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Abstract

Explicit expressions of probability functions and probability gener-
ating functions for mixed Poisson distributed discrete random variables
are given corresponding to the following structure density functions:
generalized gamma, generalized shifted gamma and generalized shifted
beta. A discrete symmetric distribution corresponding to a stochastic
process is approximated by a beta distribution in a more accurate man-
ner. A generalized Beta-Poisson distribution is obtained. The results
are useful in biological and economical problems. Special cases are also
mentioned. Graphs are drawn for probability functions showing the
modality for different values of the parameters. Transition intensities
can be easily obtained for the various cases discussed in this paper. Fi-
nally, by utilizing the fact that probabilities sum to 1, we obtain some
new results for generalized hypergeometric functions.
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1 Introduction

A discrete random variable N is defined to be mixed Poisson distributed with
structure density function u(l) if (see, [6], p. 13)

pk(t) = (k!)−1

∫ ∞
0

(lt)ke−ltu(l)dl, k = 0, 1, 2, . . . , t > 0. (1)

The probability generation function GN(s) of N is given by

GN(s) := E(sN) =
∞∑
k=0

skpk(t) =

∫ ∞
0

e−t(1−s)lu(l)dl, s ≤ 1. (2)

Examples of (1) with structure distributions gamma (Bühlmann [4]), including
exponential and Erlang truncated or shifted gamma (Delaporte [5], Ruohonen
[16], Willmot and Sundt [21], Schröter [18], Willmot [22]), generalized inverse
Gaussian (Sichel [19], Willmot [23]), beta (Gurland [7], McNolty [14], Beall
and Rescia [1], Bhattacharya and Holla [2]), truncated normal (Berljand et
al. [3], Kupper [[11], [12]], Patil [15]) are available in the literature. Mixed
Poisson distributions are used in biological and other applications (see, [6]).

Johnson and Kotz ([8], p. 52) comment that little work has been done on
”Weibullized beta distributions”. One of the object of this paper is to answer
this question satisfactorily, in detail, along with providing other results on the
topic. Software R is employed to draw graphs for pk(t) in various cases. The
graphs show the change of modality for different values of the parameters.

The results for mixed Zero Inflated Poisson (ZIP) distribution (Johnson and
Kotz [8], p. 205, eq. (70)) can be easily obtained by utilizing the following
definition

pk(t) =

{
w + (1− w)p0(t), k = 0;

(1− w)pk(t), k = 1, 2, . . . ,
(3)

where 0 ≤ w < 1 and pk(t) is defined in (1).
The transition intensities kn(t) ([6], p. 62) are given by

kn(t) =

∫∞
0
ln+1e−ltu(l)dl∫∞

0
lne−ltu(l)dl

,

which on using (1) yields

kn(t) =
n+ 1

t

pn+1(t)

pn(t)
. (4)

Thus kn(t), for the various cases discussed in this paper, is easily obtainable
from the expression for pk(t).

The following results (see Mathai et al. [13]; Springer, [20]) will be used
later on
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1. Result 1: ∫ ∞
0

zα−1eβz−γz
δ

dz = β−αH1,1
1,1

[
γ

βδ

∣∣∣∣ (1− α, δ)
(0, 1)

]
, (5)

for α, β, γ, δ > 0.

2. Result 2:

Γ(−a)(1 + z)a = G1,1
1,1

[
z

∣∣∣∣ 1 + a
0

]
. (6)

3. Result 3:

∞∑
n=0

Γ(a1 + nA1)

Γ(b1 + nB1)

zn

n!
= H1,1

1,2

[
−z
∣∣∣∣ (1− a1, A1)

(0, 1), (1− b1, B1)

]
. (7)

The paper is divided as follows: Section 2 deals with generalized gamma-
Poisson distribution, while Section 3 is devoted to generalized (shifted) beta-
Poisson distribution. The equilibrium symmetric distribution µ(k) studied by
Kirman [10] and its approximation by a beta distribution are treated in Section
4. In Section 5, generalized beta-Poisson distribution is studied. Last, Section
6, mentions a few results involving hypergeometric functions.

