Some Results on $T^{i} - \Gamma - AG$ (*i* = 1, 2, 3, 4) groupoids

A. R. Shabani and H. Rasouli*

Department of Mathematics, College of Basic Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran.

ashabani@srbiau.ac.ir

hrasouli@ srbiau.ac.ir

Abstract

Non-associatione algebraic stractures are of interest to consider for their remarkable properties. In this paper, we generalize notions of the $T^i - AG$ -groupoids to $T^i - \Gamma - AG$ -groupoids. Then we investigate some properties of $T^i - \Gamma - AG$ -groupoids (i = 1, 2, 3, 4) and prove that every $T^1 - \Gamma - AG$ -groupoid is Γ -paramedical, every $T^2 - \Gamma - AG$ - groupoid is transitively commutative, every $\Gamma - AG$ - band is $T^3 - \Gamma - AG$ - groupoid and every $T^4 - \Gamma - AG$ - groupoid with a left identity is a $Bol^* - \Gamma - AG$ -groupoid.

Keywords: Γ - semigroup, Γ - AG -groupoid, $T^i - \Gamma - AG$ -groupoids (i = 1, 2, 3, 4), nuclear square and $Bol^* - \Gamma - AG$ -groupoid.

1.Introduction

The idea of generalization of communicative semigroups was introduced in 1977 by M.A.Kazim and M.Naseerudin. They named this structure as the left almost semigroup (LA-semigroup) in [2]. It is also called as Abel-Grassmann's groupoid (AG-groupoid) in [1,2]. In generalizing this notion the new structure $\Gamma - AG$ groupoid is also defined by T.Shah and Rahman in [6]. In this paper we extend certain properties of AG-groupoid to $\Gamma - AG$ -groupoid.

Some new results on T^1 , T^2 and $T^4 - AG$ - groupoids have been recently studied by Ahmad [3]. We generalize these results and investigate some properties of T^1 , T^2 and $T^4 - \Gamma - AG$ - groupoids, and also study the T^3 property.

Let S and Γ be non-empty sets we call S to be a Γ -semigroup if there exists a mapping $S \times \Gamma \times S \to S$ writing (a, γ, b) by $a\gamma b$, such that S satisfies the identity

 $(a\gamma b)\beta c = a\gamma(b\beta c)$ for all $a, b, c \in S$ and $\gamma, \beta \in \Gamma$.

Following [5,6] we first recall the preliminary definitions:

Definition 1.1.[6] Let S and Γ be non-empty sets we call S to be a $\Gamma - AG$ -groupoid if there exists a mapping $S \times \Gamma \times S \to S$ writing (a, γ, b) by $a\gamma b$, such

that S satisfies the identity $(a\gamma b)\beta c = (c\gamma b)\beta a$ for all $a, b, c \in S$ and $\gamma, \beta \in \Gamma$.

Definition 1.2.[6] An element $e \in S$ is called a left identity of Γ -AG-groupoid if $e\gamma a = a$ for all $a \in S$ and $\gamma \in \Gamma$.

Definition 1.3.[5]A $\Gamma - AG$ -groupoids is called Γ -medial if for every $a, b, c, d \in S$ and $\gamma, \beta \in \Gamma$, $(a\alpha b)\beta(c \gamma d) = (a\alpha c)\beta(b \gamma d)$.

Definition 1.4.[5] A $\Gamma - AG$ -groupoids is called Γ -Paramedial if for every $a, b, c, d \in S$ and $\gamma, \beta \in \Gamma$, $(a\alpha b)\beta(c\gamma d) = (d\alpha b)\beta(c\gamma a)$.

Definition 1.5.[5] A $\Gamma - AG$ -groupoid *S* is called a locally associative if for every $a \in S$ and $\beta, \gamma \in \Gamma$ it satisfies $(a\gamma a)\beta a = a\gamma(a\beta a)$.

Definition 1.6.[5] An element a of $\Gamma - AG$ -groupoid *S* is called $\{\gamma\}$ -idempotent that $\gamma \in \Gamma$ if $a\gamma a = a$.

Definition 1.7.[5] A $\Gamma - AG$ -groupoid *S* is called a Γ - idempotent if every their element be $\{\gamma\}$ -idempotent for every $\gamma \in \Gamma$

In the following we introduce certain definitions which are in fact the generalizations of the definitions of the references[4-8].

