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Abstract

Let H(D) be the linear space of all analytic functions defined on
the open unit disc D = {z ∈ C : |z| < 1}. A sense preserving loghar-
monic mapping is the solution of the non-linear elliptic partial differan-

tial equation fz = w(z)fz(
f
f ) where w(z) ∈ H(D) is the second dilata-

tion of f such that |w(z)| < 1 for all z ∈ D. It has been shown that
if f is a non-vanishing logharmonic mapping, then f can be expressed
as f(z) = h(z).g(z), where h(z) and g(z) are analytic in D with the
normalization h(0) 6= 0, g(0) = 1. If f vanishes at z = 0 but it is not
identically zero, then f admits the representation f = z. |z|2β h(z)g(z),
where Reβ > −1

2 and h(z), g(z) are analytic in D with the normal-
ization h(0) 6= 0, g(0) = 1. [1], [2], [3]. The class of all logharmonic
mappings is denoted by S∗LH .
The aim of this paper is to give an aplication of the subordination princi-
ple to the class of spirallike logharmonic mappings which was introduced
by Z.Abdulhadi and W.Hengartner. [1]
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1 Introduction

Let H be the linear space of all analytic functions defined in the open unit disc
D = {z ∈ C : |z| < 1}. A sense preserving log-harmonic mapping is a solution
of the non-linear elliptic partial differential equation

fz

f
= w(z)

fz
f
, (1)
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Where w(z) the second dilatation of f and w(z) ∈ H(D), |w(z)| < 1 for every
z ∈ D. It has been shown that if f is non vanishing logharmonic mapping,
then f can be expressed as

f(z) = h(z)g(z) (2)

Where h(z) and g(z) are analytic in D with the normalization h(0) 6= 0,
g(0) = 1. On the other hand if f vanishes at z = 0, but it is not identically
zero, then f admits the following representation

f = z. |z|2β h(z)g(z) (3)

where Reβ > −1
2
, h(z) and g(z) are analytic in the open disc D with the

normalization h(0) 6= 0, g(0) = 1. Also we note that univalent logharmonic
mapping have been studied extensively. [1], [2], [3] and the class of univalent
logharmonic mappings is denoted by SLH . Let f = zh(z)g(z) be a univalent
logharmonic mapping. We say that f is a starlike logharmonic mapping if

∂ arg f(reiθ)

∂θ
= Re

zfz − zfz
f

> 0

for all z ∈ D, and the class of all starlike logharmonic mappings is denoted by
ST ∗LH
Let ϕ(z) be analytic in D and let α be a real number such that |α| < π

2
. If

ϕ = 0, ϕ′(0) 6= 0 and if

Re(eiαz
ϕ′(z)

ϕ(z)
) > 0 (4)

then ϕ(z) is univalent [5] and is said to be spirallike. Under these conditions
we have

eiαz
ϕ′(z)

ϕ(z)
= Q(z) (5)

where ReQ(z) > 0 and Q(0) = eiα. Defining P (z) = Q(z) secα− i tanα
we may write

z
ϕ′(z)

ϕ(z)
= e−iα[P (z) cosα + i sinα] (6)

where ReP (z) > 0, P (0) = 1. The class of spirallike functions is denoted by
S∗α. In particular with α = 0, S∗0 coincides with the class of normalized starlike
functions. The relationship between S∗α and S∗0 is indicated in the following
lemma.

Lemma 1.1 f(z) ∈ S0,p if and only if there is a g(z) ∈ S0,p such that

[
f(z)

z
]exp(iα) = [

g(z)

z
]cosα (7)
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where the branches are chosen so that each side of the equation has the value
1, when z = 0.

On the other hand Z.Abdulhadi and Y.Abu Muhanna was proved the following
theorem.

Theorem 1.2 Let f(z) = z.h(z).g(z) be a logharmonic mapping in D, 0 /∈
hg(D). Then f ∈ ST ∗LH if and only if ϕ(z) = z h(z)

g(z)
∈ ST ∗

Finally let Ω be the family of functions φ(z) which are analytic in D and
satisfying the conditions φ(0) = 0 |φ(z)| < 1 for every z ∈ D and let s1(z) =
z + a2z

2 + a3z
3 + ..., s2(z) = z + b2z

2 + b3z
3 + ... be analytic functions in D.

We say that s1(z) is subordinate to s2(z) if s1(z) = s2(φ(z)) for some function
φ(z) ∈ Ω and every z ∈ D and denote by s1(z) ≺ s2(z).

2 Main Results

Considering Lemma (1.1) and Theorem (1.2) together we obtain the following
lemma.

Lemma 2.1 φ(z) ∈ S∗α if and only if there is a f(z) = zh(z)g(z) ∈ ST ∗LH
such that

(
φ(z)

z
)e
iα

= (
h(z)

g(z)
)cosα (8)

where the branches are chosen so that both sides of the equation has the value
1, when z = 0.