2 Generalized Gamma-Poisson Distribuion

We start defining the generalized gamma distribution with density function
u(l) given by

u(l) =

[
δβγ/δ

Γ(γ/δ)

]
lγ−1e−βl

δ

, l, β, γ, δ > 0. (8)

Then, from (1), the generalized gamma-Poisson distribution has the probabil-
ity function given by

pk(t) =
δβγ/δtk

Γ(γ/δ)k!

∫ ∞
0

lk+γ−1e−tle−βl
δ

dl (9)

=
δβγ/δt−γ

Γ(γ/δ)k!
H1,1

1,1

[
β

tδ

∣∣∣∣ (1− k − γ, δ)
(0, 1)

]
, (10)

by utilizing (5). For δ = 1, (10) yields, with the help of (6), the following
result

pk(t) =
βγtkΓ(k + r)

k!Γ(γ)(t+ β)k+γ
, (11)

which agrees with Grandell ([6], p. 17). Note that there is no need for γ to be
an integer as commented by Grandell.
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(a) γ = β = t = 1 and δ = 0.5.
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(b) γ = β = t = δ = 1

Figure 1: Plots of (10) for some values of the parameters

The probability generating function, GN(s), for the generalized gamma
distribution (8) can be similarly obtained from (2) as

GN(s) =

∫ ∞
0

e−t(1−s)lu(l)dl =
δβγ/δ

Γ(γ/δ)

∫ ∞
0

lγ−1e−t(1−s)l−βl
δ

dl (12)

=
δβγ/δ

Γ(γ/δ)
(t(1− s))−γH1,1

1,1

[
β

(t(1− s))δ

∣∣∣∣ (1− γ, δ)
(0, 1)

]
. (13)

For δ = 1, (13) reduces to the known probability generating function given in
Grandell ([6], p. 33). Plots of (10) for some values of the parameters, showing
modes, are given in Figure 1.
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3 Generalized (Shifted) Beta-Poisson Distri-

bution

Let us define the generalized (Shifted) beta distribution with density function
u(l) given by

u(l) =
(l − a)α−1(b− l)β−1

B(α, β)(b− a)α+β−1
, (14)

with a ≤ l ≤ b and α, β > 0. Then, from (1), the generalized (Shifted)
beta-Poisson distribution has the probability function given by

pk(t) =

∫ b

a

(lt)ke−lt

k!

(l − a)α−1(b− l)β−1

B(α, β)(b− a)α+β−1
dl,

by substituting y = (l − a)/(b− a) we have

pk(t) =
tke−at

k!B(α, β)

∫ 1

0

[a+ (b− a)y]ke−t(b−a)yyα−1(1− y)β−1dy

=
tke−at

k!B(α, β)

k∑
n=0

(
k

n

)
ak−n(b− a)n

∫ 1

0

yα+n−1(1− y)β−1e−t(b−a)ydy

=
tke−at

k!B(α, β)

k∑
n=0

(
k

n

)
ak−n(b− a)nB(α+ n, β)×

× 1F1(α+ n;α+ β + n;−t(b− a)), (15)

by utilizing (Luke [17], p. 115, eq. (1)), where 1F1 is the confluent hyper-
geometric function. For a = 0, (15) yields a known result ([6], p. 45). The
corresponding probability generating function is given by

GN(s) = e−at(1−s)1F1(α;α + β;−t(1− s)(b− a)). (16)

Plots of (15) for some values of the parameters, showing modes, are given
in Figure 2.

4 Beta distribution

Kirman [10] has obtained the equilibrium symmetric distribution µ(k), k =
0, 1, 2, . . . , N , of the Markov chain defined for the process

k →


k + 1 with probability p1 = p(k, k + 1) =

(
1− k

N

) (
ε+ (1− δ) k

N−1

)
k − 1 with probability p2 = p(k, k − 1) = k

N

(
ε+ (1− δ)N−k

N−1

)
k with probability 1− p1 − p2,

(17)
in the following form
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(a) a = 0 and b = α = β = t = 1.
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(b) a = 0, b = 1, α = 1, β = 2 and t = 3.

