Mathematica Aeterna, Vol. 2, 2012, no. 6, 533-540

Some Results in Asymmetric Metric Spaces

A.M.Aminpour

Faculty of Mathematical Sciences and Computer, Shahid Chamran University, Ahvaz, Iran

aminpour@scu.ac.ir

S.Khorshidvandpour

Faculty of Mathematical Sciences and Computer, Shahid Chamran University, Ahvaz, Iran

Sajad_khorshidvand@yahoo.com

M.Mousavi

Faculty of Mathematical Sciences and Computer, Shahid Chamran University, Ahvaz, Iran

Mmousavi88@yahoo.com

Abstract

In this paper, we recall some definitions and theorems in asymmetric metric spaces and then prove some results in these spaces.

2010 MSC: 26A15

Keywords: Asymmetric metric, Forward and backward limits

1.Introduction

Asymmetric metric spaces are defined as metric spaces, but without the requirement that the (asymmetric) metric d has to satisfy d(x, y) = d(y, x).

In the realms of applied mathematics and materials science we find many recent applications metric spaces; for example, in rate-independent models for plasticity [1], shape-memory alloys[2], and models for material failure[3].

There are other applications of asymmetric metrics both in pure and applied mathematics; for example, asymmetric metric spaces have recently been studied with questions of existence and uniqueness of Hamilton-Jacobi equations[4] in mind.

The study of asymmetric metrics apparently goes back to Wilson[5].Following his terminology, asymmetric metrics are often called quasi-metrics. Author in [6], has completely discussed on asymmetric metric spaces.

In this work, we prove some theorems in asymmetric metric spaces. We start with some elementary definitions from [6].

Definition1.1. A function $d: X \times X \to \mathbb{R}$ is an asymmetric metric and (X, d) is an asymmetric metric space if:

- (1) For every $x, y \in X$, $d(x, y) \ge 0$ and d(x, y) = 0 hold if and only if x = y,
- (2) For every $x, y, z \in X$, we have $d(x, y) \le d(x, z) + d(z, y)$.

Henceforth, (X, d) shall be an asymmetric metric space.

Example1.2. Let $\alpha > 0$. Then $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{\geq 0}$ defined by

$$d(x,y) = \begin{cases} x-y & x \ge y \\ \alpha(y-x) & y > x \end{cases}$$

Is obviously an asymmetric metric.

Definition1.3. The forward topology τ_+ induced by *d* is the topology generated by the forward open balls

$$B_{+}(x,\varepsilon) = \{y \in X : d(x,y) < \varepsilon\}$$
 for $x \in X, \varepsilon > 0$

Likewise, the backward topology τ_{-} induced by *d* is the topology generated by the backward open balls

$$B_{-}(x,\varepsilon) = \{y \in X : d(y,x) < \varepsilon\}$$
 for $x \in X, \varepsilon > 0$

Definition1.4. A sequence $\{x_k\}_{k \in \mathbb{N}}$ forward converges to $x_o \in X$, respectively backward converges to $x_o \in X$ if and only if

$$\lim_{k\to\infty} d(x_0, x_k) = 0$$
 respectively $\lim_{k\to\infty} d(x_k, x_0) = 0$

Then we write $x_k \xrightarrow{f} x_0$, $x_k \xrightarrow{b} x_0$ respectively.

Example1.5. Let (\mathbb{R}, d) be an asymmetric space, where *d* is as Example1.2. It is easy to show that the sequence $\{x + \frac{1}{n}\}_{n \in \mathbb{N}} (x \in X)$ is both forward and backward converges to *x*.

Definition1.6. Suppose that (X, d_X) and (Y, d_Y) are asymmetric metric spaces. Let $f: X \to Y$ be a function. We say that f is forward continuous at $x \in X$, respectively backward continuous, if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $y \in B_+(x, \delta)$ implies $f(y) \in B_+(f(x), \varepsilon)$, respectively, $f(y) \in B_-(f(x), \varepsilon)$.

