Some remarks on commutative and pointed pseudo-CI algebras

Akbar Rezaei

Department of Mathematics Payame Noor University, Tehran, Iran email: rezaei@pnu.ac.ir

Andrzej Walendziak

Siedlee University, Faculty of Science Institute of Mathematics and Physics 3 Maja 54, Siedlee, Poland email: walent@interia.pl

Arsham Borumand Saeid

Department of Pure Mathematics Faculty of Mathematics and Computer Shahid Bahonar University of Kerman, Kerman, Iran email: arsham@uk.ac.ir

Abstract

In this paper, the concepts of branchwise commutative pseudo-CI algebras and pointed pseudo-CI algebras are introduced and some of their properties are investigated.

Mathematics Subject Classification: 06F35, 03G25, 03B52.

Keywords: (pointed) pseudo-CI algebra, branchwise commutativity.

1 Introduction

In 1966, Y. Imai and K. Iséki ([9]) introduced the notion of a BCK algebra. There exist several generalizations of BCK algebras, such as BCI algebras ([10]), BCH algebras ([8]), BE algebras ([11]), CI algebras ([12]), etc. In 2001, G. Georgescu and A. Iorgulescu ([7]) introduced pseudo-BCK algebras as an extension of BCK algebras. In 2008, W. A. Dudek and Y. B. Jun ([6]) defined pseudo-BCI algebras as a natural generalization of BCI algebras and of pseudo-BCI algebras. G. Dymek studied *p*-semisimple pseudo-BCI algebras ([4]) and periodic pseudo-BCI algebras ([5]). R. A. Borzooei et al. ([1]) defined pseudo-BE algebras which are a generalization of BE algebras. A. Walendziak introduced pseudo-BCH algebras and then investigated ideals in such algebras ([14]–[16]). Recently, A. Rezaei et al. defined the class of pseudo-CI algebras and studied some of its subclasses ([13]).

In this paper, we introduce and study the concept of a branchwise commutative pseudo-CI algebra. We also introduce pointed pseudo-CI algebras and investigate some of their properties.

2 Preliminary Notes

In this section, we review the basic definitions and some elementary aspects that are necessary for this paper.

Recall that a *CI algebra* ([12]) is an algebra $(X; \rightarrow, 1)$ of type (2,0) satisfying the following axioms:

(CI1) $x \to x = 1$, (CI2) $1 \to x = x$, (CI3) $x \to (y \to z) = y \to (x \to z)$.

A CI-algebra $(X; \rightarrow, 1)$ is said to be a *BE-algebra* ([11]) if

- (BE) $x \to 1 = 1$
- holds in $(X; \rightarrow, 1)$.

An algebra $\mathfrak{X} = (X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) is called a *pseudo-BCI algebra* if it satisfies the following axioms:

 $\begin{array}{ll} (\mathrm{I}_1) & (x \rightarrow y) \rightsquigarrow ((y \rightarrow z) \rightsquigarrow (x \rightarrow z)) = 1, \\ (\mathrm{I}_2) & (x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1, \\ (\mathrm{I}_3) & x \rightarrow ((x \rightarrow y) \rightsquigarrow y) = 1 \ \, \mathrm{and} \ \, x \rightsquigarrow ((x \rightsquigarrow y) \rightarrow y) = 1, \\ (\mathrm{I}_4) & x \rightarrow y = y \rightsquigarrow x = 1 \Longrightarrow x = y, \\ (\mathrm{I}_5) & x \rightarrow x = x \rightsquigarrow x = 1, \\ (\mathrm{I}_6) & x \rightarrow y = 1 \Longleftrightarrow x \rightsquigarrow y = 1. \end{array}$

A pseudo-BCI algebra \mathfrak{X} satisfying condition

 (I_7) $x \to 1 = x \rightsquigarrow 1 = 1$

is said to be a *pseudo-BCK algebra* ([7]).

Definition 2.1. ([13]) An algebra $(X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) is called a *pseudo-CI algebra* if it satisfies (I₅), (I₆) and the following axioms:

$$(\mathbf{I_8}) \quad 1 \to x = 1 \rightsquigarrow x = x,$$

 $(\mathbf{I}_9) \quad x \to (y \rightsquigarrow z) = y \rightsquigarrow (x \to z).$

Remark 2.2. If $(X; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-CI algebra satisfying $x \rightarrow y = x \rightsquigarrow y$, for all $x, y \in X$, then $(X; \rightarrow, 1)$ is a CI-algebra.