Figure 2: Plots of (15) for some values of the parameters
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µ(k + 1)

µ(k)
=

(
1− k

N

) (
ε+ (1− δ) k

N−1

)(
k+1
N

) (
ε+ (1− δ)

(
1− k

N−1

)) (18)

for k = 0, 1, . . . , N − 2, N > 2, 0 ≤ ε ≤ δ ≤ 1. Also

µ(k) =
N∑
i=0

µ(i)p(i, k),
N∑
i=0

µ(i) = 1, (19)

and the reversible relation

µ(k)p(k, i) = µ(i)p(i, k). (20)

By utilizing (18) in the following expression

µ(k)

µ(0)
=
µ(1)

µ(0)

µ(2)

µ(1)
. . .

µ(k)

µ(k − 1)
,

we obtain

µ(k)

µ(0)
=

k−1∏
i=0

(
1− i

N

) (
ε+ (1− δ) i

N−1

)(
i+1
N

) (
ε+ (1− δ)

(
1− i

N−1

)) , (21)

where an empty product is interpreted as 1 and ε > 0. For δ = 1, (21) reduces
to

µk =

(
N

k

)
2−N , k = 0, 1, . . . , N, (22)

which is Ehrenfest urn model.
From (20), we obtain easily the following recurrence relation

µ(j + 1)p(j + 1, j) = µ(j)[1− p(j, j)]−µ(j− 1)p(j− 1, j), j = 0, 1, . . . . (23)

Now, we approximate µ(k) by a beta distribution. Let α = εN and redefin-
ing µ(k) as f(k/N), we can approximate f(k/N) by f(x) as N → ∞, where
x = k/N ∈ [0, 1]. Thus, by (18), we have

f ′(x)

f(x)
= lim

N→∞
N
µ(k + 1)− µ(k)

µ(k)
=

(α− 1)(1− 2x) + δ(1− x)− ε
(1− δ)x(1− x)

=
α + δ − ε− 1

1− δ
1

x
− α + ε− 1

1− δ
1

1− x
,

giving

f(x) =
1

B
(
α−ε
1−δ ,

α−δ+ε
1−δ

)xα−ε1−δ−1(1− x)
α−δ+ε
1−δ −1, (24)
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for 0 < x < 1, α > 0, δ − α < ε < α and 0 ≤ ε ≤ δ ≤ 1. For (24) to be
symmetric, we require δ = 2ε, giving

X ∼ B

(
α− ε
1− 2ε

,
α− ε
1− 2ε

)
, 0 ≤ ε ≤ α. (25)

For ε = 0, (25) yields Kirman’s result ([10], p. 146).

There are three special cases of (25) for α−ε
1−2ε

< 1, α−ε
1−2ε

> 1 and α−ε
1−2ε

= 1,
i.e, α < 1− ε, α > 1− ε and α = 1− ε. For the first one (25) is U-shaped beta.
For the second case, (25) is uniform and for the last case (25) unimodal-shaped
beta. U-shaped beta is useful in economica applications [10].

5 Generalized Beta-Poisson Distribution

This section deals with the generalized beta-Poisson distribution which gen-
eralizes the results given earlier by Bhattacharya and Holla [2] and Grandell
[6].

Theorem 5.1 Let Y = aXb, a > 0, b > 0 and X ∼ Beta(α, β). Then
density function u(y) of Y , which may be called as generalized beta distribution
is given by

u(y) =
y
α
b
−1
[
1− (y/a)1/b

]β−1

a
α
b bB(α, β)

, 0 ≤ y ≤ a, (26)

and

pk(t) =
(at)k

k!B(α, β)

∞∑
r=0

(−at)r

r!
B(b(r + k) + α, β), (27)

for t ≥ 0, k = 0, 1, 2, . . .. Alternatively, we can write pk(t) as

pk(t) =
(at)kΓ(β)

k!B(α, β)
H1,1

1,2

[
at

∣∣∣∣ (1− bk − α, b)
(0, 1), (1− bk − α− β, b)

]
(28)

We may call pk(t) as a generalized beta-Poisson density.

Proof:

Substituting u(y) in (1), utilizing e−tu =
∑∞

r=0
(−tu)r

r!
and integrating with the

help of beta function of first kind, we arrive at (27). The equation (28) is
obtained on utilizing (27) and (7).
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5.1 Special Cases

1. For β = 1, (27) gives

pk(t) =
α(at)k

k!(kb+ α)
1F1

(
k +

α

b
; k +

α

b
+ 1;−at

)
, (29)

where 1F1 is the confluent hypergeometric function. For b = α, the above
result reduces to the following result given by Bhattacharya and Holla
[2]

pk(t) =
γ(k + 1, at)

k!at
(30)

where γ(., .) is the incomplete gamma function.

