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Abstract

This paper considers the distributional wedge product. Some proper-

ties are proved, which can be used in the study of quasiregular mappings

and mappings of finite distortion.
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1 Introduction

In the theory of non-linear differential forms and their applications to modern
theory of mappings, one of the most important concepts is the distributional
wedge product. As a generalization of distributional Jacibian, it has important
applications in the theory of geometric function theory and non-linear analysis,
see [1-3]. In this paper, we give some properties of the distributional wedge
products.

Let f = (f 1, f 2, · · · , fn) : Ω → Rn be a Sobolev mapping. Given a pair of
ordered ℓ-tuples I = (i1, i2, · · · , iℓ) and J = (j1, j2, · · · , jℓ), there is an associ-

ated ℓ× ℓ minor of the differential matrix Df =
(
∂f i

∂xj

)
1≤i,j≤n

. We shall use the
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following notation for such minors

∂If

∂xJ

=
∂(f i1 , f i2, · · · , f iℓ)

∂(xj1 , xj2, · · · , xjℓ)
= det

[
∂f i

∂xj

]

i∈I,j∈J

.

Thus the (i, j)th entry of Df is obtained when I = (i) and J = (j), while
the Jacobian determinant is obtained when I = J = N = (1, 2, · · · , n). For
J = (j1, j2, · · · , jℓ), denote by N − J = (k1, k2, · · · , kn−ℓ) obtained from N =
(1, 2, · · · , n) by deleting all terms in J .

Let e1, e2, · · · , en denote the standard basis of Rn. For each ℓ = 0, 1, · · · , n
denote by

∧ℓ =
∧ℓ(Rn) the space of ℓ-covectors on Rn,

∧0 = R,
∧1 = Rn.

Then
∧ℓ consists of linear combinations of exterior products

eI = ei1 ∧ ei2 ∧ · · · ∧ eiℓ ,

where I = (i1, i2, · · · , iℓ) is an ℓ-tuple.
For a smooth mapping f = (f 1, f 2, · · · , fn) : Ω → Rn and 1 ≤ l ≤ n, one

can use Stoke’s theorem to write
∫

Ω
ϕ(x)df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J = −

∫

Ω
f i1dϕ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J ,

where ϕ ∈ C∞
0 (Ω). This later integral actually converges for mappings in the

Sobolev space W 1,s
loc (Ω,R

n), with s = nl
n+1

. Indeed, we have

∣∣∣dϕ ∧ df i2 ∧ · · · ∧ df il
∣∣∣ ≤ |∇ϕ||Df |l−1,

and this last term lies in L
nℓ

(n+1)(ℓ−1)

loc (Ω), whereas f i1 is locally in the dual space

L
nℓ

n−ℓ+1

loc (Ω), by the Sobolev embedding theorem. An immediate consequence of
this is that we are able to make the following definition.

Definition 1.1 The distributional wedge product is defined for mappings
f ∈ W 1,s

loc (Ω,R
n) with s = nℓ

n+1
and any ordered ℓ-tuples I = (i1, · · · , iℓ) and

J = (j1, · · · , jℓ) by the rule

J J
fI [ϕ] = −

∫

Ω
f i1dϕ ∧ df i2 ∧ · · · ∧ df iℓ ∧ dxN−J

for ϕ ∈ C∞
0 (Ω).

This definition gives us the continuous non-linear operator

J J
fI : W

1, nℓ
n+1

loc (Ω,Rn) → D′(Ω),

where D′(Ω) represents the dual space to C∞
0 (Ω), that is, the space of Schwarz

distributions. If ℓ = n, then the distributional wedge product coincides with
the distributional Jacobian, see [1].
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2 Some Properties of DistributionalWedge Prod-

ucts

In the following, C(n) is some constant depending only on the dimension n,
it may vary from line to line. In this section, we give some properties of
distributional wedge products. The first result to consider is the following
theorem.

Theorem 2.1 Let f ∈ W 1,s
loc (Ω,R

n), s = nℓ
n+1

, and Q ⊂ Ω be a cube. If the
test function ϕ ∈ C∞

0 (Q) satisfies |∇ϕ| ≤ C(n)/diam(Q), then for any ordered
ℓ-tuples I = (i1, · · · , iℓ) and J = (j1, · · · , jℓ), we have

∣∣∣J J
fI [ϕ]

∣∣∣ =
∣∣∣∣
∫

Q
ϕ(x)df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J

∣∣∣∣ ≤ C(n) |Q|1−
l
s

( ∫

Q
|Df |s

) l
s .