Definition 1.8. A $\Gamma - AG$ -groupoid is called a $T^1 - \Gamma - AG$ -groupoid if for every $a, b, c, d \in S$, $\gamma \in \Gamma$, $a\gamma b = c\gamma d$ implies $b\gamma a = d\gamma c$.

Definition 1.9. A $\Gamma - AG$ -groupoid is called a $T^2 - \Gamma - AG$ -groupoid if for every $a, b, c, d \in S$, $\gamma \in \Gamma$, $a\gamma b = c\gamma d$ implies $a\gamma c = b\gamma d$.

Definition 1.10. A $\Gamma - AG$ -groupoid S, for every $a, b, c, d \in S$, $\gamma \in \Gamma$ is called a

(i) $T_l^3 - \Gamma - AG$ -groupoid, if $a\gamma b = a\gamma c$ implies $b\gamma a = c\gamma a$,

(ii) $T_r^3 - \Gamma - AG$ -groupoid, if $b\gamma a = c\gamma a$ implies $a\gamma b = a\gamma c$,

(iii) $T^3 - \Gamma - AG$ -groupoid, if it is both T_1^3 and $T_r^3 - \Gamma - AG$ -groupoids.

Definition 1. 11. A Γ -AG-groupoid for every $a, b, c, d \in S$, $\gamma \in \Gamma$ is called a

(i) $T_f^4 - \Gamma - AG$ -groupoid, if $a\gamma b = c\gamma d$ implies $a\gamma d = c\gamma b$,

(ii) $T_b^4 - \Gamma - AG$ -groupoid, if $a\gamma b = c\gamma d$ implies $d\gamma a = b\gamma c$,

(iii) $T^4 - \Gamma - AG$ -groupoid, if it is both T_f^4 and $T_h^4 - \Gamma - AG$ -groupoid.

Definition 1.12. A Γ -*AG*-groupoid for every $a, b, c, d \in S$, $\alpha, \beta, \gamma \in \Gamma$ is called a

(i) Left nuclear square, if $a_{\alpha}^2 \beta(b \gamma c) = (a_{\alpha}^2 \beta b) \gamma c$, that $a_{\alpha}^2 = a \alpha a$,

(ii)Right nuclear square, if $(a\alpha b)\gamma c_{\beta}^{2} = a\alpha (b\gamma c_{\beta}^{2})$,

(iii) Middle nuclear square, if $(a\alpha b_{\beta}^2)\gamma c = a\alpha (b_{\beta}^2\gamma c)$,

(iv) Nuclear square, if it is left, right and middle nuclear square.

We recall the three following lemmas from [4,5] which are applied to get some results.

Lemma 1. 1. Every $\Gamma - AG$ -groupoid is Γ -medial.

Lemma 1.2. Every $\Gamma - AG$ -groupoid with left identity is Γ -paramedial.

Lemma 1.3. In an Γ -AG-groupoid S with left identity, we have

 $a\alpha(b\beta c) = b\alpha(a\beta c)$ for every $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Lemma 1.4. In a $\Gamma - AG$ -groupoid *S* with a left identity, we have $a\alpha b = a\beta b$ for every $a, b \in S$ and $\alpha, \beta \in \Gamma$.

Proof. Let *S* be a Γ -*AG*-groupoid with a left identity e, also for all $a, b \in S$ and $\alpha, \beta \in \Gamma$

$$a\alpha b = a\alpha (e \beta b)$$
 (by left identity
= $e\alpha (a\beta b)$ (by lemma (1.3))

 $= a\beta$ b (by left identity)

Lemma 1. 5. Let *S* be $\Gamma - AG$ -groupoid then $(a\beta b)^2_{\gamma} = a^2_{\beta}\gamma b^2_{\beta}$ for every $a, b \in S$ and $\beta, \gamma \in \Gamma$.

Proof. Let *S* be $\Gamma - AG$ -groupoid, and for every $a, b \in S$ and $\beta, \gamma \in \Gamma$

$$(a\beta b)_{\gamma}^{2} = (a\beta b)\gamma(a\beta b)$$

= $(a\beta a)\gamma(b\beta b)$ (by Γ – medial law)
= $a_{\beta}^{2}\gamma b_{\beta}^{2}$.