A pseudo-CI algebra $(X; \rightarrow, \rightsquigarrow, 1)$ is called:

- (i) a pseudo-BCH algebra ([14]) if it verifies (I_4) ,
- (ii) a pseudo-BE algebra ([1]) if it verifies (I_7) .

Remark 2.3. Since every pseudo-BCI algebra satisfies $(I_4)-(I_6)$, (I_8) and (I_9) , pseudo-BCI algebras are contained in the class of pseudo-BCH algebras.

Denote by **psBCK**, **psBCI**, **psCI**, **psBE** and **psBCH** the classes of pseudo-BCK, pseudo-BCI, pseudo-CI, pseudo-BE and pseudo-BCH algebras, respectively. By definition and Remark 2.3,

$psBCK \subset psBCI \subset psBCH \subset psCI$ and $psBE \subset psCI$.

Remark 2.4. The class of all pseudo-CI algebras is a quasi-variety. Therefore, if \mathfrak{X}_1 and \mathfrak{X}_2 are two pseudo-CI algebras, then the direct product $\mathfrak{X} = \mathfrak{X}_1 \times \mathfrak{X}_2$ is also a pseudo-CI algebra.

Example 2.5. (1) Let $X_1 = \{1, a, b, c, d\}$. Define the operations \rightarrow_1 and \rightsquigarrow_1 on X_1 by the following tables:

\rightarrow_1	1	a	b	c	d		\rightsquigarrow_1	1	a	b	c	d
1	1	a	b	С	d		1	1	a	b	С	d
a	1	1	c	c	1	and	a	1	1	b	c	1
b	1	d	1	1	d	and	b	1	d	1	1	d
c	1	d	1	1	d		c	1	d	1	1	d
d	1	1	c	c	1		d	1	1	b	c	1

We can observe that $\mathfrak{X}_1 = (X_1; \to_1, \to_1, 1)$ is a pseudo-CI algebra, which is not a pseudo-BCH algebra since $b \neq c$ and $b \to_1 c = c \to_1 b = 1$.

(2) Let $X_2 = \{1, a, b, c, d\}$. Define the operations \rightarrow_2 and \sim_2 on X_2 by the following tables:

\rightarrow_2	1	a	b	c	d	e		\rightsquigarrow_2	1	a	b	c	d	e
1	1	a	b	С	d	e		1	1	a	b	С	d	e
a	a	1	d	e	b	С		a	a	1	c	b	e	d
b	b	С	1	a	e	d	and	b	b	d	1	e	a	c
c	d	e	a	1	c	b		c	d	b	e	1	c	a
d	c	b	e	d	1	a		d	c	e	a	d	1	b
e	e	d	c	b	a	1		e	e	c	d	a	b	1

Then $\mathfrak{X}_2 = (X_2; \to_2, \to_2, 1)$ is a pseudo-CI algebra, which is not a pseudo-BE algebra since $a \to_2 1 = a \neq 1$.

(3) The direct product $\mathfrak{X} = \mathfrak{X}_1 \times \mathfrak{X}_2$ is a pseudo-CI algebra, which is neither a pseudo-BCH algebra nor a pseudo-BE algebra.

Let $(X; \to, \rightsquigarrow, 1)$ be a pseudo-CI algebra. We define the binary relation \leq by: for all $x, y \in X$,

$$x \preceq y \Longleftrightarrow x \to y = 1 \Longleftrightarrow x \rightsquigarrow y = 1.$$

We note that \leq is reflexive by (I₅). From [13] we have (for all $x, y, z \in X$):

 $\begin{array}{ll} (a1) & 1 \leq x \Longrightarrow x = 1, \\ (a2) & x \leq y \to z \Longleftrightarrow y \leq x \rightsquigarrow z, \\ (a3) & x \to 1 = x \rightsquigarrow 1, \\ (a4) & (x \to y) \to 1 = (x \to 1) \rightsquigarrow (y \to 1), \\ (a5) & (x \rightsquigarrow y) \rightsquigarrow 1 = (x \rightsquigarrow 1) \to (y \rightsquigarrow 1), \\ (a6) & x \leq y \Longrightarrow x \to 1 = y \to 1 = x \rightsquigarrow 1 = y \rightsquigarrow 1, \\ (a7) & y \leq (y \to x) \rightsquigarrow x \text{ and } y \leq (y \rightsquigarrow x) \to x. \end{array}$

Proposition 2.6. Let $\mathfrak{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-CI algebra. Then:

- (i) If $a, x, y \in X$, $x \preceq a$ and $y \preceq a$, then $x \rightarrow y \preceq 1$ and $x \rightsquigarrow y \preceq 1$.
- (ii) If $x, y \in X$, $x \leq 1$, then $y \leq x \rightarrow y$ and $y \leq x \rightsquigarrow y$.