Proof. We only need to prove the last inequality. Denote by f i1
Q the

integral mean of f i1 over Q, that is, f i1
Q = −

∫
Q f i1dx. By Stoke’s theorem,

Hölder’s inequality and Poincaré-Sobolev inequality, we have

∣∣∣J J
fI [ϕ]

∣∣∣ =
∣∣∣∣
∫

Q
ϕ(x)df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J

∣∣∣∣

=
∣∣∣∣
∫

Q
(f i1 − f i1

Q )dϕ ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J

∣∣∣∣

≤
∫

Q
|f i1 − f i1

Q || ▽ ϕ||Df |ℓ−1dx ≤
C(n)

diam (Q)

∫

Q
|f i1 − f i1

Q ||Df |ℓ−1dx

≤
C(n)

diam (Q)

(∫

Q
|f i1 − f i1

Q |
nℓ

n−ℓ+1dx
)n−ℓ+1

nℓ
(∫

Q
|Df |

nℓ
n+1dx

) (n+1)(ℓ−1)
nℓ

≤
C(n)

diam (Q)

(∫

Q
|Df |

nℓ
n+1dx

)n+1
n

= C(n) |Q|1−
l
s

(∫

Q
|Df |s

) l
s

.

This ends the proof of Theorem 2.1.

Theorem 2.2 If n−l+1 coordinate functions of a mapping f = (f 1, f 2, · · · , fn) ∈
W 1,ℓ(Ω,Rn) vanish on ∂Ω in the Sobolev sense, then for any ordered ℓ-tuples
I = (i1, · · · , iℓ) and J = (j1, · · · , jℓ),

∫

Ω
df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J = 0. (2.1)

If two mappings f, g ∈ W 1,ℓ(Ω,Rn) agree on ∂Ω in the Sobolev sense, then

∫

Ω
df i1 ∧ df i2 ∧ · · · ∧ df iℓ ∧ dxN−J =

∫

Ω
dgi1 ∧ dgi2 ∧ · · · ∧ dgiℓ ∧ dxN−J . (2.2)
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Proof. It is no loss of generality to assume that f ik vanishes on ∂Ω in
the Sobolev sense, for some k ∈ {1, 2, · · · , ℓ}, because otherwise we will have
a contradiction. Stoke’s theorem yields

∫

Ω
df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J

= (−1)k−1
∫

Ω
d
(
f ikdf i1 ∧ · · · ∧ d̂f ik ∧ · · · ∧ df iℓ ∧ dxN−J

)

= (−1)k−1
∫

∂Ω
f ikdf i1 ∧ · · · ∧ d̂f ik ∧ · · · ∧ df iℓ ∧ dxN−J = 0

where the circumflex over a term means it is to be omitted. If f, g ∈ W 1,ℓ(Ω,Rn)
agree on ∂Ω in the Sobolev sense, then by (2.1),

∫

Ω
df i1 ∧ df i2 ∧ · · · ∧ df iℓ ∧ dxN−J −

∫

Ω
dgi1 ∧ dgi2 ∧ · · · ∧ dgiℓ ∧ dxN−J

=
ℓ∑

k=1

∫

Ω
df i1 ∧ · · · ∧ d(f ik − gik) ∧ · · · ∧ dgiℓ ∧ dxN−J = 0.

From this (2.2) follows. This ends the proof of Theorem 2.2.
We now need a few facts from harmonic analysis in order to state and prove

Theorem 2.3. For h ∈ Ls(Rn), 1 ≤ s < ∞, the maximal function of h is defined
by

(Msh)(x) = sup





(
1

|Q|

∫

Q
|h|s

) 1
s

: x ∈ Q ⊂ Rn



 .

The following result represents a slight strengthening of the well-known weak-
type inequality

|{x : Msh(x) > 2t}| ≤
C(n, s)

ts

∫

|h(x)|>t
|h(x)|sdx.

Another prerequisite for the proof of Theorem 3 is the Whitney decompo-
sition and the adjusted partition of unity, see [4]. Let F be a non-empty closed
set in Rn and Ω its complement. Then there is a collection F = {Q1, Q2, · · ·}
of non-overlapping cubes such that

1. Ω =
⋃∞

i=1Qi;

2. diam Qi ≤ dist (Qi, F ) ≤ 4diamQi;

3. λQi intersects F if λ ≥ 7n.

Here we denote by λQ the cube which has the same centre asQ but is expanded
(or contracted) by the factor λ. The last fact follows from elementary geometric
considerations. We follow the notation used in [4] and write Q∗

i =
11
10
Qi. Now
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there exists a partition of unity 1 =
∑∞

i=1 ϕi(x), x ∈ Ω, where ϕi ∈ C∞
0 (Q∗

i )
are non-negative functions such that

| ∇ϕi(x) |≤
C(n)

diam(Qi)
, i = 1, 2, · · ·

Theorem 2.3 Let f ∈ W 1,s(Rn,Rn) with s = nl
n+1

have compact support
and let

M(x) = (Ms|Df |)(x).

Then for all but a countable number of t > 0 we have

∣∣∣∣
∫

M(x)≤2t
df i1∧df i2∧· · ·∧df il∧dxN−J

∣∣∣∣ ≤ C(n)tl−s
∫

|Df(x)|>t
|Df(x)|sdx. (2.3)

An Orlicz function is a continuously increasing function satisfying

P : [0,∞) → [0,∞), P (0) = 0 and lim
t→∞

P (t) = ∞.

The Orlicz space LP (Ω,Rn) consists of those Lebesgue measurable mappings
defined in Ω and valued in the space Rn such that

∫

Ω
P (λ|f |)dx < ∞ for some λ = λ(f) > 0.

