Some Results on a Subclass of alpha-quazi Spirallike Mappings

Melike Aydogan

Department of Mathematics, Işık University, 34980 Meşrutiyet Koyu, Şile İstanbul, Turkey

Abstract

Let H(D) be the linear space of all analytic functions defined on the open unit disc $D = \{z \in C : |z| < 1\}$. A sense preserving logharmonic mapping is the solution of the non-linear elliptic partial differantial equation $\overline{f_z} = w(z)f_z(\frac{\overline{f}}{f})$ where $w(z) \in H(D)$ is the second dilatation of f such that |w(z)| < 1 for all $z \in D$. It has been shown that if f is a non-vanishing logharmonic mapping, then f can be expressed as $f(z) = h(z).\overline{g(z)}$, where h(z) and g(z) are analytic in D with the normalization $h(0) \neq 0$, g(0) = 1. If f vanishes at z = 0 but it is not identically zero, then f admits the representation f = z. $|z|^{2\beta} h(z)\overline{g(z)}$, where $Re\beta > -\frac{1}{2}$ and h(z), g(z) are analytic in D with the normalization $h(0) \neq 0$, g(0) = 1. [1], [2], [3]. The class of all logharmonic mappings is denoted by S_{LH}^* .

The aim of this paper is to give an aplication of the subordination principle to the class of spirallike logharmonic mappings which was introduced by Z.Abdulhadi and W.Hengartner. [1]

Mathematics Subject Classification: 30C45

Keywords: Distortion theorem, analytic function, log-harmonic mapping, spirallike function

1 Introduction

Let *H* be the linear space of all analytic functions defined in the open unit disc $D = \{z \in C : |z| < 1\}$. A sense preserving log-harmonic mapping is a solution of the non-linear elliptic partial differential equation

$$\frac{f_{\overline{z}}}{\overline{f}} = w(z)\frac{f_z}{f},\tag{1}$$

Where w(z) the second dilatation of f and $w(z) \in H(D)$, |w(z)| < 1 for every $z \in D$. It has been shown that if f is non-vanishing logharmonic mapping, then f can be expressed as

$$f(z) = h(z)\overline{g(z)} \tag{2}$$

Where h(z) and g(z) are analytic in D with the normalization $h(0) \neq 0$, g(0) = 1. On the other hand if f vanishes at z = 0, but it is not identically zero, then f admits the following representation

$$f = z. |z|^{2\beta} h(z)\overline{g(z)}$$
(3)

where $Re\beta > -\frac{1}{2}$, h(z) and g(z) are analytic in the open disc D with the normalization $h(0) \neq 0$, g(0) = 1. Also we note that univalent logharmonic mapping have been studied extensively. [1], [2], [3] and the class of univalent logharmonic mappings is denoted by S_{LH} . Let $f = zh(z)\overline{g(z)}$ be a univalent logharmonic mapping. We say that f is a starlike logharmonic mapping if

$$\frac{\partial \arg f(re^{i\theta})}{\partial \theta} = Re \frac{zf_z - \overline{z}f_{\overline{z}}}{f} > 0$$

for all $z \in D$, and the class of all starlike logharmonic mappings is denoted by ST^*_{LH}

Let $\varphi(z)$ be analytic in D and let α be a real number such that $|\alpha| < \frac{\pi}{2}$. If $\varphi = 0, \varphi'(0) \neq 0$ and if

$$Re(e^{i\alpha}z\frac{\varphi'(z)}{\varphi(z)}) > 0 \tag{4}$$

then $\varphi(z)$ is univalent [5] and is said to be spirallike. Under these conditions we have

$$e^{i\alpha}z\frac{\varphi'(z)}{\varphi(z)} = Q(z) \tag{5}$$

where ReQ(z) > 0 and $Q(0) = e^{i\alpha}$. Defining $P(z) = Q(z) \sec \alpha - i \tan \alpha$ we may write

$$z\frac{\varphi'(z)}{\varphi(z)} = e^{-i\alpha}[P(z)\cos\alpha + i\sin\alpha]$$
(6)

where ReP(z) > 0, P(0) = 1. The class of spirallike functions is denoted by S^*_{α} . In particular with $\alpha = 0$, S^*_0 coincides with the class of normalized starlike functions. The relationship between S^*_{α} and S^*_0 is indicated in the following lemma.

Lemma 1.1 $f(z) \in S_{0,p}$ if and only if there is a $g(z) \in S_{0,p}$ such that

$$\left[\frac{f(z)}{z}\right]^{\exp(i\alpha)} = \left[\frac{g(z)}{z}\right]^{\cos\alpha} \tag{7}$$

where the branches are chosen so that each side of the equation has the value 1, when z = 0.

On the other hand Z.Abdulhadi and Y.Abu Muhanna was proved the following theorem.

