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ \kappa & 0 & \tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}, \tag{1}$$

where

$$\langle \mathbf{T}, \mathbf{T} \rangle = \langle \mathbf{B}, \mathbf{B} \rangle = 1, \langle \mathbf{N}, \mathbf{N} \rangle = -1, \langle \mathbf{T}, \mathbf{N} \rangle = \langle \mathbf{N}, \mathbf{B} \rangle = \langle \mathbf{B}, \mathbf{T} \rangle = 0.$$

3 Spacelike Salkowski curves with a timelike principal normal

In this section, we introduce the explicit parametrization of a spacelike Salkowski curves with a timelike principal normal vector in Minkowski space \mathbf{E}_1^3 as the following:

Definition 3.1 For any $m \in R$ with m > 1 or m < -1, let us define the space curve

$$\gamma_m(t) = \frac{n}{4m} \left(2\sin[t] - \frac{1+n}{1-2n}\sin[(1-2n)t] - \frac{1-n}{1+2n}\sin[(1+2n)t], \\ 2\cos[t] - \frac{1+n}{1-2n}\cos[(1-2n)t] - \frac{1-n}{1+2n}\cos[(1+2n)t], \\ \frac{1}{m}\cos[2nt] \right),$$
 (2)

with
$$n = \frac{m}{\sqrt{m^2 - 1}}$$
.

We will call a spacelike Salkowski curve with a timelike principal normal vector in Minkowski space \mathbf{E}_1^3 . One can see a special examples of such curves in the (positive case of m) figure 1 and in the (negative case of m) figure 2.

The geometric elements of this curve γ_m are the following: (1): $\langle \gamma'_m, \gamma'_m \rangle = \frac{\sin^2[nt]}{m^2-1}$, so $\|\gamma'_m\| = \frac{\sin[nt]}{\sqrt{m^2-1}}$ (2): The arc-length parameter is $s = -\frac{\cos[nt]}{m}$.

(3): The curvature $\kappa(t) = 1$ and the torsion $\tau(t) = \cot[nt]$.

(4): The Frenet frame is

204

$$\mathbf{T}(t) = \begin{pmatrix} \cos[t]\sin[nt] - n\sin[t]\cos[nt], \\ -\sin[t]\sin[nt] - n\cos[t]\cos[nt], -\frac{n}{m}\cos[nt] \end{pmatrix},$$

$$\mathbf{N}(t) = \frac{n}{m} \Big(\sin[t], \cos[t], m\Big),$$

$$\mathbf{B}(t) = \Big(-\cos[t]\cos[nt] - n\sin[t]\sin[nt],$$

$$\sin[t]\cos[nt] - n\cos[t]\sin[nt], -\frac{n}{m}\sin[nt] \Big).$$
(3)

From the expression of the normal vector, see Equation (3), we can see that the normal indicatrix, or nortrix, of a Salkowski curve (2) in Minkowski space \mathbf{E}_1^3 describes a parallel of the unit sphere. The hyperbolic angle between the timelike normal vector \mathbf{N} and the timelike vector (0,0,-1) is constant and equal to $\phi = \pm \operatorname{arccosh}[n]$. This fact is reminiscent of what happens with another important class of curves, the general helices in Minkowski space \mathbf{E}_{1}^{3} . Such a condition implies that the tangent indicatrix, or tantrix, describes a parallel in the unit sphere.

Figure 1: Some Salkowski curves for $m = \frac{3}{2}, 3, \frac{10}{9}$.

Figure 2: Some Salkowski curves for $m = -2, -4, -\frac{70}{69}$.

Lemma 3.2 Let $\alpha: I \to \mathbf{E}_1^3$ be a spacelike curve with a timelike principal normal vector parameterized by arc-length with $\kappa = 1$. The normal vector make a constant hyperbolic angle, ϕ , with a fixed straight line in space if and only if $\tau(s) = \pm \frac{s}{\sqrt{\tanh^2[\phi] - s^2}}$.

proof: (\Rightarrow) Let **d** be the unitary timelike fixed vector makes a constant hyperbolic angle ϕ with the timelike normal vector **N**. Therefore

$$\langle \mathbf{N}, \mathbf{d} \rangle = \cosh[\phi]. \tag{4}$$

Differentiating Equation (4) and using Frenet's equations (1), we get

$$\langle \mathbf{T} + \tau \mathbf{B}, \mathbf{d} \rangle = 0. \tag{5}$$

Therefore,

$$\langle \mathbf{T}, \mathbf{d} \rangle = -\tau \langle \mathbf{B}, \mathbf{d} \rangle.$$

If we put $\langle \mathbf{B}, \mathbf{d} \rangle = -b$, we can write

$$\mathbf{d} = \tau \, b \, \mathbf{T} + \cosh[\phi] \mathbf{N} - b \, \mathbf{B}.$$

