Spacelike Salkowski and anti-Salkowski curves with timelike principal normal in Minkowski 3-space

Ahmad T. Ali
King Abdul Aziz University, Faculty of Science, Department of Mathematics, PO Box 80203, Jeddah, 21589, Saudi Arabia.
Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
E-mail: atali71@yahoo.com

Abstract

A century ago, Salkowski [1] introduced a family of curves with constant curvature but non-constant torsion (Salkowski curves) and a family of curves with constant torsion but non-constant curvature (antiSalkowski curves). Ali (2009-2010) [2], [3] adapted the definition of such curves in Minkowski 3-space and introduced an explicit parametrization of a timelike and a spacelike (with a spacelike principal normal vector) Salkowski and anti-Salkowski curves. In this paper, we introduce an explicit parametrization of a spaelike Salkowski and anti-Salkowski curves with a timelike principal normal vector in Minkowski 3-space. Moreover, we characterize them as a space curve with constant curvature or constant torsion and whose normal vector makes a constant angle with a fixed straight line.

Mathematics Subject Classification: 53C40, 53C50
Keywords: alkowski curves; curves of constant curvature or torsion; Minkowski 3-space.

1 Introduction

Salkowski (resp. anti-Salkowski) curves in Euclidean space \mathbf{E}^{3} are generally known as family of curves with constant curvature (resp. torsion) but nonconstant torsion (resp. curvature) with an explicit parametrization. They were
defined in an earlier paper [1] and retrieved, as an example of tangentially cubic curves [4], in a first version of Pottmann and Hofer [5]. Recently, Monterde [6] studied some of characterizations of these curves and he prove that the normal vector makes a constant angle with a fixed straight line. In (20092010), Ali [2], [3] adapted the definition of such curves in Minkowski 3-space. Also, he introduced an explicit parametrization of a timelike and a spacelike (with a spacelike principal normal vector) Salkowski and anti-Salkowski curves.

Analogously, in this paper, we introduce the explicit parametrization of a spacelike Salkowski and anti-Salkowski curves with a timelike principal normal vector in Minkowski space \mathbf{E}_{1}^{3} and we study some characterizations of these curves.

2 Preliminaries

First, we briefly present theory of the curves in Minkowski 3-space as follows:
The Minkowski three-dimensional space \mathbf{E}_{1}^{3} is the real vector space \mathbf{R}^{3} endowed with the standard flat Lorentzian metric given by:

$$
\langle,\rangle=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2},
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of \mathbf{E}_{1}^{3}. If $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ are arbitrary vectors in \mathbf{E}_{1}^{3}, we define the (Lorentzian) vector product of \mathbf{u} and \mathbf{v} as the following:

$$
u \times v=-\left|\begin{array}{ccc}
i & j & -k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

An arbitrary vector $\mathbf{v} \in \mathbf{E}_{1}^{3}$ is said to be a spacelike if $\langle\mathbf{v}, \mathbf{v}\rangle>0$ or $\mathbf{v}=0$, timelike if $\langle\mathbf{v}, \mathbf{v}\rangle<0$, and lightlike (or null) if $\langle\mathbf{v}, \mathbf{v}\rangle=0$ and $\mathbf{v} \neq 0$. The norm (length) of a vector \mathbf{v} is given by $\|\mathbf{v}\|=\sqrt{|\langle\mathbf{v}, \mathbf{v}\rangle|}$. An arbitrary regular (smooth) curve $\alpha: I \subset \mathbf{R} \rightarrow \mathbf{E}_{1}^{3}$ is locally spacelike if all of its velocity vectors $\alpha^{\prime}(t)$ are spacelike for each $t \in I \subset \mathbf{R}$. If α is spacelike, there exists a change of the parameter t, namely, $s=s(t)$, such that $\left\|\alpha^{\prime}(s)\right\|=1$. We say then that α is a unit speed curve [7], [8], [9], [10], [11], [12], [13].

Given a unit speed curve α in Minkowski space \mathbf{E}_{1}^{3} it is possible to define a Frenet frame $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)\}$ associated for each point s [14], [15]. Here \mathbf{T}, \mathbf{N} and \mathbf{B} are the tangent, principal normal and binormal vector field, respectively.