Theorem 1.2 Let f(z) = z.h(z).g(z) be a logharmonic mapping in $D, 0 \notin hg(D)$. Then $f \in ST_{LH}^*$ if and only if $\varphi(z) = z \frac{h(z)}{g(z)} \in ST^*$

Finally let Ω be the family of functions $\phi(z)$ which are analytic in D and satisfying the conditions $\phi(0) = 0 |\phi(z)| < 1$ for every $z \in D$ and let $s_1(z) =$ $z + a_2 z^2 + a_3 z^3 + \dots, s_2(z) = z + b_2 z^2 + b_3 z^3 + \dots$ be analytic functions in D. We say that $s_1(z)$ is subordinate to $s_2(z)$ if $s_1(z) = s_2(\phi(z))$ for some function $\phi(z) \in \Omega$ and every $z \in D$ and denote by $s_1(z) \prec s_2(z)$.

2 Main Results

Considering Lemma (1.1) and Theorem (1.2) together we obtain the following lemma.

Lemma 2.1 $\phi(z) \in S^*_{\alpha}$ if and only if there is a $f(z) = zh(z)\overline{g(z)} \in ST^*_{LH}$ such that $\phi(z) \to h(z)$

$$\left(\frac{\phi(z)}{z}\right)^{e^{i\alpha}} = \left(\frac{h(z)}{g(z)}\right)^{\cos\alpha} \tag{8}$$

where the branches are chosen so that both sides of the equation has the value 1, when z = 0.

Theorem 2.2 Using Lemma 2.1 then we have the following equality,

$$e^{i\alpha}z.\frac{\phi'(z)}{\phi(z)} = \cos\alpha[1+z\frac{h'(z)}{h(z)}-z\frac{g'(z)}{g(z)}] + i\sin\alpha$$
(9)

We have;

$$f = z. |z|^{2\beta} h(z)\overline{g(z)} \Rightarrow \{ zf_z f = \beta + 1 + z\frac{h'(z)}{h(z)}; \frac{\overline{z}f_{\overline{z}}}{f} = \beta + \overline{z}\frac{\overline{g'(z)}}{\overline{g(z)}}$$
(10)

$$w(z) = \frac{\overline{f}_{\overline{z}}}{\overline{f}} \frac{f}{f_z} = \frac{\overline{\beta} + z \frac{g'(z)}{g(z)}}{1 + \beta + z \frac{h'(z)}{h(z)}}$$
(11)

In the equality (10) if we take $\beta = 0$ then we obtain;

$$w(z) = \frac{z \frac{g'(z)}{g(z)}}{1 + z \frac{h'(z)}{h(z)}}$$
(12)

Therefore we have w(0) = 0, |w(z)| < 1 then we can say that w(z) satisfies the conditions of Schwarz Lemma, and

$$1 - w(z) = \frac{1 + z\frac{h'(z)}{h(z)} - z\frac{g'(z)}{g(z)}}{1 + z\frac{h'(z)}{h(z)}}$$
(13)

$$\frac{w(z)}{1 - w(z)} = \frac{z \frac{g'(z)}{g(z)}}{1 + z \frac{h'(z)}{h(z)} - z \frac{g'(z)}{g(z)}}$$
(14)

Using the equality (12), (11) equalities (13) and (14) can be written in the following form,

$$1 - w(z) = \frac{\frac{1}{\cos\alpha} \left[z \frac{\phi'(z)}{\phi(z)} - i \sin\alpha \right]}{z \frac{f_z}{f}}$$
(15)

$$\frac{w(z)}{1 - w(z)} = \frac{z \overline{f_{\overline{z}}}}{\frac{1}{\cos \alpha} [e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha]}$$
(16)

Using the subordination principle the equalities can be written

$$\left|\frac{\frac{1}{\cos\alpha}[z\frac{\phi'(z)}{\phi(z)} - i\sin\alpha]}{z\frac{f_z}{f}} - c_1(r)\right| \prec \rho_1(r)$$
(17)

$$\left| \frac{z \frac{\overline{f_z}}{\overline{f}}}{\frac{1}{\cos \alpha} [e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha]} - c_2(r) \right| \prec \rho_2(r)$$
(18)

Because the transformations $\rho_1(r)$ and $\rho_2(r)$ map |z| = r on to the discs with the centres

$$c_1(r) = \left[\frac{m^4(1-a) + \overline{a}(m^2 - \overline{a}r^2)}{m^4 - (\overline{a})^2 r^2}, 0\right]$$
$$c_2(r) = \left[\frac{m^4 a(1-a) + m^2(m^2 - \overline{a})r^2}{m^4(1-a)^2 - (m^2 - \overline{a})^2 r^2}, 0\right]$$

and the radius

$$\rho_1(r) = \frac{|m^2(m^2 - \overline{a}) + \overline{a}m^2(1 - a)|r}{m^4 - (\overline{a})^2 r^2}$$
$$\rho_2(r) = \frac{|-m^4(1 - a) - m^2 a(m^2 - \overline{a})|r}{m^4(1 - a)^2 - (m^2 - \overline{a})^2 r^2}$$

respectively using the subordination principle on the expressions (17), (18) then we get the following theorem.

