Some Properties of Distributional Wedge Products

GAO Hongya
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China
LIU Qianqian
Industrial and Commercial College, Hebei University, Baoding, 071002, China
CHU Yuming
Faculty of Science, Huzhou Teachers College, Huzhou, 313000, China

Abstract

This paper considers the distributional wedge product. Some properties are proved, which can be used in the study of quasiregular mappings and mappings of finite distortion.

Mathematics Subject Classification: 35J50, 35J60.
Keywords: Distributional wedge product, Orlicz space, integrability.

1 Introduction

In the theory of non-linear differential forms and their applications to modern theory of mappings, one of the most important concepts is the distributional wedge product. As a generalization of distributional Jacibian, it has important applications in the theory of geometric function theory and non-linear analysis, see [1-3]. In this paper, we give some properties of the distributional wedge products.

Let $f=\left(f^{1}, f^{2}, \cdots, f^{n}\right): \Omega \rightarrow \mathrm{R}^{n}$ be a Sobolev mapping. Given a pair of ordered ℓ-tuples $I=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$ and $J=\left(j_{1}, j_{2}, \cdots, j_{\ell}\right)$, there is an associated $\ell \times \ell$ minor of the differential matrix $D f=\left(\frac{\partial f^{i}}{\partial x_{j}}\right)_{1 \leq i, j \leq n}$. We shall use the
following notation for such minors

$$
\frac{\partial^{I} f}{\partial x_{J}}=\frac{\partial\left(f^{i_{1}}, f^{i_{2}}, \cdots, f^{i_{\ell}}\right)}{\partial\left(x_{j_{1}}, x_{j_{2}}, \cdots, x_{j_{\ell}}\right)}=\operatorname{det}\left[\frac{\partial f^{i}}{\partial x_{j}}\right]_{i \in I, j \in J}
$$

Thus the (i, j) th entry of $D f$ is obtained when $I=(i)$ and $J=(j)$, while the Jacobian determinant is obtained when $I=J=N=(1,2, \cdots, n)$. For $J=\left(j_{1}, j_{2}, \cdots, j_{\ell}\right)$, denote by $N-J=\left(k_{1}, k_{2}, \cdots, k_{n-\ell}\right)$ obtained from $N=$ $(1,2, \cdots, n)$ by deleting all terms in J.

Let $e_{1}, e_{2}, \cdots, e_{n}$ denote the standard basis of R^{n}. For each $\ell=0,1, \cdots, n$ denote by $\Lambda^{\ell}=\Lambda^{\ell}\left(\mathrm{R}^{n}\right)$ the space of ℓ-covectors on $\mathrm{R}^{n}, \Lambda^{0}=\mathrm{R}, \Lambda^{1}=\mathrm{R}^{n}$. Then Λ^{ℓ} consists of linear combinations of exterior products

$$
e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{\ell}}
$$

where $I=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$ is an ℓ-tuple.
For a smooth mapping $f=\left(f^{1}, f^{2}, \cdots, f^{n}\right): \Omega \rightarrow \mathrm{R}^{n}$ and $1 \leq l \leq n$, one can use Stoke's theorem to write
$\int_{\Omega} \varphi(x) d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}=-\int_{\Omega} f^{i_{1}} d \varphi \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}$, where $\varphi \in C_{0}^{\infty}(\Omega)$. This later integral actually converges for mappings in the Sobolev space $W_{l o c}^{1, s}\left(\Omega, \mathrm{R}^{n}\right)$, with $s=\frac{n l}{n+1}$. Indeed, we have

$$
\left|d \varphi \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{\imath}}\right| \leq|\nabla \varphi||D f|^{l-1}
$$

and this last term lies in $L_{l o c}^{\frac{n \ell}{(n+1)(\ell-1)}}(\Omega)$, whereas $f^{i_{1}}$ is locally in the dual space $L_{l o c}^{\frac{n \ell}{n-\ell+1}}(\Omega)$, by the Sobolev embedding theorem. An immediate consequence of this is that we are able to make the following definition.