However, note that uniform forward continuity and uniform backward continuity are the same.

Definition1.7. A set $S \subseteq X$ is forward compact if every open cover of *S* in the forward topology has a finite subcover. We say that *S* is is forward relatively compact, if \overline{S} is forward compact, where \overline{S} denotes the closure of *S* in the forward topology. We say *S* is forward sequentially compact if every sequence has a forward convergent subsequence with limit in *S*. Finally, $S \subseteq X$ is forward complete if every forward Cauchy sequence is forward convergent.

Note that there is a corresponding backward definition in each case, which is obtained by replacing "forward" with "backward" in each definition.

Lemma1.8[6]. Let $d: X \times X \to \mathbb{R}^{\geq 0}$ be an asymmetric metric. If (X, d) is forward sequentially compact and $x_n \xrightarrow{b} x_0$, then $x_n \xrightarrow{f} x_0$.

Notation1.9. We introduce some further notations. Y^X denotes the space of functions from X to Y. The uniform metric on Y^X is

$$\bar{\rho}(f,g) = \sup \left\{ \bar{d}(f(x),g(x)) : x \in X \right\}$$

Where $\bar{d}(x, y) = \min \{d(x, y), 1\}$ and *d* is the asymmetric metric associated with *Y*.

2.Main Results

Throughout this section let (X, d_X) and (Y, d_Y) be asymmetric metric spaces.

Lemma2.1. Let *Y* be forward(backward) complete. Then Y^X is also.

Proof. Let $\{f_n\} \subset Y^X$ be an arbitrary forward Cauchy sequence. By definition, given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $m \ge n \ge N$, $\bar{\rho}(f_n, f_m) < \varepsilon$ holds. Fix $x \in X$. Clearly, $\{f_n(x)\}$ is a forward Cauchy sequence in *Y*.Since *Y* is forward complete, so $\{f_n(x)\}$ is convergent., say

 $f_n(x) \xrightarrow{f} f(x)$. Thus there is $N \in \mathbb{N}$ such that $n \ge N$ implies that

$$d_Y(f(x), f_n(x)) < \varepsilon \tag{1}$$

Since $x \in X$ was arbitrary, by taking supermom on $x \in X$ in the both side of (1), we obtain $f_n \xrightarrow{f} f$ in the uniform metric $\overline{\rho}$. \Box

Theorem2.2. Let $\mathfrak{F} \subset Y^X$ be a family of forward continuous functions. Suppose further, *Y* is forward complete and forward convergence implies backward convergence in *Y*. Then \mathfrak{F} is forward complete.

Proof. Let $\{f_n\} \subset \mathfrak{F}$ such that $f_n \xrightarrow{f} f$. Since Y^X is forward complete(Lemma2.1) and $\mathfrak{F} \subset Y^X$, so it is sufficient to show that $f \in \mathfrak{F}$. Given $\varepsilon > 0$ and $x \in X$, there is $\delta > 0$ such that for each $y \in X$ which $d(x, y) < \delta$, we have

$$d_Y(f_n(x), f_n(y)) < \frac{\varepsilon}{3}$$
 $(n \in \mathbb{N})$

Also, there is $N \in \mathbb{N}$ so that

$$d_Y\big(f(x),f_n(x)\big) < \frac{\varepsilon}{3}$$

For all $n \ge N$. Now, since forward convergence implies backward convergence in Y, so

$$d_Y\big(f_n(x),f(x)\big) < \frac{\varepsilon}{3}$$

Therefore

$$d_Y(f(x), f(y)) \le d_Y(f(x), f_n(x)) + d_Y(f_n(x), f_n(y)) + d_Y(f_n(x), f(x)) < \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, so the proof is completed. \Box

Theorem2.3. Let $\{f_n\} \subset Y^X$ be a sequence of forward continuous functions with $f_n \xrightarrow{b} f$ uniform in the uniform metric $\overline{\rho}$ corresponding to d_Y . Also, Let *Y* be forward sequentially compact. Then *f* is forward continuous.