Theorem 2.2 Using Lemma 2.1 then we have the following equality,

eiαz.
φ′(z)

φ(z)
= cosα[1 + z

h′(z)

h(z)
− z g

′(z)

g(z)
] + i sinα (9)

We have;

f = z. |z|2β h(z)g(z)⇒ { zfzf = β + 1 + z
h′(z)

h(z)
;
zfz
f

= β + z
g′(z)

g(z)
(10)

w(z) =
f z
f

f

fz
=

β + z g
′(z)
g(z)

1 + β + z h
′(z)
h(z)

(11)

In the equality (10) if we take β = 0 then we obtain;

w(z) =
z g

′(z)
g(z)

1 + z h
′(z)
h(z)

(12)
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Therefore we have w(0) = 0, |w(z)| < 1 then we can say that w(z) satisfies
the conditions of Schwarz Lemma, and

1− w(z) =
1 + z h

′(z)
h(z)
− z g

′(z)
g(z)

1 + z h
′(z)
h(z)

(13)

w(z)

1− w(z)
=

z g
′(z)
g(z)

1 + z h
′(z)
h(z)
− z g′(z)

g(z)

(14)

Using the equality (12), (11) equalities (13) and (14) can be written in the
following form,

1− w(z) =

1
cosα

[z φ
′(z)
φ(z)
− i sinα]

z fz
f

(15)

w(z)

1− w(z)
=

z fz
f

1
cosα

[eiαz φ
′(z)
φ(z)
− i sinα]

(16)

Using the subordination principle the equalities can be written∣∣∣∣∣∣
1

cosα
[z φ

′(z)
φ(z)
− i sinα]

z fz
f

− c1(r)

∣∣∣∣∣∣ ≺ ρ1(r) (17)

∣∣∣∣∣∣∣
z fz
f

1
cosα

[eiαz φ
′(z)
φ(z)
− i sinα]

− c2(r)

∣∣∣∣∣∣∣ ≺ ρ2(r) (18)

Because the transformations ρ1(r) and ρ2(r) map |z| = r on to the discs with
the centres

c1(r) = [
m4(1− a) + a(m2 − ar2)

m4 − (a)2r2
, 0]

c2(r) = [
m4a(1− a) +m2(m2 − a)r2

m4(1− a)2 − (m2 − a)2r2
, 0]

and the radius

ρ1(r) =
|m2(m2 − a) + am2(1− a)| r

m4 − (a)2r2

ρ2(r) =
|−m4(1− a)−m2a(m2 − a)| r
m4(1− a)2 − (m2 − a)2r2

respectively using the subordination principle on the expressions (17), (18)
then we get the following theorem.
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Theorem 2.3 Let f = zh(z)g(z) be a log-harmonic quazi spirallike func-
tion then

F1(r, α) ≤ z
fz
f
≤ F2(r, α) (19)

F3(r, α) ≤ zf z
f
≤ F4(r, α) (20)

Since the transformations

(m2 − a)z + (m2 −m2a)

−az +m2

and
−m2z +m2a

(m2 − a)z +m2(1− a)

map |z| = r onto the discs with centres

c1(r) = (
m4(1− a) + a(m2 − a)r2

m4 − (a)2r2
, 0)

c2(r) = (
m4a(1− a) +m2(m2 − a)r2

m4(1− a)2 − (m2 − a)2r2
, 0)

and the radius

ρ1(r) =
|m2(m2 − a) + am2(1− a)| r

m4 − (a)2r2

ρ2(r) =
|−m4(1− a)−m2a(m2 − a)| r
m4(1− a)2 − (m2 − a)2r2

After simple calculations from Theorem 2.2 and using inequalities (17), (18)
we get the result easily.

F1(r, α) = m4−(a)2r2
m4(1−a)+a(m2−a)r2+[m2(m2−a)+am2(1−a)]r .

1
cosα

[eiαz φ′(z)
φ(z)−i sinα ]

F2(r, α) = m4−(a)2r2
m4(1−a)+a(m2−a)r2−[m2(m2−a)+am2(1−a)]r .

1
cosα

[eiαz φ′(z)
φ(z)−i sinα ]

F3(r, α) = m4a(1−a)+m2(m2(m2−a)r2−[m4(1−a)+m2a(m2−a)]r
m4(1−a)2−(m2−a)2r2 . 1

cosα
[eiαz φ′(z)

φ(z)−i sinα ]

F4(r, α) = m4a(1−a)+m2(m2(m2−a)r2+[m4(1−a)+m2a(m2−a)]r
m4(1−a)2−(m2−a)2r2 . 1

cosα
[eiαz φ′(z)

φ(z)−i sinα ]
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