Now and in the next, we suppose that α is a spacelike curve with a timelike principal normal vector \mathbf{N}. Then $\mathbf{T}^{\prime}(s) \neq 0$ is a spacelike vector independent with $\mathbf{T}(s)$. We define the curvature of α at s as $\kappa(s)=\left|\mathbf{T}^{\prime}(s)\right|$. The principal normal vector $\mathbf{N}(s)$ and the binormal vector $\mathbf{B}(s)$ are defined as [16]:

$$
\mathbf{N}(s)=\frac{\mathbf{T}^{\prime}(s)}{\kappa(s)}=\frac{\alpha^{\prime \prime}}{\left|\alpha^{\prime \prime}\right|}, \quad \mathbf{B}(s)=-\mathbf{T}(s) \times \mathbf{N}(s),
$$

where the vector $\mathbf{N}(s)$ is unitary and timelike. For each $s,\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is an orthonormal base of \mathbf{E}_{1}^{3} which is called the Frenet trihedron of α. We define the torsion of α at s as:

$$
\tau(s)=\left\langle\mathbf{N}^{\prime}(s), \mathbf{B}(s)\right\rangle
$$

Then the Frenet formula is

$$
\left[\begin{array}{l}
\mathbf{T}^{\prime} \tag{1}\\
\mathbf{N}^{\prime} \\
\mathbf{B}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
0 & \kappa & 0 \\
\kappa & 0 & \tau \\
0 & \tau & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{T} \\
\mathbf{N} \\
\mathbf{B}
\end{array}\right]
$$

where

$$
\langle\mathbf{T}, \mathbf{T}\rangle=\langle\mathbf{B}, \mathbf{B}\rangle=1,\langle\mathbf{N}, \mathbf{N}\rangle=-1,\langle\mathbf{T}, \mathbf{N}\rangle=\langle\mathbf{N}, \mathbf{B}\rangle=\langle\mathbf{B}, \mathbf{T}\rangle=0 .
$$

3 Spacelike Salkowski curves with a timelike principal normal

In this section, we introduce the explicit parametrization of a spacelike Salkowski curves with a timelike principal normal vector in Minkowski space \mathbf{E}_{1}^{3} as the following:

Definition 3.1 For any $m \in R$ with $m>1$ or $m<-1$, let us define the space curve

$$
\begin{align*}
\gamma_{m}(t)=\frac{n}{4 m}(& 2 \sin [t]-\frac{1+n}{1-2 n} \sin [(1-2 n) t]-\frac{1-n}{1+2 n} \sin [(1+2 n) t] \\
& 2 \cos [t]-\frac{1+n}{1-2 n} \cos [(1-2 n) t]-\frac{1-n}{1+2 n} \cos [(1+2 n) t] \tag{2}\\
& \left.\frac{1}{m} \cos [2 n t]\right)
\end{align*}
$$

with $n=\frac{m}{\sqrt{m^{2}-1}}$.
We will call a spacelike Salkowski curve with a timelike principal normal vector in Minkowski space \mathbf{E}_{1}^{3}. One can see a special examples of such curves in the (positive case of m) figure 1 and in the (negative case of m) figure 2 .

The geometric elements of this curve γ_{m} are the following:
(1): $\left\langle\gamma_{m}^{\prime}, \gamma_{m}^{\prime}\right\rangle=\frac{\sin ^{2}[n t]}{m^{2}-1}$, so $\left\|\gamma_{m}^{\prime}\right\|=\frac{\sin [n t]}{\sqrt{m^{2}-1}}$
(2): The arc-length parameter is $s=-\frac{\cos [n t]}{m}$.
(3): The curvature $\kappa(t)=1$ and the torsion $\tau(t)=\cot [n t]$.
(4): The Frenet frame is

$$
\begin{align*}
\mathbf{T}(t)= & (\cos [t] \sin [n t]-n \sin [t] \cos [n t], \\
& \left.-\sin [t] \sin [n t]-n \cos [t] \cos [n t],-\frac{n}{m} \cos [n t]\right), \\
\mathbf{N}(t)= & \frac{n}{m}(\sin [t], \cos [t], m), \tag{3}\\
\mathbf{B}(t)= & (-\cos [t] \cos [n t]-n \sin [t] \sin [n t], \\
& \left.\sin [t] \cos [n t]-n \cos [t] \sin [n t],-\frac{n}{m} \sin [n t]\right) .
\end{align*}
$$

From the expression of the normal vector, see Equation (3), we can see that the normal indicatrix, or nortrix, of a Salkowski curve (2) in Minkowski space \mathbf{E}_{1}^{3} describes a parallel of the unit sphere. The hyperbolic angle between the timelike normal vector \mathbf{N} and the timelike vector $(0,0,-1)$ is constant and equal to $\phi= \pm \operatorname{arccosh}[n]$. This fact is reminiscent of what happens with another important class of curves, the general helices in Minkowski space \mathbf{E}_{1}^{3}. Such a condition implies that the tangent indicatrix, or tantrix, describes a parallel in the unit sphere.