Proof. (i) Let $x \leq a$ and $y \leq a$. By (a4) and (a6), $(x \to y) \to 1 = (x \to 1) \rightsquigarrow (y \to 1) = (a \to 1) \rightsquigarrow (a \to 1) = 1$, and hence $x \to y \leq 1$. Similarly, $x \rightsquigarrow y \leq 1$.

(ii) Since $x \leq 1$ and $1 = y \to y$, we have $x \leq y \to y$. Applying (a2), we get $y \leq x \rightsquigarrow y$. Similarly, $y \leq x \to y$.

A pseudo-CI algebra with condition (A), or a pseudo-CI(A) algebra for short, is a pseudo-CI algebra $(X; \rightarrow, \rightsquigarrow, 1)$ satisfying the following condition:

(A) for all $x, y, z \in X$, if $x \preceq y$, then $y \rightarrow z \preceq x \rightarrow z$ and $y \rightsquigarrow z \preceq x \rightsquigarrow z$.

Clearly, every pseudo-BCI algebra satisfies (A). It is easy to see that the pseudo-CI algebra from Example 2.5 (1) also satisfies (A). The following example shows that there are pseudo-CI algebras, which do not satisfy (A).

Example 2.7. Let $X = \{1, a, b, c, d, e, f\}$. We define the binary operations \rightarrow and \rightarrow on X as follows:

\rightarrow	1	a	b	c	d	e	f		\rightsquigarrow	1	a	b	c	d	e	f
1	1	a	b	c	d	e	f	and	1	1	a	b	c	d	e	f
a	1	1	b	b	d	e	f		a	1	1	b	c	d	e	f
b	1	a	1	c	d	e	f		b	1	a	1	a	d	e	f
c	1	1	1	1	d	e	f		c	1	1	1	1	d	e	f
d	1	a	b	c	1	1	f		d	1	a	b	c	1	1	f
e	1	a	b	c	e	1	1		e	1	a	b	c	e	1	1
f	1	a	b	c	d	e	1		f	1	a	b	c	d	e	1

Routine calculations show that $\mathfrak{X} = (X; \to, \rightsquigarrow, 1)$ is a pseudo-CI algebra. \mathfrak{X} does not satisfy (A). Indeed, we have $d \leq e$ but $e \to f = 1 \not\leq f = d \to f$.

Let $\mathfrak{X} = (X; \to, \rightsquigarrow, 1)$ be a pseudo-CI algebra. An element $a \in X$ is said to be an *atom* of \mathfrak{X} (see [13]) if for any $x \in X$, $a \preceq x$ implies a = x. Let $A(\mathfrak{X})$ denote the set of all atoms of \mathfrak{X} . By (a1), $1 \in A(\mathfrak{X})$, so $A(\mathfrak{X}) \neq \emptyset$. From [13] it follows that

$$a \in A(\mathfrak{X})$$
 if and only if $a = (a \to x) \rightsquigarrow x$ for all $x \in X$.

Remark that if \mathfrak{X}_1 and \mathfrak{X}_2 are pseudo-CI algebras from Example 2.5 (1) and (2), respectively, then $A(\mathfrak{X}_1) = \{1\}$ and $A(\mathfrak{X}_2) = X_2$.

3 Branchwise commutativity

Let \mathfrak{X} be a pseudo-CI algebra. For any $a \in X$ we define a subset V(a) of X as follows

$$\mathbf{V}(a) = \{ x \in X : x \preceq a \}.$$

Remark that $V(a) \neq \emptyset$, since $a \leq a$ gives $a \in V(a)$.

If a is an atom of \mathfrak{X} , then the set V(a) is called a *branch* of \mathfrak{X} determined by element a.

The pseudo-CI algebras from Examples 2.5 (1) and 2.7 have only one branch; the algebra given in Example 2.5 (2) has the following branches: $\{1\}$, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$ and $\{f\}$.