From the unitary of the vector **d** we get $b = \pm \frac{\sinh[\phi]}{\sqrt{1+\tau^2}}$. Therefore, the vector **d** can be written as

$$\mathbf{d} = \pm \frac{\tau \, \sinh[\phi]}{\sqrt{1 + \tau^2}} \mathbf{T} + \cosh[\phi] \mathbf{N} \mp \frac{\sinh[\phi]}{\sqrt{1 + \tau^2}} \mathbf{B}. \tag{6}$$

If we differentiate Equation (5) again, we obtain

$$\langle \dot{\tau} \mathbf{B} + (1 + \tau^2) \mathbf{N}, \mathbf{d} \rangle = 0.$$
 (7)

Equations (6) and (7) lead to the following differential equation

$$\pm \tanh[\phi] \frac{\dot{\tau}}{(1+\tau^2)^{3/2}} + 1 = 0.$$

Integration the above equation, we get

$$\pm \tanh[\phi] \frac{\tau}{\sqrt{1+\tau^2}} + s + c = 0. \tag{8}$$

where c is an integration constant. The integration constant can disappear with a parameter change $s \to s - c$. Finally, to solve (8) with τ as unknown we express the desired result.

 (\Leftarrow) Suppose that $\tau = \pm \frac{s}{\sqrt{\tanh^2[\phi] - s^2}}$ and let us consider the timelike vector

$$\mathbf{d} = \cosh[\phi] \Big(-s \mathbf{T} + \mathbf{N} \mp \sqrt{\tanh^2[\phi] - s^2} \mathbf{B} \Big).$$

We will prove that the vector \mathbf{d} is a constant vector. Indeed, applying Frenet formula

$$\dot{\mathbf{d}} = \cosh[\phi] \Big(-\mathbf{T} - s\mathbf{N} + \mathbf{T} + \tau \mathbf{B} \mp \frac{s}{\sqrt{\tanh^2[\phi] - s^2}} \mathbf{B} \pm \tau \sqrt{\tanh^2[\phi] - s^2} \mathbf{N} \Big) = 0$$

Therefore, the vector **d** is constant and $\langle \mathbf{N}, \mathbf{d} \rangle = \cosh[\phi]$. This concludes the proof of Lemma (3.2).

Once the intrinsic or natural equations of a curve have been determined, the next step is to integrate Frenet formula with $\kappa=1$ and

$$\tau = \pm \frac{s}{\sqrt{\tanh^2[\phi] - s^2}} = \mp \frac{-\frac{s}{\tanh[\phi]}}{\sqrt{1 - \left(\frac{s}{\tanh[\phi]}\right)^2}}.$$

If we put $\cos[\theta] = -\frac{s}{\tanh[\phi]}$, the equation takes the form

$$\tau = \mp \cot[\theta] = \mp \cot\left[\arccos\left[-\frac{s}{\tanh[\phi]}\right]\right]. \tag{9}$$

Theorem 3.3 A spacelike curve has a timelike principal normal vector in Minkowski space \mathbf{E}_1^3 with $\kappa=1$ and such that their normal vector makes a constant angle with a fixed straight line is, up a rigid motion of the space or up to the antipodal map, $p \to -p$, spacelike Salkowski curve with a timelike principal normal vector.

Proof: We know from Definition 3.1 that the arc-length parameter of a Salkowski curve (2) is $s = \int_0^t \|\gamma'_m(u)\| du = -\frac{1}{m}\cos[nt]$. Therefore, $t = \frac{1}{n}\arccos[-ms]$. In terms of the arc-length curvature and torsion are then

$$\kappa(s) = 1, \quad \tau(s) = \cot[\arccos[-ms]],$$

the same intrinsic equations, with $m = \coth[\phi]$ and $n = \frac{m}{\sqrt{m^2-1}} = \cosh[\phi]$ (compare with the positive case in Equation (9)), as the ones shown in Lemma 3.2.

For the negative case in Equation (9), let us recall that if a curve α has torsion τ_{α} , then the curve $\beta(t) = -\alpha(t)$ has as torsion $\tau_{\beta}(t) = -\tau_{\alpha}(t)$, whereas curvature is preserved.

Therefore, the fundamental theorem of curves in Minkowski space states in our situation that, up a rigid motion or up to the antipodal map, the curves we are looking for are spacelike Minkowski curves with a timelike principal normal vector.

4 Spacelike anti-Salkowski curves with a timelike principal normal

As an additional material we will show in this section how to build, from a curve in Minkowski space \mathbf{E}_1^3 of constant curvature, another curve of constant torsion.