Definition 1.1 The distributional wedge product is defined for mappings $f \in W_{l o c}^{1, s}\left(\Omega, R^{n}\right)$ with $s=\frac{n \ell}{n+1}$ and any ordered ℓ-tuples $I=\left(i_{1}, \cdots, i_{\ell}\right)$ and $J=\left(j_{1}, \cdots, j_{\ell}\right)$ by the rule

$$
\mathcal{J}_{f_{I}}^{J}[\varphi]=-\int_{\Omega} f^{i_{1}} d \varphi \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{\ell}} \wedge d x_{N-J}
$$

for $\varphi \in C_{0}^{\infty}(\Omega)$.
This definition gives us the continuous non-linear operator

$$
\mathcal{J}_{f^{I}}^{J}: W_{l o c}^{1, \frac{n \ell}{n+1}}\left(\Omega, \mathrm{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}(\Omega),
$$

where $\mathcal{D}^{\prime}(\Omega)$ represents the dual space to $C_{0}^{\infty}(\Omega)$, that is, the space of Schwarz distributions. If $\ell=n$, then the distributional wedge product coincides with the distributional Jacobian, see [1].

2 Some Properties of Distributional Wedge Products

In the following, $C(n)$ is some constant depending only on the dimension n, it may vary from line to line. In this section, we give some properties of distributional wedge products. The first result to consider is the following theorem.

Theorem 2.1 Let $f \in W_{l o c}^{1, s}\left(\Omega, R^{n}\right), s=\frac{n \ell}{n+1}$, and $Q \subset \Omega$ be a cube. If the test function $\varphi \in C_{0}^{\infty}(Q)$ satisfies $|\nabla \varphi| \leq C(n) / \operatorname{diam}(Q)$, then for any ordered ℓ-tuples $I=\left(i_{1}, \cdots, i_{\ell}\right)$ and $J=\left(j_{1}, \cdots, j_{\ell}\right)$, we have

$$
\left|\mathcal{J}_{f_{I}^{J}}^{J}[\varphi]\right|=\left|\int_{Q} \varphi(x) d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}\right| \leq C(n)|Q|^{1-\frac{l}{s}}\left(\int_{Q}|D f|^{s}\right)^{\frac{l}{s}}
$$

Proof. We only need to prove the last inequality. Denote by $f_{Q}^{i_{1}}$ the integral mean of $f^{i_{1}}$ over Q, that is, $f_{Q}^{i_{1}}=f_{Q} f^{i_{1}} d x$. By Stoke's theorem, Hölder's inequality and Poincaré-Sobolev inequality, we have

$$
\begin{aligned}
& \left|\mathcal{J}_{f}^{J}[\varphi]\right|=\left|\int_{Q} \varphi(x) d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}\right| \\
& =\left|\int_{Q}\left(f^{i_{1}}-f_{Q}^{i_{1}}\right) d \varphi \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}\right| \\
& \leq \int_{Q}\left|f^{i_{1}}-f_{Q}^{i_{1}}\right||\nabla \varphi||D f|^{\ell-1} d x \leq \frac{C(n)}{\operatorname{diam}(\mathrm{Q})} \int_{Q}\left|f^{i_{1}}-f_{Q}^{i_{1}}\right||D f|^{\ell-1} d x \\
& \leq \frac{C(n)}{\operatorname{diam}(\mathrm{Q})}\left(\int_{Q}\left|f^{i_{1}}-f_{Q}^{i_{1}}\right|^{\frac{n \ell}{n-\ell+1}} d x\right)^{\frac{n-\ell+1}{n \ell}}\left(\int_{Q}|D f|^{\frac{n \ell}{n+1}} d x\right)^{\frac{(n+1)(\ell-1)}{n \ell}} \\
& \leq \frac{C(n)}{\operatorname{diam}(Q)}\left(\int_{Q}|D f|^{\frac{n \ell}{n+1}} d x\right)^{\frac{n+1}{n}}=C(n)|Q|^{1-\frac{l}{s}}\left(\int_{Q}|D f|^{s}\right)^{\frac{l}{s}}
\end{aligned}
$$

This ends the proof of Theorem 2.1.
Theorem 2.2 If $n-l+1$ coordinate functions of a mapping $f=\left(f^{1}, f^{2}, \cdots, f^{n}\right) \in$ $W^{1, \ell}\left(\Omega, R^{n}\right)$ vanish on $\partial \Omega$ in the Sobolev sense, then for any ordered ℓ-tuples $I=\left(i_{1}, \cdots, i_{\ell}\right)$ and $J=\left(j_{1}, \cdots, j_{\ell}\right)$,

$$
\begin{equation*}
\int_{\Omega} d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}=0 \tag{2.1}
\end{equation*}
$$

If two mappings $f, g \in W^{1, \ell}\left(\Omega, R^{n}\right)$ agree on $\partial \Omega$ in the Sobolev sense, then

$$
\begin{equation*}
\int_{\Omega} d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{\ell}} \wedge d x_{N-J}=\int_{\Omega} d g^{i_{1}} \wedge d g^{i_{2}} \wedge \cdots \wedge d g^{i_{\ell}} \wedge d x_{N-J} \tag{2.2}
\end{equation*}
$$