Theorem 2.3 Let $f = zh(z)\overline{g(z)}$ be a log-harmonic quazi spirallike function then

$$F_1(r,\alpha) \le z \frac{f_z}{f} \le F_2(r,\alpha) \tag{19}$$

$$F_3(r,\alpha) \le \frac{\overline{z}\overline{f}_{\overline{z}}}{f} \le F_4(r,\alpha) \tag{20}$$

Since the transformations

$$\frac{(m^2-\overline{a})z+(m^2-m^2a)}{-\overline{a}z+m^2}$$

and

$$\frac{-m^2z+m^2a}{(m^2-\overline{a})z+m^2(1-a)}$$

map |z| = r onto the discs with centres

$$c_1(r) = \left(\frac{m^4(1-a) + \overline{a}(m^2 - \overline{a})r^2}{m^4 - (\overline{a})^2 r^2}, 0\right)$$

$$c_2(r) = \left(\frac{m^4 a (1-a) + m^2 (m^2 - \overline{a}) r^2}{m^4 (1-a)^2 - (m^2 - \overline{a})^2 r^2}, 0\right)$$

and the radius

$$\rho_1(r) = \frac{|m^2(m^2 - \overline{a}) + \overline{a}m^2(1 - a)|r}{m^4 - (\overline{a})^2 r^2}$$
$$\rho_2(r) = \frac{|-m^4(1 - a) - m^2 a(m^2 - \overline{a})|r}{m^4(1 - a)^2 - (m^2 - \overline{a})^2 r^2}$$

After simple calculations from Theorem 2.2 and using inequalities (17), (18) we get the result easily.

$$F_{1}(r,\alpha) = \frac{m^{4} - (\bar{a})^{2}r^{2}}{m^{4}(1-a) + \bar{a}(m^{2} - \bar{a})r^{2} + [m^{2}(m^{2} - \bar{a}) + \bar{a}m^{2}(1-a)]r} \cdot \frac{1}{\cos\alpha} [e^{i\alpha}z \frac{\phi'(z)}{\phi(z) - i\sin\alpha}]$$

$$F_{2}(r,\alpha) = \frac{m^{4} - (\bar{a})^{2}r^{2}}{m^{4}(1-a) + \bar{a}(m^{2} - \bar{a})r^{2} - [m^{2}(m^{2} - \bar{a}) + \bar{a}m^{2}(1-a)]r} \cdot \frac{1}{\cos\alpha} [e^{i\alpha}z \frac{\phi'(z)}{\phi(z) - i\sin\alpha}]$$

$$F_{3}(r,\alpha) = \frac{m^{4}a(1-a) + m^{2}(m^{2}(m^{2} - \bar{a})r^{2} - [m^{4}(1-a) + m^{2}a(m^{2} - \bar{a})]r}{m^{4}(1-a)^{2} - (m^{2} - \bar{a})^{2}r^{2}} \cdot \frac{1}{\cos\alpha} [e^{i\alpha}z \frac{\phi'(z)}{\phi(z) - i\sin\alpha}]$$

$$F_{4}(r,\alpha) = \frac{m^{4}a(1-a) + m^{2}(m^{2}(m^{2} - \bar{a})r^{2} + [m^{4}(1-a) + m^{2}a(m^{2} - \bar{a})]r}{m^{4}(1-a)^{2} - (m^{2} - \bar{a})^{2}r^{2}} \cdot \frac{1}{\cos\alpha} [e^{i\alpha}z \frac{\phi'(z)}{\phi(z) - i\sin\alpha}]$$

References

- Z. Abdulhadi and W.Hengartner, Spirallike logharmonic mappings, Complex Variables Theory Appl. 9(1987), 121-130.
- [2] Z. Abdulhadi and W.Hengartner, One pointed univalent logharmonic mappings, J. Math. Anal. Appl., 203(2), (1996), 333-351
- [3] Z. Abdulhadi and Y.A.Muhanna, Starlike log-harmonic mappings of order α, J. Inequl. Pure Appl. Math. 7, Article 123, (2006)
- [4] Z. Abdulhadi, Close to starlike logharmonic mappings, Internat J.Math and Math. Sci. ,19(3), (1996), 563-574
- [5] Z. Abdulhadi, *Typically real logharmonic mappings*, Internat J.Math and Math. Sci., (31)1, (2002), 1-9
- [6] Z. Abdulhadi and D. Bshouty, Univalent functions in H.H., Tran. Amer. Math. Soc. 305(2), (1988), 841-849
- [7] M. Aydogan and Y. Polatoglu, Application of Subordination Principle to Log-Harmonic α – spirallikeMappings, FCAA, Vol.13, No.4, (2010)
- [8] T. Basgoze and F.R.Keogh, The Hardy class of a spirallike function and its derivative, Proceedings of the Amer. Math. Soc., Vol. 26, No. 2, (Oct. 1970), pp. 266-269

Received: September, 2012