2. Properties of $T^i - \Gamma - AG$ -groupoids(i = 1, 2, 3, 4)

In this section, we generalize notions of the $T^i - AG$ -groupoids to $T^i - \Gamma - AG$ -groupoids.

Then we investigate some properties of $T^{i} - \Gamma - AG$ -groupoids(i = 1, 2, 3, 4).

Proposition 2.1. Every Γ – paramedial S with a left identity *e* is a left nuclear square Γ – *AG* -groupoid.

Proof. Let $a, b, c \in S$ and $\alpha, \beta, \gamma \in \Gamma$. Then $a_{\alpha}^{2}\beta(b\gamma c) = (a\alpha a)\beta(b\gamma c) = (a\alpha b)\beta(a\gamma c)$ (by lemma1. 1.) $= (c\alpha a)\beta(b\gamma a)$ (by Γ – paramedial law) $= (c\alpha b)\beta(a\gamma a)$ (by lemma1. 1.) $= ((a\gamma a)\alpha b)\beta c$ (by left invertive) $= ((a\alpha a)\beta b)\gamma c$ (by lemma1. 4.))

$$=(a_{\alpha}^{2}\beta b)\gamma c$$

Hence, S is a left nuclear square $\Gamma - AG$ -groupoid.

Proposition 2.2. Every $T^1 - \Gamma - AG$ -groupoid is Γ – paramedial, but not vice-versa.

Proof. Let S be a $T^1 - \Gamma - AG$ -groupoid and let $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$. Now we have

$$(a\alpha b)\gamma(c\beta d) = (a\alpha c)\gamma(b\beta d) \text{ (by lemma1. 1.)}$$

$$\Rightarrow (c\beta d)\gamma(a\alpha b) = (b\beta d)\gamma(a\alpha c) \text{ (by } T^{1} - \Gamma - AG_{-}\text{groupoid})$$

$$(c\beta d)\gamma(a\alpha b) = (b\beta a)\gamma(d\alpha c) \text{ (by lemma1. 1.)}$$

$$\Rightarrow (a\alpha b)\gamma(c\beta d) = (d\alpha c)\gamma(b\beta a) \text{ (by } T^{1} - \Gamma - AG_{-}\text{groupoid})$$

$$(a\alpha b)\gamma(c\beta d) = (d\alpha c)\gamma(b\beta a) \text{ (by } T^{1} - \Gamma - AG_{-}\text{groupoid})$$

 $(a\alpha b)\gamma(c\beta d) = (d\alpha b)\gamma(c\beta a)$.(by lemma1. 1.)

Hence, S is Γ – paramedial. The following example shows that the converse is not valid:

Consider $S = \{a, b, c\}$ and $\Gamma = \{\gamma\}$ with the following table. Then S is Γ -paramedical, but we have $b = c\gamma a = c\gamma c$, $a = a\gamma c \neq c\gamma c = b$ or $b\gamma c = a\gamma b$, $c\gamma b \neq b\gamma a$ i.e. S is not a $T^1 - \Gamma - AG$ -groupoid.

γ	а	b	С
а	а	а	а
b	а	а	а
С	b	b	b

Corollary 2.1. Every $T^1 - \Gamma - AG$ -groupoid with a left identity is a left nuclear square $\Gamma - AG$ -groupoid.

Proof. By propositions2.1and2.2, the result is immediate.

Definition 2.1. A $\Gamma - AG$ -groupoid *S* is called a $Bol^* - \Gamma - AG$ -groupoid if it satisfies the identity $a\alpha((b\beta c)\gamma d) = ((a\alpha b)\beta c)\gamma d$, for all $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

Proposition 2.3 Every $Bol^* - \Gamma - AG$ -groupoid with a left identity is a $T^1 - \Gamma - AG$ -groupoid.