Let us recall that a curve $\alpha: I \to \mathbf{E}_1^3$, is 2-regular at a point t_0 if $\alpha'(t_0) \neq 0$ and if $\kappa_{\alpha}(t_0) \neq 0$.

Lemma 4.1 Let $\alpha: I \to \mathbf{E}_1^3$ be a regular spacelike curve with a timelike principal normal vector parameterized by arc-length with curvature κ_{α} , torsion τ_{α} and Frenet frame $\{\mathbf{T}_{\alpha}, \mathbf{N}_{\alpha}, \mathbf{B}_{\alpha}\}$. Let us $\beta(t) = \int_0^t \mathbf{T}_{\alpha}(u) \|\mathbf{B}'_{\alpha}(u)\| du$. If $s_{\alpha} \in I$ satisfies $\tau_{\alpha}(s_{\alpha}) \neq 0$, the curve β is 2-regular at s_{β} and

$$\kappa_{\beta} = \frac{\kappa_{\alpha}}{\tau_{\alpha}}, \quad \tau_{\beta} = 1, \quad \mathbf{T}_{\beta} = \mathbf{T}_{\alpha}, \quad \mathbf{N}_{\beta} = \mathbf{N}_{\alpha}, \quad \mathbf{B}_{\beta} = \mathbf{B}_{\alpha}.$$

Proof: In order to obtain the tangent vector of β let us compute

$$\mathbf{T}_{\beta}(s_{\beta}) = \dot{\beta}(s_{\beta}) = \frac{d\beta}{dt} \frac{dt}{ds_{\beta}} = \mathbf{T}_{\alpha} \|\mathbf{B}_{\alpha}'(t)\| \frac{dt}{ds_{\beta}}.$$

From the above equation, we get

$$\frac{ds_{\beta}}{dt} = \|\mathbf{B}_{\alpha}'(t)\| = \left\|\frac{\mathbf{B}_{\alpha}}{ds_{\alpha}}\frac{ds_{\alpha}}{dt}\right\| = \tau_{\alpha}\frac{ds_{\alpha}}{dt},\tag{10}$$

and

$$\mathbf{T}_{\beta}(s_{\beta}) = \mathbf{T}_{\alpha}(s_{\alpha}).$$

Differentiation the above equation using Frenet's Equations (1) we obtain

$$\dot{\mathbf{T}}_{\beta}(s_{\beta}) = \frac{d\mathbf{T}_{\alpha}}{ds_{\alpha}} \frac{ds_{\alpha}}{dt} \frac{dt}{ds_{\beta}}.$$

Using Frenet's Equations (1) and Equation (10), the above equation writes

$$\kappa_{\beta} \mathbf{N}_{\beta}(s_{\beta}) = \frac{\kappa_{\alpha}}{\tau_{\alpha}} \mathbf{N}_{\alpha}(s_{\alpha})$$

From the above equation, we get

$$\kappa_{\beta} = \frac{\kappa_{\alpha}}{\tau_{\alpha}},$$

and

$$\mathbf{N}_{\beta}(s_{\beta}) = \mathbf{N}_{\alpha}(s_{\alpha}).$$

So we have

$$\mathbf{B}_{\beta}(s_{\beta}) = -\mathbf{T}_{\beta}(s_{\beta}) \times \mathbf{N}_{\beta}(s_{\beta}) = -\mathbf{T}_{\alpha}(s_{\alpha}) \times \mathbf{N}_{\alpha}(s_{\alpha}) = \mathbf{B}_{\alpha}(s_{\alpha}).$$

Differentiating the above equation with respect to s_{β} we get $\tau_{\beta} = 1$.

Let us apply the previous result to the curve γ_m defined in Equation (2) we have the explicit parametrization of an anti-Salkowski curve as follows:

$$\beta_m(t) = \frac{n}{4m} \left(2n \cos[t] - \frac{1-n}{1+2n} \cos[(1+2n)t] + \frac{1+n}{1-2n} \cos[(1-2n)t], + 2n \sin[t] - \frac{1-n}{1+2n} \sin[(1+2n)t] + \frac{1+n}{1-2n} \sin[(1-2n)t], - \frac{1}{m} (2nt + \sin[2nt]) \right),$$
(11)

where $n = \frac{m}{\sqrt{m^2-1}}$. Let us call these curves by the name spacelike anti-Salkowski curves with a timelike principal normal vector. The presence of the non-trigonometric term 2nt in the third component of β_m makes that the change of variable studied in Section 2 for Salkowski curves does not work for anti-Salkowski. Moreover, an examples of such curves can be seen in the figure 3.

Applying Lemma 4.1 we get the following

Proposition 4.2 The curves β_m in Equation (11) are curves of constant torsion equal to 1 and non-constant curvature equal to $\tan[nt]$.