A pseudo-CI algebra \mathfrak{X} is called *commutative* ([13]) if for all $x, y, z \in X$, it satisfies the following identities:

$$(x \to y) \rightsquigarrow y = (y \to x) \rightsquigarrow x \tag{3.1}$$

$$(x \rightsquigarrow y) \to y = (y \rightsquigarrow x) \to x. \tag{3.2}$$

From [13] it follows that any commutative pseudo-CI algebra is a pseudo-BCK algebra (and also pseudo-BE algebra). Hence we obtain

Proposition 3.1. Commutative pseudo-CI algebras coincide with commutative pseudo-BE algebras, with commutative pseudo-BCI algebras and with commutative pseudo-BCK algebras.

In [3], G. Dymek introduced the notion of branchwise commutative pseudo-BCI algebras. A. Walendziak ([17]) introduced and studied branchwise commutative pseudo-BCH algebras. Following [3] and [17], we say that a pseudo-CI algebra \mathfrak{X} is *branchwise commutative* if identities (3.1) and (3.2) hold for x and y belonging to the same branch. Clearly, any commutative pseudo-CI algebra is branchwise commutative. Note that the pseudo-CI algebra from Example 2.5 (2) is branchwise commutative, but it is not commutative since $(a \rightarrow_2 b) \rightsquigarrow_2 b = a \neq b = (b \rightarrow_2 a) \rightsquigarrow_2 a$.

Proposition 3.2. Let \mathfrak{X} be a pseudo-CI algebra and $a \in X$. Then $(V(a); \preceq)$ is a poset.

Proof. Obviously, \leq is reflexive. Observe that \leq is also anti-symmetric. Indeed, let $x, y \in V(a)$. Suppose that $x \leq y$ and $y \leq x$. Then $x \to y = y \to x = 1$. By (I₈) and branchwise commutativity,

$$x = 1 \rightsquigarrow x = (y \to x) \rightsquigarrow x = (x \to y) \rightsquigarrow y = 1 \rightsquigarrow y = y.$$

Now we prove that \leq is transitive. Let $x, y, z \in V(a)$ and assume that $x \leq y$ and $y \leq z$. Then $x \to y = y \to z = 1$. By Proposition 2.6 (i), $z \to y \leq 1$. We have

$$\begin{aligned} x \to z &= (y \to z) \rightsquigarrow (x \to z) \quad [by (I_8)] \\ &= x \to ((y \to z) \rightsquigarrow z) \quad [by (I_9)] \\ &= x \to ((z \to y) \rightsquigarrow y) \quad [by \text{ branchwise commutativity}] \\ &= (z \to y) \rightsquigarrow (x \to y) \quad [by (I_9)] \\ &= (z \to y) \rightsquigarrow 1 = 1 \quad [since \ z \to y \preceq 1]. \end{aligned}$$

Hence $x \leq z$, and therefore \leq is transitive. Consequently, $(V(a); \leq)$ is a poset. \Box

Theorem 3.3. Let \mathfrak{X} be a pseudo-CI(A) algebra. The following statements are equivalent:

(a) \mathfrak{X} is branchwise commutative.

(b) Each branch of \mathfrak{X} is a semilattice with respect to the join \vee defined by

$$x \lor y = (x \to y) \rightsquigarrow y = (x \rightsquigarrow y) \to y.$$

Proof. (a) \Longrightarrow (b): Suppose that \mathfrak{X} is branchwise commutative. Let $a \in A(\mathfrak{X})$. By Proposition 3.2, $(V(a); \preceq)$ is a poset. Let $x, y \in V(a)$. From Proposition 2.6 (i) we conclude that $x \to y \preceq 1, x \rightsquigarrow y \preceq 1, y \to x \preceq 1$, and $y \rightsquigarrow x \preceq 1$. Applying Proposition 2.6 (ii), we get $x, y \preceq (x \to y) \rightsquigarrow y = (y \to x) \rightsquigarrow x$ and $x, y \preceq (x \rightsquigarrow y) \to y = (y \rightsquigarrow x) \to x$. Observe that $(x \to y) \rightsquigarrow y \in V(a)$. Since $x \preceq a$, using (A), we see that $a \to y \preceq x \to y$, and hence