The spaces LP
loc(Ω,R

n) and W 1,P
loc (Ω,Rn) are easy to understand.

Theorem 2.4 Under the divergence condition

∫ ∞

1
P (t)

dt

tl+1
= +∞ (2.4)

and the convexity assumption

t → P (t
n+1
nl ) is convex (2.5)

on the Orlicz function P = P (t), we have for each H ∈ LP (Rn),

lim inf
t→∞

tl−s
∫

|H(x)|>t
|H(x)|sdx = 0,

where s = nl
n+1

.

The proof of Theorems 2.3 and 2.4 are just a little modifications of [1, Lem-
mas 7.2.1 and 7.2.2] by using the maximal function, Whitney decomposition
and Theorem 2.2. We omit the details.
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Theorem 2.5 Let f lies in W 1,P
loc (Ω,Rn) with the Orlicz function P satis-

fying the divergen condition (2.4) and the convexity condition (2.5). Then for
any ordered ℓ-tuples I = (i1, · · · , iℓ) and J = (j1, · · · , jℓ), if

∂If

∂xJ

=
∂(f i1 , f i2, · · · , f il)

∂(xj1 , xj2, · · · , xjl)
≥ 0,

then it is locally integrable, and

J J
fI [ϕ] =

∫

Ω
ϕ(x)df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J = (−1)σ(J,N−J)

∫

Ω
ϕ(x)

∂f I

∂xJ

dx

for every test function ϕ ∈ C∞
0 (Ω), where σ(J,N−J) is the sign of the induced

permutation which is either odd or even.

Proof We choose an arbitrary non-negative test function ϕ ∈ C∞
0 (Ω). We

choose yet another test function η ∈ C∞
0 (Ω) which is equal to 1 on the support

of ϕ. Thus
∂(ϕf i1 , f i2, · · · , f il)

∂(xj1 , xj2, · · · , xjl)
=

∂(ϕf i1 , ηf i2, · · · , ηf il)

∂(xj1 , xj2 , · · · , xjl)
.

Note that the mapping f ′ = (ϕf 1, ηf 2, · · · , ηfn) lies in the Orlicz-Sobolev
space W 1,P (Rn,Rn). Let

M ′(x) = (Ms|Df ′|)(x).

Because of Theorems 2.3 and 2.4, we have

lim inf
t→∞

∣∣∣∣
∫

M ′(x)<2t
d(ϕf i1) ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J

∣∣∣∣ = 0. (2.6)

We now split the integrand as

d(ϕf i1) ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J

= ϕ(x)df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J + f i1dϕ ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J .

The second term here is in fact integrable on Ω and, by the very definition of
distributional wedge product, we have

lim
t→∞

∫

M ′(x)<2t
f i1dϕ ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J = −J J

fI [ϕ].

The first term is non-negative, so the limit of the integral in question exists
and is equal to J J

fI [ϕ]. That is

lim
t→∞

∫

M ′<2t
ϕ(x)df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J = J J

fI [ϕ]
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by (2.6). Now the monotone convergence theorem makes it possible for us to
pass to the limit under the domain of integration to obtain

∫

Ω
ϕ(x)df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J = J J

fI [ϕ] (2.7)

for every non-negative test function ϕ ∈ C∞
0 (Ω). This shows, in particular,

that the
∂If

∂xJ

=
∂(f i1 , f i2, · · · , f il)

∂(xj1 , xj2 , · · · , xjl)

is locally integrable. To complete the proof we note that we did not really
have to use a smooth test function ϕ ∈ C∞

0 (Ω). The same arguments work for
non-negative Lipschitz functions. If ϕ ∈ C∞

0 (Ω) changes sign, we can apply
(2.7) to the positive and negative parts of ϕ respectively. The identity at (2.7)
remains valid for all test functions, completing the proof of Theorem 2,5.

Theorem 2.6 Under the same conditions with Theorem 5, if n − l + 1
coordinate functions of f = (f 1, f 2, · · · , fn) lies in W 1,P

0 (B) for some relatively
compact subdomain B ⊂ Ω, then for any ordered ℓ-tuples I = (i1, · · · , iℓ) and
J = (j1, · · · , jℓ),

∂If

∂xJ

=
∂(f i1 , f i2, · · · , f il)

∂(xj1 , xj2, · · · , xjl)
≡ 0

almost everywhere in B.

Proof It is no loss of generality to assume f i1 ∈ W 1,P
0 (B). Then its

extension by zero lies in W 1,P (Ω) and we have

∂(f i1 , f i2, · · · , f il)

∂(xj1 , xj2 , · · · , xjl)
= 0

outside B. Consider a test function ϕ ∈ C∞
0 (Ω) equal to 1 on B. Then

∫

B
df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J

=
∫

Ω
ϕ(x)df i1 ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J = J J

fI [ϕ]

= −
∫

Ω
f i1dϕ ∧ df i2 ∧ · · · ∧ df il ∧ dxN−J = 0.

Since we have ∂If

∂xJ
≥ 0 almost everywhere, it follows that

∂(f i1 , f i2, · · · , f il)

∂(xj1 , xj2 , · · · , xjl)
= 0

almost everywhere.
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