Finally, we state here the following:

Lemma 4.3 Let $\alpha: I \to \mathbf{E}_1^3$ be a regular spacelike curve with a timelike principal normal vector parameterized by arc-length with curvature κ_{α} , torsion τ_{α} and Frenet frame $\{\mathbf{T}_{\alpha}, \mathbf{N}_{\alpha}, \mathbf{B}_{\alpha}\}$. Let us consider the curve $\beta(t) = \int_0^t \mathbf{T}_{\alpha}(u) \|\mathbf{T}_{\alpha}'(u)\| du$. Then at a parameter $s_{\alpha} \in I$ such that $\kappa_{\alpha}(s_{\alpha}) \neq 0$, the curve β is 2-regular at s_{β} and

$$\kappa_{\beta} = 1, \ \tau_{\beta} = \frac{\tau_{\alpha}}{\kappa_{\alpha}}, \ \mathbf{T}_{\beta} = \mathbf{T}_{\alpha}, \ \mathbf{N}_{\beta} = \mathbf{N}_{\alpha}, \ \mathbf{B}_{\beta} = \mathbf{B}_{\alpha}.$$

Proof: The proof of this Lemma is similar as the proof of Lemma 4.1.

Theorem 4.4 The spacelike curve with a timelike principal normal vector and $\tau = 1$ such that their principal normal vectors make a constant hyperbolic angle with a fixed straight line are the spacelike anti-Salkowski curves defined in Equation (11).

Proof: Let α be a spacelike curve has a timelike principal normal vector with $\tau = 1$ and let $\beta(t) = \int_0^t \mathbf{T}_{\alpha}(u) \|\mathbf{T}'_{\alpha}(u)\| du$. By Lemma 4.3, β is a curve with constant curvature $\kappa = 1$, non-constant torsion $\tau = \frac{1}{\kappa_{\alpha}}$ and with the same principal normal vector. Therefore, β is a Salkowski curve and α is an anti-Salkowski curve in Minkowski 3-space.

Figure 3: Some anti-Salkowski curves for m=5 and $m=-\frac{3}{2}$.

References

- [1] E. Salkowski, Zur transformation von raumkurven. *Mathematische Annalen*. 66(4) (1909) 517–557.
- [2] A.T. Ali, Spacelike Salkowski and anti-Salkowski curves with spacelike principal normal in Minkowski 3-space. *Int. J. Open Problems Comp. Math.* 2 (2009) 451–460.
- [3] A.T. Ali, Timelike Salkowski and anti-Salkowski curves in Minkowski 3-space. J. Adv. Res. Dyn. Cont. Syst. 2 (2010) 17–26.
- [4] B. Kilic, K. Arslan and G. Oturk, Tangentially cubic curves in Euclidean spaces. *Differential Geometry Dynamical Systems* 10 (2008) 186–196.
- [5] H. Pottmann and J.M. Hofer, A variational approach to spline curves on surfaces. *Computer Aided Geometric Design.* 22 (2005) 693–709.
- [6] J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion. Computer Aided Geometric Design. 26 (2009) 271–278.

210 Ahmad T Ali

[7] K. Ilarslan and O. Boyacioglu, Position vectors of a spacelike W-curve in Minkowski space \mathbf{E}_1^3 . Bull. Korean Math. Soc. 44(3) (2007) 429–438.

- [8] K. Ilarslan and O. Boyacioglu, Position vectors of a timelike and a null helix in Minkowski 3-space. Chaos Soliton and Fractals 38 (2008) 1383– 1389.
- [9] A.T. Ali, Position vectors of spacelike general helices in Minkowski 3-space. Nonl. Anal. Theo. Meth. Appl. 73 (2010) 1118–1126.
- [10] A.T. Ali and R. Lopez, Slant helices in Minkowski space \mathbf{E}_1^3 . J. Korean Math. Soc.. 48 (2011) 159–167.
- [11] A.T. Ali and M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space. J. Math. Anal. Appl. 365 (2010) 559–569.
- [12] A. Ferrandez, A. Gimenez and P. Lucas, Null helices in Lorentzian space forms. *Int. J. Mod. Phys. A.* 16 (2001) 4845–4863.
- [13] R. Lopez, Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, Preprint 2008: arXiv:0810.3351v1 [math.DG].
- [14] W. Kuhnel, Differential geometry: Curves, Surfaces, Manifolds, Weisbaden: Braunschweig, (1999).
- [15] J. Walrave, Curves and surfaces in Minkowski space. Doctoral Thesis, K.U. Leuven, Fac. Sci., Leuven, (1995).
- [16] M. Bilici, On the Involutes of the spacelike curve with a timelike binormal in Minkowski 3-space. *Int. Math. Forum* 4(31) (2009) 1497–1509.

Received: April, 2011