Figure 1: Some Salkowski curves for $m=\frac{3}{2}, 3, \frac{10}{9}$.

Figure 2: Some Salkowski curves for $m=-2,-4,-\frac{70}{69}$.

Lemma 3.2 Let $\alpha: I \rightarrow \mathbf{E}_{1}^{3}$ be a spacelike curve with a timelike principal normal vector parameterized by arc-length with $\kappa=1$. The normal vector make a constant hyperbolic angle, ϕ, with a fixed straight line in space if and only if $\tau(s)= \pm \frac{s}{\sqrt{\tanh ^{2}[\phi]-s^{2}}}$.
proof: (\Rightarrow) Let \mathbf{d} be the unitary timelike fixed vector makes a constant hyperbolic angle ϕ with the timelike normal vector \mathbf{N}. Therefore

$$
\begin{equation*}
\langle\mathbf{N}, \mathbf{d}\rangle=\cosh [\phi] . \tag{4}
\end{equation*}
$$

Differentiating Equation (4) and using Frenet's equations (1), we get

$$
\begin{equation*}
\langle\mathbf{T}+\tau \mathbf{B}, \mathbf{d}\rangle=0 . \tag{5}
\end{equation*}
$$

Therefore,

$$
\langle\mathbf{T}, \mathbf{d}\rangle=-\tau\langle\mathbf{B}, \mathbf{d}\rangle .
$$

If we put $\langle\mathbf{B}, \mathbf{d}\rangle=-b$, we can write

$$
\mathbf{d}=\tau b \mathbf{T}+\cosh [\phi] \mathbf{N}-b \mathbf{B} .
$$

From the unitary of the vector \mathbf{d} we get $b= \pm \frac{\sinh [\phi]}{\sqrt{1+\tau^{2}}}$. Therefore, the vector \mathbf{d} can be written as

$$
\begin{equation*}
\mathbf{d}= \pm \frac{\tau \sinh [\phi]}{\sqrt{1+\tau^{2}}} \mathbf{T}+\cosh [\phi] \mathbf{N} \mp \frac{\sinh [\phi]}{\sqrt{1+\tau^{2}}} \mathbf{B} . \tag{6}
\end{equation*}
$$

If we differentiate Equation (5) again, we obtain

$$
\begin{equation*}
\left\langle\dot{\tau} \mathbf{B}+\left(1+\tau^{2}\right) \mathbf{N}, \mathbf{d}\right\rangle=0 . \tag{7}
\end{equation*}
$$

Equations (6) and (7) lead to the following differential equation

$$
\pm \tanh [\phi] \frac{\dot{\tau}}{\left(1+\tau^{2}\right)^{3 / 2}}+1=0
$$

Integration the above equation, we get

$$
\begin{equation*}
\pm \tanh [\phi] \frac{\tau}{\sqrt{1+\tau^{2}}}+s+c=0 \tag{8}
\end{equation*}
$$

where c is an integration constant. The integration constant can disappear with a parameter change $s \rightarrow s-c$. Finally, to solve (8) with τ as unknown we express the desired result.
(\Leftarrow) Suppose that $\tau= \pm \frac{s}{\sqrt{\tanh ^{2}[\phi]-s^{2}}}$ and let us consider the timelike vector

$$
\mathbf{d}=\cosh [\phi]\left(-s \mathbf{T}+\mathbf{N} \mp \sqrt{\tanh ^{2}[\phi]-s^{2}} \mathbf{B}\right) .
$$

We will prove that the vector \mathbf{d} is a constant vector. Indeed, applying Frenet formula
$\dot{\mathbf{d}}=\cosh [\phi]\left(-\mathbf{T}-s \mathbf{N}+\mathbf{T}+\tau \mathbf{B} \mp \frac{s}{\sqrt{\tanh ^{2}[\phi]-s^{2}}} \mathbf{B} \pm \tau \sqrt{\tanh ^{2}[\phi]-s^{2}} \mathbf{N}\right)=0$
Therefore, the vector \mathbf{d} is constant and $\langle\mathbf{N}, \mathbf{d}\rangle=\cosh [\phi]$. This concludes the proof of Lemma (3.2).