Proof. It is no loss of generality to assume that $f^{i_{k}}$ vanishes on $\partial \Omega$ in the Sobolev sense, for some $k \in\{1,2, \cdots, \ell\}$, because otherwise we will have a contradiction. Stoke's theorem yields

$$
\begin{aligned}
& \int_{\Omega} d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J} \\
= & (-1)^{k-1} \int_{\Omega} d\left(f^{i_{k}} d f^{i_{1}} \wedge \cdots \wedge \widehat{d f^{i_{k}}} \wedge \cdots \wedge d f^{i_{\ell}} \wedge d x_{N-J}\right) \\
= & (-1)^{k-1} \int_{\partial \Omega} f^{i_{k}} d f^{i_{1}} \wedge \cdots \wedge \widehat{d f^{i_{k}}} \wedge \cdots \wedge d f^{i_{\ell}} \wedge d x_{N-J}=0
\end{aligned}
$$

where the circumflex over a term means it is to be omitted. If $f, g \in W^{1, \ell}\left(\Omega, \mathrm{R}^{n}\right)$ agree on $\partial \Omega$ in the Sobolev sense, then by (2.1),

$$
\begin{aligned}
& \int_{\Omega} d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{\ell}} \wedge d x_{N-J}-\int_{\Omega} d g^{i_{1}} \wedge d g^{i_{2}} \wedge \cdots \wedge d g^{i_{\ell}} \wedge d x_{N-J} \\
& =\sum_{k=1}^{\ell} \int_{\Omega} d f^{i_{1}} \wedge \cdots \wedge d\left(f^{i_{k}}-g^{i_{k}}\right) \wedge \cdots \wedge d g^{i_{\ell}} \wedge d x_{N-J}=0
\end{aligned}
$$

From this (2.2) follows. This ends the proof of Theorem 2.2.
We now need a few facts from harmonic analysis in order to state and prove Theorem 2.3. For $h \in L^{s}\left(\mathrm{R}^{n}\right), 1 \leq s<\infty$, the maximal function of h is defined by

$$
\left(M_{s} h\right)(x)=\sup \left\{\left(\frac{1}{|Q|} \int_{Q}|h|^{s}\right)^{\frac{1}{s}}: x \in Q \subset \mathrm{R}^{n}\right\}
$$

The following result represents a slight strengthening of the well-known weaktype inequality

$$
\left|\left\{x: M_{s} h(x)>2 t\right\}\right| \leq \frac{C(n, s)}{t^{s}} \int_{|h(x)|>t}|h(x)|^{s} d x .
$$

Another prerequisite for the proof of Theorem 3 is the Whitney decomposition and the adjusted partition of unity, see [4]. Let F be a non-empty closed set in R^{n} and Ω its complement. Then there is a collection $\mathcal{F}=\left\{Q_{1}, Q_{2}, \cdots\right\}$ of non-overlapping cubes such that

1. $\Omega=\bigcup_{i=1}^{\infty} Q_{i}$;
2. $\operatorname{diam} Q_{i} \leq \operatorname{dist}\left(Q_{i}, F\right) \leq 4 \operatorname{diam} Q_{i}$;
3. λQ_{i} intersects F if $\lambda \geq 7 n$.

Here we denote by λQ the cube which has the same centre as Q but is expanded (or contracted) by the factor λ. The last fact follows from elementary geometric considerations. We follow the notation used in [4] and write $Q_{i}^{*}=\frac{11}{10} Q_{i}$. Now
there exists a partition of unity $1=\sum_{i=1}^{\infty} \varphi_{i}(x), x \in \Omega$, where $\varphi_{i} \in C_{0}^{\infty}\left(Q_{i}^{*}\right)$ are non-negative functions such that

$$
\left|\nabla \varphi_{i}(x)\right| \leq \frac{C(n)}{\operatorname{diam}\left(Q_{i}\right)}, \quad i=1,2, \cdots
$$

Theorem 2.3 Let $f \in W^{1, s}\left(R^{n}, R^{n}\right)$ with $s=\frac{n l}{n+1}$ have compact support and let

$$
M(x)=\left(M_{s}|D f|\right)(x) .
$$

Then for all but a countable number of $t>0$ we have

$$
\begin{equation*}
\left|\int_{M(x) \leq 2 t} d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}\right| \leq C(n) t^{l-s} \int_{|D f(x)|>t}|D f(x)|^{s} d x \tag{2.3}
\end{equation*}
$$