Proof. Aame that *S* be a $Bol^* - \Gamma - AG$ -groupoid with left identity *e* for every $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$. Let $a\alpha b = c\alpha d$. Then,

 $b\alpha a = e\beta((e\gamma b)\alpha a)$ (by left identity law)

= $((e\beta e)\gamma b)\alpha a$ (by $Bol^* - \Gamma - AG$ -groupoid)

 $= (e\gamma b)\alpha a$ (by left identity)

 $= (a\gamma b)\alpha e$ (by left invertive law)

 $=(a\alpha b)\alpha e$ (by lemma 1.4)

 $=(c\alpha d)\alpha e$ (by assumption)

= $(e\alpha d)\alpha c$ (by left invertive)

 $= d\alpha c$ (by left identity)

Hence, S is a $T^1 - \Gamma - AG$ -groupoid.

Corollary 2. 2. Every $Bol^* - \Gamma - AG$ -groupoid with left identity is Γ - paramedial.

Proof. By Propositions2.2and 2.3, the result is immediate.

Definition 2.2. A $\Gamma - AG$ -groupoid *S* is called a $\Gamma - AG - 3$ -band if $a\gamma(a\beta a) = (a\gamma a)\beta a = a$, for all $a \in S$ and $\beta, \gamma \in \Gamma$.

Theorem 2.1. Every $T^1 - \Gamma - AG$ -3-band with left identity is Γ - semigroup.

Proof. Let S be a $T^1 - \Gamma - AG$ -groupoid and $\Gamma - AG$ -3-band.For every $a, b, c, d \in S$ and $\alpha, \beta, \gamma, \delta \in \Gamma$, we get:

 $(a\alpha b)\gamma c = (c \alpha b)\gamma a$ (by left invertive law)

 $c\gamma(a\alpha b) = a\gamma(c\alpha b)$ (by $T^1 - \Gamma - AG$ -groupoid)

= $((a\beta a)\delta a)\gamma(c\alpha b)$ (by $\Gamma - AG$ -3-band)

= $((a\beta a)\delta c)\gamma(a\alpha b)$ (by Γ -medial law)

 $(a\alpha b)\gamma c = (a\alpha b)\gamma((a\beta a)\delta c)$ (by $T^1 - \Gamma - AG$ -groupoid)

= $(a\alpha(a\beta a))\gamma(b\delta c)$ (by Γ -medial law)

 $= a\gamma(b \delta c) (by \Gamma - AG - 3-band)$

 $= a\alpha(b\gamma c)$ (by lemma 1. 4.)

Hence, S is a Γ -semigroup.

Corollary2. 3. Every $Bol^* - \Gamma - AG$ -groupoid with left identity is Left nuclear square $\Gamma - AG$ -groupoid.

Proof. By propositions 2.3 and corollary 2.1, the result is immediate.

Definition 2.3.A $\Gamma - AG$ -groupoid is called transitively commutative if for all $a, b, c \in S$ and $\gamma \in \Gamma$, $a\gamma b = b\gamma a$, $b\gamma c = c\gamma b$ imply $a\gamma c = c\gamma a$.

Proposition 2.4. Every $T^2 - \Gamma - AG$ - groupoid is transitively commutative $\Gamma - AG$ - groupoid.

Proof. Let *S* be a $T^2 - \Gamma - AG$ -groupoid. Then $\forall a, b, c, d \in S$ and $\gamma \in \Gamma$ suppose $a\gamma b = c\gamma d \Rightarrow a\gamma c = b\gamma d$. Let $a\gamma b = b\gamma a$, $b\gamma c = c\gamma b$.

 $a\gamma c = b\gamma d$ (by assumption) (1)

 $a\gamma b = c\gamma d$ (by $T^2 - \Gamma - AG$ - groupoid)

 $b\gamma a = c\gamma d$ (by assumption)

 $b\gamma c = a\gamma d \text{ (by } T^2 - \Gamma - AG \text{ - groupoid)}$ $c\gamma b = a\gamma d \text{ (by assumption)}$ $c\gamma a = b\gamma d \text{ (by } T^2 - \Gamma - AG \text{ - groupoid)} \quad (2)$

 $\Rightarrow a\gamma c = c\gamma a$ (by equation (1), (2))

Hence S is transitively commutative $\Gamma - AG$ -groupoid.

Proposition 2.5. Let S be a $\Gamma - AG$ -groupoid with left identity e such that for every $a \in S$, $\alpha \in \Gamma$ $a\alpha a = a_{\alpha}^2 = e$. Then S is a $T^2 - \Gamma - AG$ -groupoid.