Proof. Fix $\varepsilon > 0$ and $x \in X$. Choose $\delta > 0$ such that for all $y \in X$ which $d(x, y) < \delta$,

$$d_Y(f_n(x), f_n(y)) < \frac{\varepsilon}{4}$$
 $(n \in \mathbb{N})$

Holds. Since $f_n \xrightarrow{b} f$ in the uniform metric $\bar{\rho}$, so $f_n(x) \xrightarrow{b} f(x)$. Hence, there exists $N_1 \in \mathbb{N}$ such that

$$d_Y\big(f_n(x), f(x)\big) < \frac{\varepsilon}{4}$$

For all $n \ge N_1$. On the other hand, Y is forward sequentially compact. Thus Lemma1.8 implies that $f_n(x) \xrightarrow{f} f(x)$. So there exists $N_2 \in \mathbb{N}$ so that

$$d_Y\big(f(x),f_n(x)\big) < \frac{\varepsilon}{4}$$

For all $n \ge N_2$. Set $N \coloneqq \max \{N_1, N_2\}$. Then for each $y \in X$ which $d(x, y) < \delta$, we have $(m \ge n \ge N)$

$$d_Y(f(x), f(y)) \le d_Y(f(x), f_n(x)) + d_Y(f_n(x), f_m(x)) + d_Y(f_m(x), f_m(y)) + d_Y(f_m(y), f(y)) < \varepsilon$$

As desired. \Box

Finally, we prove the following result:

Theorem2.4. Let $\{f_n\} \subset Y^X$ be a sequence of uniformly forward continuous functions with $f_n \xrightarrow{b} f$ in the uniform metric $\bar{\rho}$ corresponding to d_Y . If forward convergence implies backward convergence in Y, then f is uniformly forward continuous.

Proof. Fix $\varepsilon > 0$. Then there exists $\delta = \delta(\varepsilon) > 0$ such that for all $x, y \in X$ which $d(x, y) < \delta$, we have

$$d_Y(f_n(x), f_n(y)) < \frac{\varepsilon}{3}$$
 $(n \in \mathbb{N})$

Furthermore, there is $N \in \mathbb{N}$ such that

$$\bar{\rho}(f,f_n) < \frac{\varepsilon}{3}$$

For all $n \ge N$. It can be seen easily that

Some Results in Asymmetric Metric Spaces

$$d_Y\big(f(x),f_n(x)\big) < \frac{\varepsilon}{3}$$

For all $n \ge N$. Now, by hypotheses, we have

$$d_Y\big(f_n(x), f(x)\big) < \frac{\varepsilon}{3}$$

For all $n \ge N$. Finally, if $d(x, y) < \delta$, then

$$d_Y(f(x), f(y)) \le d_Y(f(x), f_n(x)) + d_Y(f_n(x), f_n(y)) + d_Y(f_n(x), f(x)) < \varepsilon$$

Which means f is uniformly forward continuous. \Box

References

[1] A.Mainik and A.Mielke, Existence results for energetic models for rate-independent systems, Calc.Var.Partial Differential Equations.22(1)(2005) 73-99.

[2] A.Mielke and T.Roubicek, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model.Simul. 1(4)(2003) 571-597(electronic).

[3] M.O.Rieger and J.Zimmer, Young measure flow as a model for damage, Preprint 11/05, Bath Institute for Complex Systems, Bath,UK,2005.

[4] A.Mennucci, On asymmetric distances, Technical report, Scuola Normale Superiore, pisa,2004.

[5] W.A.Wilson, On quasi-metric spaces, Amer.J.Math. 53(3)(1931) 675-684.

[6] J.Collins and J.Zimmer, An asymmetric Arzela-Ascoli theorem, Topology and it's Applications. 154(2007) 2312-2322.

Received: June, 2012