2. For b = 1, (27) yields

pk(t) =
(at)kB(k + α, β)

k!B(α, β)
1F1 (k + α; k + α; β;−at) . (31)

This is given in Grandell ([6], p. 45) and is useful in biological applica-
tions. For β = 1, the above results gives

pk(t) =
αγ(k + α, at)

k!(at)α
(32)

3. Taking b = m (a positive integer) in (27) and using multiplication for-
mula for gamma function Luke [17], we can express pk(t) in terms of the
generalized hypergeometric function mFm as follows

pk(t) =
(at)kΓ(β)

k!mβB(α, β)

m−1∏
j=0

Γ
(
k + α+j

m

)
(
k + α+β+j

m

) ×
mFm

(
k +

α

m
, . . . , k +

α+m− 1

m
; k +

α+ β

m
, . . . , k +

α+ β +m− 1

m
;−at

)
(33)

4. For α = β (symmetrical beta), (27) gives

pk(t) =
(at)k

k!B(α, α)

∞∑
r=0

(−at)r

r!
B(b(r + k) + α, α). (34)

When α = n, a positive integer, pk(t) can be expressed as a linear com-
bination of incomplete gamma functions. For this, we write

B(c+ n, n) =
Γ(c+ n)Γ(n)

Γ(c+ 2n)

=
Γ(n)

(c+ 2n− 1)(c+ 2n− 2)...(c+ n)

= Γ(n)
n∑
i=1

ai
(c+ n− 1 + i)

, (35)
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where c = b(r + k) and ai is obtained by utilizing the partial fraction
procedure. Thus

pk(t) =
Γ(n)(at)k

k!B(n, n)

n∑
i=1

ai

∞∑
r=0

(−at)r

r!(b(r + k) + n− 1 + i)

=
Γ(n)(at)k

k!bB(n, n)

n∑
i=1

ai

∞∑
r=0

(−at)r

r!
(
r + k + n−1+i

b

)
=

Γ(n)(at)k

k!bB(n, n)

n∑
i=1

1

k + n−1+i
b

ai1F1

(
k +

n− 1 + i

b
; k +

n− 1 + i

b
+ 1;−at

)
=

Γ(n)

k!bB(n, n)

n∑
i=1

(at)−
n−1+i
b aiγ

(
k +

n− 1 + i

b
, at

)
(36)

where

ai =
(−1)i−1

(i− 1)!(n− i)!
. (37)

5. When we take β = n, where n is a positive integer, in (27), we get

pk(t) =
Γ(n)

k!bB(α, n)

n∑
i=1

ai(at)
−α−1+i

b γ

(
k +

α− 1 + i

b
; at

)
, (38)

where ai is given in (37). For α = n, (38) reduces to (36).

6 Some new results for Generalized Hyperge-

ometric Functions

A few results for generalized hypergeometric functions are easily obtainable
from the results of the last section. Since

∑∞
k=0 pk(t) = 1 we have the following

result from (28)

H1,2
1,1

[
at

∣∣∣∣ (1− bk − α, b)
(0, 1), (1− bk − α− β, b)

]
=
k!Γ(α)(at)−k

Γ(α + β)
. (39)

In a similar manner, we have the following results respectively from (29) and
(33)

1. Result 1:

∞∑
k=0

(at)k

k!(kb+ α)
1F1

(
k +

α

b
; k +

α

b
+ 1;−at

)
=

1

α
(40)
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2. Result 2:

mβΓ(α)
Γ(α+β) =

∑∞
k=0

(at)k

k!

∏m−1
j=0

Γ(k+α+j
m )

Γ(k+α+β+j
m )

×

×mFm
(
k + α

m ; k + α+1
m , . . . , k + α+m−1

m ; k + α+β
m , k + α+β+1

m , . . . , k + α+β+m−1
m ;−at

)
,(41)

where m is a positive integer.
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