Proof. Let $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$, such that $a\gamma b = c\gamma d$ (1),

Then we have

 $a\gamma c = (e \beta a)\gamma c = (c \beta a)\gamma e \text{ (by left invertive law)}$ $= (c\beta a)\gamma(b\alpha b) \text{ (by assumption)}$ $= (c\beta b)\gamma(a\alpha b) \text{ (by } \Gamma \text{-medial law)}$

= $(c\beta b)\gamma(c\alpha d)$ (by equation (1) and lemma 1. 4.)

 $= (c\beta c)\gamma(b\alpha d)$ (by Γ -medial law)

 $= e\gamma(b\alpha d)$ (by assumption)

 $=b\gamma(e\alpha d) = b\gamma d$ (by left identity)

Hence, S is a $T^2 - \Gamma - AG$ - groupoid.

Proposition 2.6. Every $T^2 - \Gamma - AG$ - groupoid is a $T^1 - \Gamma - AG$ - groupoid.

Proof. Let S be a $T^2 - \Gamma - AG$ -groupoid. Consider for every $a, b, c, d \in S$ and $\gamma \in \Gamma$,

 $a\gamma b = c\gamma d$ (by assumption)

 $a\gamma c = b\gamma d$ (by $T^2 - \Gamma - AG$ - groupoid)

 $b\gamma d = a\gamma c$

 $b\gamma a = d\gamma c$ (by $T^2 - \Gamma - AG$ - groupoid)

Hence, S is a $T^1 - \Gamma - AG$ - groupoid.

Theorem 2.2. Every $T^2 - \Gamma - AG$ - groupoid with a left identity is a

 $Bol^* - \Gamma - AG$ -groupoid.

Proof. Let *S* be a $T^2 - \Gamma - AG$ -groupoid. Then for every $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$, we have $a\gamma b = c\gamma d$ implies $a\gamma c = b\gamma d$. Now consider $((a\alpha b)\gamma c)\beta d = (d\gamma c)\beta(a\alpha b)$ (by left invertive law) (1) $d\beta((a\alpha b)\gamma c) = (a\alpha b)\beta(d\gamma c)$ (by Proposition 2.6) $d\beta((a\alpha b)\gamma c) = (d\gamma c)\alpha b)\beta a$ (by left invertive law) $((d\gamma c)\alpha b)\beta a = d\beta((a\alpha b)\gamma c)$ (by $T^2 - \Gamma - AG$ - groupoid) $((d\gamma c)\alpha b)\beta d = a\beta((a\alpha b)\gamma c)$ (by $T^2 - \Gamma - AG$ - groupoid) $(d\beta(d\gamma c)\alpha b) = (((a\alpha b)\gamma c)\beta a)$ (by $T^2 - \Gamma - AG$ - groupoid) $a\beta((d\gamma c)\alpha b) = (((a\alpha b)\gamma c)\beta a)$ (by $T^2 - \Gamma - AG$ - groupoid) $a\beta((d\gamma c)\alpha b) = (((a\alpha b)\gamma c)\beta a)$ (by theorem 2.1)