$$(x \to y) \rightsquigarrow y \preceq (a \to y) \rightsquigarrow y. \tag{3.3}$$

By (a7), $a \leq (a \to y) \rightsquigarrow y$. From this, since $a \in A(\mathfrak{X})$, we have $a = (a \to y) \rightsquigarrow y$. Therefore, by (3.3), $(x \to y) \rightsquigarrow y \leq a$, and similarly, $(x \rightsquigarrow y) \to y \leq a$. Then $(x \to y) \rightsquigarrow y$ and $(x \rightsquigarrow y) \to y$ belong to V(a), and they are upper bounds of $\{x, y\}$. Now we show that $(x \to y) \rightsquigarrow y$ and $(x \rightsquigarrow y) \to y$

are both the least upper bounds of $\{x, y\}$. Let $z \in V(a)$ be another upper bound of $\{x, y\}$. Therefore, $x \leq z$ and $y \leq z$. By branchwise commutativity, $(z \to y) \rightsquigarrow y = (y \to z) \rightsquigarrow z = 1 \rightsquigarrow z = z$, and similarly, $(z \rightsquigarrow y) \to y = z$. Since $x \leq z$, applying (A) we deduce that $(x \to y) \rightsquigarrow y \leq (z \to y) \rightsquigarrow y = z$ and $(x \rightsquigarrow y) \to y \leq (z \rightsquigarrow y) \to y = z$, that is, $(x \to y) \rightsquigarrow y \leq z$ and $(x \rightsquigarrow y) \to y \leq z$. Thus $(x \to y) \rightsquigarrow y$ and $(x \rightsquigarrow y) \to y$ are both the least upper bounds of $\{x, y\}$. Then $x \lor y = (x \to y) \rightsquigarrow y = (x \rightsquigarrow y) \to y$ and V(a)is a semilattice with respect to \lor .

(b) \implies (a): Let x and y belong to the same branch. By assumption, $x \lor y = (x \to y) \rightsquigarrow y = (x \rightsquigarrow y) \to y$. Since $x \lor y = y \lor x$, we obtain identities (3.1) and (3.2). Thus \mathfrak{X} is branchwise commutative. \square

Let \mathfrak{X} be a commutative pseudo-CI algebra. Then \mathfrak{X} is a pseudo-BCK algebra, and therefore it satisfies (A) and has only one branch. Consequently, from Theorem 3.3 we obtain

Corollary 3.4. Any commutative pseudo-CI algebra is a join-semilattice with respect to \leq .

Since every pseudo-BE algebra is a pseudo-CI algebra, we have

Corollary 3.5. Any commutative pseudo-BE algebra is a join-semilattice with respect to \leq .

4 Pointed pseudo-CI algebras

Definition 4.1. A pseudo-CI algebra $(X; \rightarrow, \rightsquigarrow, 1)$ with a constant element a (which can denoted any element) is called a *pointed pseudo-CI algebra* and it is denoted by $(X; \rightarrow, \rightsquigarrow, a, 1)$.

For any pointed pseudo-CI algebra $(X; \rightarrow, \rightsquigarrow, a, 1)$, for all $x \in X$, define two negations relative to a:

 $x^{-a} := x \to a, \quad x^{\sim a} := x \rightsquigarrow a,$

Proposition 4.2. Let $(X; \rightarrow, \rightsquigarrow, a, 1)$ be a pointed pseudo-CI algebra. Then the following hold:

(p1) $a^{-a} = a^{\sim a} = 1 \text{ and } 1^{-a} = 1^{\sim a} = a,$ (p2) $x^{-1} = x^{\sim 1},$ (p3) if $x \leq a, \text{ then } x^{-1} = x^{\sim 1} = a^{\sim 1} = a^{-1},$ (p4) $x \leq x^{-a^{\sim a}}, x \leq x^{\sim a^{-a}},$ (p5) if $x \to y = a \text{ or } x \rightsquigarrow y = a, \text{ then } y^{\sim a} = x^{-1} = x^{\sim 1} = y^{-a},$ (p6) $x \leq y^{-a} \iff y \leq x^{\sim a},$ (p7) $x^{-a} = 1 \iff x^{\sim a} = 1.$ *Proof.* (p1) We have $a \to a = a \rightsquigarrow a = 1$ and $1 \to a = 1 \rightsquigarrow a = a$. Hence (p1) holds.

- (p2) Follows from (a3).
- (p3) Obviously, by (a6).
- (p4) Follows immediately from (a7).