An Orlicz function is a continuously increasing function satisfying

$$
P:[0, \infty) \rightarrow[0, \infty), P(0)=0 \text { and } \lim _{t \rightarrow \infty} P(t)=\infty
$$

The Orlicz space $L^{P}\left(\Omega, \mathrm{R}^{n}\right)$ consists of those Lebesgue measurable mappings defined in Ω and valued in the space R^{n} such that

$$
\int_{\Omega} P(\lambda|f|) d x<\infty \text { for some } \lambda=\lambda(f)>0
$$

The spaces $L_{l o c}^{P}\left(\Omega, \mathrm{R}^{n}\right)$ and $W_{l o c}^{1, P}\left(\Omega, \mathrm{R}^{n}\right)$ are easy to understand.
Theorem 2.4 Under the divergence condition

$$
\begin{equation*}
\int_{1}^{\infty} P(t) \frac{d t}{t^{l+1}}=+\infty \tag{2.4}
\end{equation*}
$$

and the convexity assumption

$$
\begin{equation*}
t \rightarrow P\left(t^{\frac{n+1}{n l}}\right) \text { is convex } \tag{2.5}
\end{equation*}
$$

on the Orlicz function $P=P(t)$, we have for each $H \in L^{P}\left(R^{n}\right)$,

$$
\liminf _{t \rightarrow \infty} t^{l-s} \int_{|H(x)|>t}|H(x)|^{s} d x=0
$$

where $s=\frac{n l}{n+1}$.
The proof of Theorems 2.3 and 2.4 are just a little modifications of [1, Lemmas 7.2.1 and 7.2.2] by using the maximal function, Whitney decomposition and Theorem 2.2. We omit the details.

Theorem 2.5 Let f lies in $W_{\text {loc }}^{1, P}\left(\Omega, R^{n}\right)$ with the Orlicz function P satisfying the divergen condition (2.4) and the convexity condition (2.5). Then for any ordered ℓ-tuples $I=\left(i_{1}, \cdots, i_{\ell}\right)$ and $J=\left(j_{1}, \cdots, j_{\ell}\right)$, if

$$
\frac{\partial^{I} f}{\partial x_{J}}=\frac{\partial\left(f^{i_{1}}, f^{i_{2}}, \cdots, f^{i_{l}}\right)}{\partial\left(x_{j_{1}}, x_{j_{2}}, \cdots, x_{j_{l}}\right)} \geq 0
$$

then it is locally integrable, and

$$
\mathcal{J}_{f_{I}^{J}}^{J}[\varphi]=\int_{\Omega} \varphi(x) d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}=(-1)^{\sigma(J, N-J)} \int_{\Omega} \varphi(x) \frac{\partial f^{I}}{\partial x_{J}} d x
$$

for every test function $\varphi \in C_{0}^{\infty}(\Omega)$, where $\sigma(J, N-J)$ is the sign of the induced permutation which is either odd or even.

Proof We choose an arbitrary non-negative test function $\varphi \in C_{0}^{\infty}(\Omega)$. We choose yet another test function $\eta \in C_{0}^{\infty}(\Omega)$ which is equal to 1 on the support of φ. Thus

$$
\frac{\partial\left(\varphi f^{i_{1}}, f^{i_{2}}, \cdots, f^{i_{l}}\right)}{\partial\left(x_{j_{1}}, x_{j_{2}}, \cdots, x_{j_{l}}\right)}=\frac{\partial\left(\varphi f^{i_{1}}, \eta f^{i_{2}}, \cdots, \eta f^{i_{l}}\right)}{\partial\left(x_{j_{1}}, x_{j_{2}}, \cdots, x_{j_{l}}\right)} .
$$

Note that the mapping $f^{\prime}=\left(\varphi f^{1}, \eta f^{2}, \cdots, \eta f^{n}\right)$ lies in the Orlicz-Sobolev space $W^{1, P}\left(\mathrm{R}^{n}, \mathrm{R}^{n}\right)$. Let

$$
M^{\prime}(x)=\left(M_{s}\left|D f^{\prime}\right|\right)(x) .
$$

Because of Theorems 2.3 and 2.4, we have

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}\left|\int_{M^{\prime}(x)<2 t} d\left(\varphi f^{i_{1}}\right) \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}\right|=0 . \tag{2.6}
\end{equation*}
$$

We now split the integrand as

$$
\begin{aligned}
& d\left(\varphi f^{i_{1}}\right) \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J} \\
= & \varphi(x) d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}+f^{i_{1}} d \varphi \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J} .
\end{aligned}
$$