 $a\beta((d\gamma c)\alpha b) = (d\gamma c)\beta(a\alpha b)$ (by left invertive law) (2) $((a\alpha b)\gamma c)\beta d = a\beta((d\gamma c)\alpha b)$ (by equal (1), (2)) $((a\alpha b)\gamma c)\beta d = a\beta((b\gamma c)\alpha d)$ (by left invertive law) $((a\alpha b)\gamma c)\beta d = a\alpha((b\gamma c)\beta d)$ (by lemma 1.4.) Hence, S is a $Bol^* - \Gamma - AG$ - groupoid. **Corollary 2. 4.** Every $T^2 - \Gamma - AG$ - groupoid is Γ -paramedial. Proof. By Propositions 2.2 and 2.6, the result is immediate. **Corollary 2.5.** Every $T^2 - \Gamma - AG$ - groupoid with left identity is left nuclear square $\Gamma - AG$ - groupoid. **Proof.**By Proposition 2.6 and corollary 2.1 is obviously. **Definition 2.4.** A $\Gamma - AG$ -groupoid is called $\Gamma - AG$ - band if every their elements be Γ – idempotent. **Theorem 2.3.** Every $\Gamma - AG$ - band is a $T^3 - \Gamma - AG$ - groupoid. **Proof.**Let $a\gamma b = a\gamma c$, for $a, b \in S$ and $\gamma \in \Gamma$, $b\gamma a = (b\gamma b)\gamma a$ (by Γ -idempotent) $=(a\gamma b)\gamma b$ (by left invertive law) $=(a\gamma c)\gamma b$ (by assumption) $=(a\gamma c)\gamma(b\gamma b)$ (by Γ -idempotent) $=(a\gamma b)\gamma(c\gamma b)$ (by Γ -medial law) $=(a\gamma c)\gamma(c\gamma b)$ (by assumption) = $((a\gamma a)\gamma c)\gamma(c\gamma b)$ (by Γ - idempotent) = $((c\gamma a)\gamma a)\gamma(c\gamma b)$ (by Γ - invertive law) = $((c\gamma b)\gamma a)\gamma(c\gamma a)$ (by Γ - invertive law) = $((a\gamma b)\gamma c)\gamma (c\gamma a)$ (by Γ - invertive law) = $((a\gamma c)\gamma c)\gamma (c\gamma a)$ (by assumption) = $((c\gamma c)\gamma a)\gamma(c\gamma a)$ (by Γ - invertive law) $= (c\gamma a)\gamma(c\gamma a) = c\gamma a$.(by Γ - idempotent) Hence, S is a $T_i^3 - \Gamma - AG$ - groupoid. Let $b\beta a = c\beta a$, for every $a, b \in S$ and $\beta \in \Gamma$, $a\beta b = (a\beta a)\beta b$ (by Γ -idempotent) $= (b\beta a)\beta a$ (by Γ - invertive law) = $(c\beta a)\beta a$ (by assumption) = $(a\beta a)\beta c$ (by Γ - invertive law) $= a\beta c$.(by Γ -idempotent)

Hence, S is a $T_r^3 - \Gamma - AG$ - groupoid. Then S is a $T^3 - \Gamma - AG$ - groupoid. **Proposition 2.7.** Every $T^1 - \Gamma - AG$ - groupoid is a $T^3 - \Gamma - AG$ - groupoid. **Proof.**Uing their definitions is obviously. **Corollary 2.6.** Every $T^2 - \Gamma - AG$ - groupoid is $T^3 - \Gamma - AG$ - groupoid. **Proof.**By Proposition 2.6 and 2.7 is obviously. **Proposition 2.8.** Every $T^4 - \Gamma - AG$ - groupoid is a transitively commutative $\Gamma - AG$ - groupoid. **Proof.**Let $a, b, c, d \in S$ and $\alpha \in \Gamma$ with $a\alpha b = b\alpha a$ and $b\alpha c = c\alpha b$. Now we have: $a\alpha a = b\alpha b$ and $b\alpha b = c\alpha c$ (by $T^4 - \Gamma - AG$ - groupoid) $\Rightarrow a\alpha a = c\alpha c$ (by $T^4 - \Gamma - AG$ - groupoid) $a\alpha c = c\alpha a$. Hence, S is a transitively commutative $\Gamma - AG$ -groupoid. **Theorem 2.4.** Every $T^4 - \Gamma - AG$ - groupoid with left identity is $Bol^* - \Gamma - AG$ groupoid. **Proof.** Let $a, b, c, d \in S$ and S is $T^4 - \Gamma - AG$ - groupoid and $e \in S$ and $\alpha, \beta, \gamma \in \Gamma$ $((a\alpha b)\beta c)\gamma d = (d\beta c)\gamma(a\alpha b)$ (by left invertive law) $((a\alpha b)\beta c)\gamma(a\alpha b) = (d\beta c)\gamma d$ (by $T_f^4 - \Gamma - AG$ - groupoid) $d\gamma((a\alpha b)\beta c) = (a\alpha b)\gamma(d\beta c)$ (by $T_b^4 - \Gamma - AG$ - groupoid) $d\gamma((a\alpha b)\beta c) = ((d\beta c)\alpha b)\gamma a$ (by left invertive law) $d\gamma a = ((d\beta c)\alpha b)\gamma((a\alpha b)\beta c) (by T_f^4 - \Gamma - AG - groupoid)$ $((a\alpha b)\beta c)\gamma d = \alpha\gamma((d\beta c)\alpha b)$ (by $T_b^4 - \Gamma - AG$ -groupoid) $((a\alpha b)\beta c)\gamma d = \alpha\gamma((b\beta c)\alpha d)$ (by left invertive law) $((a\alpha b)\beta c)\gamma d = \alpha\alpha((b\beta c)\gamma d)$ (by lemma 1.4.) Hence, S is a $Bol^* - \Gamma - AG$ - groupoid.