Once the intrinsic or natural equations of a curve have been determined, the next step is to integrate Frenet formula with $\kappa=1$ and

$$
\tau= \pm \frac{s}{\sqrt{\tanh ^{2}[\phi]-s^{2}}}=\mp \frac{-\frac{s}{\tanh [\phi]}}{\sqrt{1-\left(\frac{s}{\tanh [\phi]}\right)^{2}}}
$$

If we put $\cos [\theta]=-\frac{s}{\tanh [\phi]}$, the equation takes the form

$$
\begin{equation*}
\tau=\mp \cot [\theta]=\mp \cot \left[\arccos \left[-\frac{s}{\tanh [\phi]}\right]\right] . \tag{9}
\end{equation*}
$$

Theorem 3.3 A spacelike curve has a timelike principal normal vector in Minkowski space \mathbf{E}_{1}^{3} with $\kappa=1$ and such that their normal vector makes a constant angle with a fixed straight line is, up a rigid motion of the space or up to the antipodal map, $p \rightarrow-p$, spacelike Salkowski curve with a timelike principal normal vector.

Proof: We know from Definition 3.1 that the arc-length parameter of a Salkowski curve (2) is $s=\int_{0}^{t}\left\|\gamma_{m}^{\prime}(u)\right\| d u=-\frac{1}{m} \cos [n t]$. Therefore, $t=$ $\frac{1}{n} \arccos [-m s]$. In terms of the arc-length curvature and torsion are then

$$
\kappa(s)=1, \quad \tau(s)=\cot [\arccos [-m s]],
$$

the same intrinsic equations, with $m=\operatorname{coth}[\phi]$ and $n=\frac{m}{\sqrt{m^{2}-1}}=\cosh [\phi]$ (compare with the positive case in Equation (9)), as the ones shown in Lemma 3.2.

For the negative case in Equation (9), let us recall that if a curve α has torsion τ_{α}, then the curve $\beta(t)=-\alpha(t)$ has as torsion $\tau_{\beta}(t)=-\tau_{\alpha}(t)$, whereas curvature is preserved.

Therefore, the fundamental theorem of curves in Minkowski space states in our situation that, up a rigid motion or up to the antipodal map, the curves we are looking for are spacelike Minkowski curves with a timelike principal normal vector.

4 Spacelike anti-Salkowski curves with a timelike principal normal

As an additional material we will show in this section how to build, from a curve in Minkowski space \mathbf{E}_{1}^{3} of constant curvature, another curve of constant torsion.

Let us recall that a curve $\alpha: I \rightarrow \mathbf{E}_{1}^{3}$, is 2-regular at a point t_{0} if $\alpha^{\prime}\left(t_{0}\right) \neq 0$ and if $\kappa_{\alpha}\left(t_{0}\right) \neq 0$.

Lemma 4.1 Let $\alpha: I \rightarrow \mathbf{E}_{1}^{3}$ be a regular spacelike curve with a timelike principal normal vector parameterized by arc-length with curvature κ_{α}, torsion τ_{α} and Frenet frame $\left\{\mathbf{T}_{\alpha}, \mathbf{N}_{\alpha}, \mathbf{B}_{\alpha}\right\}$. Let us $\beta(t)=\int_{0}^{t} \mathbf{T}_{\alpha}(u)\left\|\mathbf{B}_{\alpha}^{\prime}(u)\right\| d u$. If $s_{\alpha} \in I$ satisfies $\tau_{\alpha}\left(s_{\alpha}\right) \neq 0$, the curve β is 2-regular at s_{β} and

$$
\kappa_{\beta}=\frac{\kappa_{\alpha}}{\tau_{\alpha}}, \quad \tau_{\beta}=1, \quad \mathbf{T}_{\beta}=\mathbf{T}_{\alpha}, \quad \mathbf{N}_{\beta}=\mathbf{N}_{\alpha}, \quad \mathbf{B}_{\beta}=\mathbf{B}_{\alpha}
$$