The second term here is in fact integrable on Ω and, by the very definition of distributional wedge product, we have

$$
\lim _{t \rightarrow \infty} \int_{M^{\prime}(x)<2 t} f^{i_{1}} d \varphi \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}=-\mathcal{J}_{f^{I}}^{J}[\varphi] .
$$

The first term is non-negative, so the limit of the integral in question exists and is equal to $\mathcal{J}_{f^{I}}^{J}[\varphi]$. That is

$$
\lim _{t \rightarrow \infty} \int_{M^{\prime}<2 t} \varphi(x) d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}=\mathcal{J}_{f^{I}}^{J}[\varphi]
$$

by (2.6). Now the monotone convergence theorem makes it possible for us to pass to the limit under the domain of integration to obtain

$$
\begin{equation*}
\int_{\Omega} \varphi(x) d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}=\mathcal{J}_{f^{I}}^{J}[\varphi] \tag{2.7}
\end{equation*}
$$

for every non-negative test function $\varphi \in C_{0}^{\infty}(\Omega)$. This shows, in particular, that the

$$
\frac{\partial^{I} f}{\partial x_{J}}=\frac{\partial\left(f^{i_{1}}, f^{i_{2}}, \cdots, f^{i_{l}}\right)}{\partial\left(x_{j_{1}}, x_{j_{2}}, \cdots, x_{j_{l}}\right)}
$$

is locally integrable. To complete the proof we note that we did not really have to use a smooth test function $\varphi \in C_{0}^{\infty}(\Omega)$. The same arguments work for non-negative Lipschitz functions. If $\varphi \in C_{0}^{\infty}(\Omega)$ changes sign, we can apply (2.7) to the positive and negative parts of φ respectively. The identity at (2.7) remains valid for all test functions, completing the proof of Theorem 2,5.

Theorem 2.6 Under the same conditions with Theorem 5, if $n-l+1$ coordinate functions of $f=\left(f^{1}, f^{2}, \cdots, f^{n}\right)$ lies in $W_{0}^{1, P}(B)$ for some relatively compact subdomain $B \subset \Omega$, then for any ordered ℓ-tuples $I=\left(i_{1}, \cdots, i_{\ell}\right)$ and $J=\left(j_{1}, \cdots, j_{\ell}\right)$,

$$
\frac{\partial^{I} f}{\partial x_{J}}=\frac{\partial\left(f^{i_{1}}, f^{i_{2}}, \cdots, f^{i_{l}}\right)}{\partial\left(x_{j_{1}}, x_{j_{2}}, \cdots, x_{j_{l}}\right)} \equiv 0
$$

almost everywhere in B.
Proof It is no loss of generality to assume $f^{i_{1}} \in W_{0}^{1, P}(B)$. Then its extension by zero lies in $W^{1, P}(\Omega)$ and we have

$$
\frac{\partial\left(f^{i_{1}}, f^{i_{2}}, \cdots, f^{i_{l}}\right)}{\partial\left(x_{j_{1}}, x_{j_{2}}, \cdots, x_{j_{l}}\right)}=0
$$

outside B. Consider a test function $\varphi \in C_{0}^{\infty}(\Omega)$ equal to 1 on B. Then

$$
\begin{aligned}
& \int_{B} d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J} \\
= & \int_{\Omega} \varphi(x) d f^{i_{1}} \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}=\mathcal{J}_{f^{I}}^{J}[\varphi] \\
= & -\int_{\Omega} f^{i_{1}} d \varphi \wedge d f^{i_{2}} \wedge \cdots \wedge d f^{i_{l}} \wedge d x_{N-J}=0
\end{aligned}
$$

Since we have $\frac{\partial^{I} f}{\partial x_{J}} \geq 0$ almost everywhere, it follows that

$$
\frac{\partial\left(f^{i_{1}}, f^{i_{2}}, \cdots, f^{i_{l}}\right)}{\partial\left(x_{j_{1}}, x_{j_{2}}, \cdots, x_{j_{l}}\right)}=0
$$

almost everywhere.
ACKNOWLEDGEMENT. This research is supported by NSF of Hebei Province (A2011201011).

References

[1] T.Iwaniec, G.Martin, Geometric function theory and non-linear analysis, Clarendon Press, Oxford, 2001.
[2] T.Iwaniec, G.Martin, Quasiregular mappings in even dimensions, Acta Math., 1993, 170: 29-81.
[3] T.Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math., 1992, 136: 589-624.
[4] E.M.Stein, Some results in harmonic analysis in R^{n} for $n \rightarrow \infty$, Bull. Amer. Math. Soc., 1983, 9: 71-73.

Received: January, 2014