Theorem 2.5. If $a\Gamma - AG$ - band S contains a left identity *e*, then S become a commutative Γ -monoid.

Proof. By lemma 2 and remark 3. We have for every $a, b \in S$ and $\gamma \in \Gamma$. Then $a\gamma b = (e\gamma a)\gamma b$

 $= (b\gamma a)\gamma e$ (by left invertive law)

= $((b\gamma a)\gamma(b\gamma a))\gamma e$ (by Γ – idempotent)

= $(e\gamma(b\gamma a))\gamma(b\gamma a)$ (by left invertive law)

= $(b\gamma a)\gamma(b\gamma a) = b\gamma a$ (by Γ – idempotent)

Hence, *S* is commutative. Also we have for every $a, b, c \in S$ and $\gamma \in \Gamma$. Then,

 $(a\gamma b)\beta c = (c\gamma b)\beta a$ (by left invertive law)

 $= a\beta(b\gamma c)$ (by commutative law)

 $=a\gamma(b\beta c)$ (by lemma 1.4.)

Hence, S is Γ -semigroup. Now we should prove e is right identity. Then for every

 $a \in S$ and $\gamma \in \Gamma$ we have,

 $a\gamma e = (a\gamma a)\gamma e$ (by Γ – idempotent)

 $= (e\gamma a)\gamma a$ (by left invertive law)

 $= a\gamma a = a$ (by Γ – idempotent)

Hence, S is a Γ -semigroup with identity e i.e. S is Γ -monoid.

Conclusion. This current article inveatigates the ideas of T^1 , T^2 , T^3 and $T^4 - \Gamma - AG$ - groupoids. By theorems and propositions we inveatigate that every $T^4 - \Gamma - AG$ - groupoid with left identity is Γ - paramedical, Left nuclear square and $T^1 - \Gamma - AG$ - groupoid are $T^3 - \Gamma - AG$ - groupoid. So every $T^2 - \Gamma - AG$ - groupoid is Γ - paramedical and $T^2 - \Gamma - AG$ - groupoid with left identity is left nuclear square and every $T^1 - \Gamma - AG$ - groupoid with left identity is left nuclear square and every $T^1 - \Gamma - AG$ - groupoid with left identity is left nuclear square and every $Bol^* - \Gamma - AG$ - groupoid with left identity is Γ - paramedical and left nuclear square.

References

1. Holgate, P., 1992. Groupoid satisfying a simple invertive law: Math Stud., 61,

No 1-4, 101-106.

2. Kazim, M. A., Naseerudin, M., 1977. On almost semigroups: Portugalian

Mathematical, 36-41.

3. Shah, M., Ahmad, I., Ali, A., 2012. Discovery of new classes of $\Gamma - AG$ -groupoids: Res. J. Recent Sci., 1(11): 47-49.

4. Shah, M., Rashad, M., Ahmad, I., 2013. On relation between right alternative and nuclear square $\Gamma - AG$ -groupoids: Int. Math. Forum, 8 (5): 237-243.

5. Shah, T., Rehman, I., 2013. Decomposition of locally associative $\Gamma - AG$ -groupoids: Novi Sad J. Math., 43(1): 1-8.

6. Shah, T., Rehman, I., 2010. On Γ -ideals and Γ -Bi-ideals in Γ -AG-groupoids: Int. J. Algebra, 4, 267-276.

7. Steranovic, N., Protic, V., 2004. Abel-Grassmann's band: Quasigroup and related systems, 11, 95-101.

8. Steranovic, N., Protic, V., 1997. Some decomposition Abel-Grassmann's: Quasigroup. Pu. M., 8, 355-366.

Received: January, 2015