Proof: In order to obtain the tangent vector of β let us compute

$$
\mathbf{T}_{\beta}\left(s_{\beta}\right)=\dot{\beta}\left(s_{\beta}\right)=\frac{d \beta}{d t} \frac{d t}{d s_{\beta}}=\mathbf{T}_{\alpha}\left\|\mathbf{B}_{\alpha}^{\prime}(t)\right\| \frac{d t}{d s_{\beta}} .
$$

From the above equation, we get

$$
\begin{equation*}
\frac{d s_{\beta}}{d t}=\left\|\mathbf{B}_{\alpha}^{\prime}(t)\right\|=\left\|\frac{\mathbf{B}_{\alpha}}{d s_{\alpha}} \frac{d s_{\alpha}}{d t}\right\|=\tau_{\alpha} \frac{d s_{\alpha}}{d t}, \tag{10}
\end{equation*}
$$

and

$$
\mathbf{T}_{\beta}\left(s_{\beta}\right)=\mathbf{T}_{\alpha}\left(s_{\alpha}\right)
$$

Differentiation the above equation using Frenet's Equations (1) we obtain

$$
\dot{\mathbf{T}}_{\beta}\left(s_{\beta}\right)=\frac{d \mathbf{T}_{\alpha}}{d s_{\alpha}} \frac{d s_{\alpha}}{d t} \frac{d t}{d s_{\beta}} .
$$

Using Frenet's Equations (1) and Equation (10), the above equation writes

$$
\kappa_{\beta} \mathbf{N}_{\beta}\left(s_{\beta}\right)=\frac{\kappa_{\alpha}}{\tau_{\alpha}} \mathbf{N}_{\alpha}\left(s_{\alpha}\right)
$$

From the above equation, we get

$$
\kappa_{\beta}=\frac{\kappa_{\alpha}}{\tau_{\alpha}},
$$

and

$$
\mathbf{N}_{\beta}\left(s_{\beta}\right)=\mathbf{N}_{\alpha}\left(s_{\alpha}\right) .
$$

So we have

$$
\mathbf{B}_{\beta}\left(s_{\beta}\right)=-\mathbf{T}_{\beta}\left(s_{\beta}\right) \times \mathbf{N}_{\beta}\left(s_{\beta}\right)=-\mathbf{T}_{\alpha}\left(s_{\alpha}\right) \times \mathbf{N}_{\alpha}\left(s_{\alpha}\right)=\mathbf{B}_{\alpha}\left(s_{\alpha}\right)
$$

Differentiating the above equation with respect to s_{β} we get $\tau_{\beta}=1$.
Let us apply the previous result to the curve γ_{m} defined in Equation (2) we have the explicit parametrization of an anti-Salkowski curve as follows:

$$
\begin{align*}
\beta_{m}(t)=\frac{n}{4 m}(& 2 n \cos [t]-\frac{1-n}{1+2 n} \cos [(1+2 n) t]+\frac{1+n}{1-2 n} \cos [(1-2 n) t] \\
& +2 n \sin [t]-\frac{1-n}{1+2 n} \sin [(1+2 n) t]+\frac{1+n}{1-2 n} \sin [(1-2 n) t] \tag{11}\\
& \left.-\frac{1}{m}(2 n t+\sin [2 n t])\right)
\end{align*}
$$

where $n=\frac{m}{\sqrt{m^{2}-1}}$. Let us call these curves by the name spacelike anti-Salkowski curves with a timelike principal normal vector. The presence of the nontrigonometric term $2 n t$ in the third component of β_{m} makes that the change of variable studied in Section 2 for Salkowski curves does not work for antiSalkowski. Moreover, an examples of such curves can be seen in the figure 3.

Applying Lemma 4.1 we get the following
Proposition 4.2 The curves β_{m} in Equation (11) are curves of constant torsion equal to 1 and non-constant curvature equal to $\tan [n t]$.