(p5) Let $x \to y = a$. Applying (I₉) and (I₅) we obtain $y^{\sim a} = y \rightsquigarrow a = y \rightsquigarrow (x \to y) = x \to (y \rightsquigarrow y) = x \to 1 = x^{-1}$. Similarly, $y^{-a} = x^{\sim 1}$. Then $y^{\sim a} = x^{-1} = x^{\sim 1} = y^{-a}$ by (p2). If $x \rightsquigarrow y = a$, then the proof is similar.

- (p6) Clearly, by (a2).
- (p7) Follows from (I_6) .

Definition 4.3. A pointed pseudo-CI algebra $(X; \rightarrow, \rightsquigarrow, a, 1)$ is called *a-good* if $x^{-a \sim a} = x^{\sim a^{-a}}$ for all $x \in X$.

Remark 4.4. By Proposition 4.2 (p2), every pointed pseudo-CI algebra $\mathfrak{X}' = (X; \rightarrow, \rightsquigarrow, 1, 1)$ is 1-good.

Example 4.5. (1) Let $(X_1; \rightarrow, \rightsquigarrow, 1)$ be the pseudo-CI algebra given in Example 2.5 (1). Then the pointed pseudo-CI algebra $(X_1; \rightarrow_1, \rightsquigarrow_1, x, 1)$ is x-good for all $x \in X_1$.

(2) Consider the pseudo-CI algebra \mathfrak{X} from Example 2.7. Observe that the pointed pseudo-CI algebra $(X; \to, \rightsquigarrow, c, 1)$ is not *c*-good. Indeed, $(a \to c) \rightsquigarrow c = a \neq 1 = (a \rightsquigarrow c) \to c$.

If $(X; \rightarrow, \rightsquigarrow, 1)$ is a commutative pseudo-BE algebra, then

$$(x \to y) \rightsquigarrow y = (x \rightsquigarrow y) \to y \tag{4.1}$$

for all $x, y \in X$ (see Corollary 1.2 of [2]). By Proposition 3.1, every commutative pseudo-CI algebra satisfies (4.1). From this we have

Corollary 4.6. Every pointed commutative pseudo-CI algebra $(X; \rightarrow, \rightsquigarrow, a, 1)$ is a-good.

References

- R. A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar and R. Ameri, On pseudo-BE algebras, Discussiones Mathematicae, General Algebra and Applications 33 (2013), 95–108.
- [2] L. C. Ciungu, Non-commutative multiple-valued logic algebras, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2014.
- [3] G. Dymek, On two classes of pseudo-BCI-algebras, Discussiones Mathematicae, General Algebra and Applications **31** (2011), 217–230.

276

- [4] G. Dymek, p-semisimple pseudo-BCI algebras, J. Mult.-Valued Logic and Soft Computing 19 (2012), 461–474.
- [5] G. Dymek, On a period of elements of pseudo- BCI algebras, Discussiones Mathematicae, General Algebra and Applications 35 (2015), 21–31.
- [6] W. A. Dudek and Y. B. Jun, *Pseudo-BCI algebras*, East Asian Math. J. 24 (2008), 187–190.
- [7] G. Georgescu and A. Iorgulescu, *Pseudo-BCK algebras: an extension of BCK-algebras*, DMTCS01: Combinatorics, computability and logic, Springer, London, 2001, 97–114.
- [8] Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313–320.
- [9] Y. Imai and K. Iséki, On axiom systems of propositional Calculi, XIV proc. Jpn. Academy 42 (1966), 19–22.
- [10] K. Iséki, An algebra related with a propositional calculus, Propc. Japan Academy 42 (1966), 26–29.
- [11] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (2007), 113–117.
- [12] B. L. Meng, *CI-algebras*, Sci. Math. Jpn. **71** (2010), 11–17.
- [13] A. Rezaei, A. Borumand Saeid and K. Yousefi Sikari Saber, On pseudo-CI algebras, (submitted).
- [14] A. Walendziak, *Pseudo-BCH algebras*, Discussiones Mathematicae, General Algebra and Applications **35** (2015), 5–19.
- [15] A. Walendziak, Strong ideals and horizontal ideals in pseudo-BCHalgebras, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 15 (2016), 15–25.
- [16] A. Walendziak, On ideals of pseudo-BCH-algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica 70 (2016), 81–91.
- [17] A. Walendziak, On branchwise commutative pseudo-BCH algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica 71 (2017), 79–89.

Received: August 04, 2018