Finally, we state here the following:
Lemma 4.3 Let $\alpha: I \rightarrow \mathbf{E}_{1}^{3}$ be a regular spacelike curve with a timelike principal normal vector parameterized by arc-length with curvature κ_{α}, torsion τ_{α} and Frenet frame $\left\{\mathbf{T}_{\alpha}, \mathbf{N}_{\alpha}, \mathbf{B}_{\alpha}\right\}$. Let us consider the curve $\beta(t)=$ $\int_{0}^{t} \mathbf{T}_{\alpha}(u)\left\|\mathbf{T}_{\alpha}^{\prime}(u)\right\| d u$. Then at a parameter $s_{\alpha} \in I$ such that $\kappa_{\alpha}\left(s_{\alpha}\right) \neq 0$, the curve β is 2-regular at s_{β} and

$$
\kappa_{\beta}=1, \quad \tau_{\beta}=\frac{\tau_{\alpha}}{\kappa_{\alpha}}, \quad \mathbf{T}_{\beta}=\mathbf{T}_{\alpha}, \quad \mathbf{N}_{\beta}=\mathbf{N}_{\alpha}, \quad \mathbf{B}_{\beta}=\mathbf{B}_{\alpha}
$$

Proof: The proof of this Lemma is similar as the proof of Lemma 4.1.
Theorem 4.4 The spacelike curve with a timelike principal normal vector and $\tau=1$ such that their principal normal vectors make a constant hyperbolic angle with a fixed straight line are the spacelike anti-Salkowski curves defined in Equation (11).

Proof: Let α be a spacelike curve has a timelike principal normal vector with $\tau=1$ and let $\beta(t)=\int_{0}^{t} \mathbf{T}_{\alpha}(u)\left\|\mathbf{T}_{\alpha}^{\prime}(u)\right\| d u$. By Lemma 4.3, β is a curve with constant curvature $\kappa=1$, non-constant torsion $\tau=\frac{1}{\kappa_{\alpha}}$ and with the same principal normal vector. Therefore, β is a Salkowski curve and α is an anti-Salkowski curve in Minkowski 3-space.

Figure 3: Some anti-Salkowski curves for $m=5$ and $m=-\frac{3}{2}$.

References

[1] E. Salkowski, Zur transformation von raumkurven. Mathematische Annalen. 66(4) (1909) 517-557.
[2] A.T. Ali, Spacelike Salkowski and anti-Salkowski curves with spacelike principal normal in Minkowski 3-space. Int. J. Open Problems Comp. Math. 2 (2009) 451-460.
[3] A.T. Ali, Timelike Salkowski and anti-Salkowski curves in Minkowski 3space. J. Adv. Res. Dyn. Cont. Syst. 2 (2010) 17-26.
[4] B. Kilic, K. Arslan and G. Oturk, Tangentially cubic curves in Euclidean spaces. Differential Geometry - Dynamical Systems 10 (2008) 186-196.
[5] H. Pottmann and J.M. Hofer, A variational approach to spline curves on surfaces. Computer Aided Geometric Design. 22 (2005) 693-709.
[6] J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion. Computer Aided Geometric Design. 26 (2009) 271-278.
[7] K. Ilarslan and O. Boyacioglu, Position vectors of a spacelike W-curve in Minkowski space \mathbf{E}_{1}^{3}. Bull. Korean Math. Soc. 44(3) (2007) 429-438.
[8] K. Ilarslan and O. Boyacioglu, Position vectors of a timelike and a null helix in Minkowski 3-space. Chaos Soliton and Fractals 38 (2008) 13831389.
[9] A.T. Ali, Position vectors of spacelike general helices in Minkowski 3space. Nonl. Anal. Theo. Meth. Appl. 73 (2010) 1118-1126.
[10] A.T. Ali and R. Lopez, Slant helices in Minkowski space \mathbf{E}_{1}^{3}. J. Korean Math. Soc.. 48 (2011) 159-167.
[11] A.T. Ali and M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space. J. Math. Anal. Appl. 365 (2010) 559-569.
[12] A. Ferrandez, A. Gimenez and P. Lucas, Null helices in Lorentzian space forms. Int. J. Mod. Phys. A. 16 (2001) 4845-4863.
[13] R. Lopez, Differential Geometry of Curves and Surfaces in LorentzMinkowski Space, Preprint 2008: arXiv:0810.3351v1 [math.DG].
[14] W. Kuhnel, Differential geometry: Curves, Surfaces, Manifolds, Weisbaden: Braunschweig, (1999).
[15] J. Walrave, Curves and surfaces in Minkowski space. Doctoral Thesis, K.U. Leuven, Fac. Sci., Leuven, (1995).
[16] M. Bilici, On the Involutes of the spacelike curve with a timelike binormal in Minkowski 3-space. Int. Math. Forum 4(31) (2009) 1497-1509.

Received: April, 2011

