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ABSTRACT: 
 Aim of thispaper is to delineate theinfinitesimal holomorphically 

projective transformations in Kaehlerian manifold with recurrent 

curvature tensor. In section 2 and 3, we haveestablished few theorems. 
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1.INTRODUCTION: 

Definition 1.1: 
 A n-dimensional Riemannian manifold Mn with the metric tensor 

g and an affine structure F

 is called Kaehlerian manifold, if the 

following relations are holds: 

(1.1) F

 F


 = - 


, 

(1.2)  F

 = 0, 

(1.3) g[F

] = 0, 

(1.4) g F

= F, 

(1.5) g


 F

= F


 

and 

(1.6) F= - F. 

Wherein 

 is the Kronecker delta,  denotes the covariant 

derivative in Kaehlerian manifolds Mn. 

Further,R

 and R are the Riemannian and Ricci tensors 

respectively then we have the following conditions[1]: 

(1.7) R

 F


F


= R


, 

(1.8) R F

F


= R, 

(1.9) R

 F


 = R


 F


, 

(1.10) R F

= H, 

(1.11) RF


 =2H, 

(1.12) H F

= - R 

(1.13) H= - H 

and 
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(1.14) Hg


 = R F

. 

2. INFINITESIMALHOLOMORPHICALLY PROJECTIVE 

TRANSFORMATIONS IN KAEHLERIAN MANIFOLD WITH 

CURVATURE TENSOR: 

Definition 2.1: 

 A vector field v

 is calledholomorphically projective 

transformation briefly HPT, if it satisfies the condition 

(2.1) Lv{

} = P(





 - 





) + P(





 - 





). 

 Wherein Lv denotes the operator of Lie derivative with respect to 

v

, {


}is the Christoffel symbol of second kind, Pis certain vector and 



 is the complex structure. 

Definition 2.2: 

 If a vector field v

 satisfies the condition 

(2.2) Lv{

} = v


 + R


v


 = 0 

is termed as infinitesimal affine transformation briefly IAT in Kaehlerian 

manifold with curvature tensor. 

Definition 2.3: 

 If a vector field v

 satisfies the relation 

(2.3) Lv{

} = P


 + P


 - P

*



 - P

*



 

is called infinitesimal holomorphically projective transformation briefly 

IHPT in Kaehlerian manifold. 

 Wherein 

(2.4) P
*
= 


P. 

Definition 2.4: 

 If a vector field v

 satisfies the condition 

(2.5) R

v


= P


 + P


 - P

*



 - P

*



 - v


 

istermed as infinitesimal holomorphically projective transformation 

briefly IHPT in Kaehlerian manifold with curvature tensor. 

Definition 2.5: 
 If an infinitesimal holomorphically projective transformation 

reduces to an infinitesimal affine transformation then its satisfies the 

condition 

(2.6) P= 0. 

Definition 2.6: 

 A tensor P

 is said to be infinitesimal holomorphically projective 

curvature tensorbriefly IHPC-tensor of infinitesimal holomorphically 

projective transformations in Kaehlerian manifold with curvature tensor if 

it satisfies the condition 

(2.7) P

=R


-[1/(n+2)][


R-


R+(F


R-F


R)F


+2F


RF


. 

In this regard, we have the following theorems: 
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Theorem 2.1: 

Aninfinitesimal holomorphically projective curvature tensor of an 

infinitesimal holomorphically projective transformations in Kaehlerian 

manifold with curvature tensor holds the relation P = [(n+5)/(n+2)]R. 

Proof: 

 Contracting equation (2.7) and using equation (1.10), we get 

(2.8) P= R- [1/(n+2)][HF

+ 2HF


] 

 By virtue of equations (1.12) and (2.8), we obtain 

(2.9) P = [(n+5)/(n+2)]R. 

Theorem 2.2: 

An infinitesimal holomorphically projective curvature tensor of an 

infinitesimal holomorphically projective transformations in Kaehlerian 

manifold with curvature tensor is symmetric with respect to the covariant 

indices. 

Proof: 

 Interchanging the indices  and  in equation (2.9), we get 

(2.10) P = [(n+5)/(n+2)]R 

Since Ris symmetric with respect to  and  then 

(2.11) R = R 

 From equations (2.10) and (2.11), we obtain 

(2.12) P = [(n+5)/(n+2)]R 

 By virtue of equations (2.9) and (2.12), we get 

(2.13) P = P. 

3. INFINITESIMALHOLOMORPHICALLY PROJECTIVE 

TRANSFORMATIONS IN KAEHLERIAN MANIFOLD WITH 

RECURRENT CURVATURE TENSOR: 

Definition 3.1: 
 A Kaehlerian manifold is called Kaehlerian manifoldwith recurrent 

curvature tensor if its curvature tensor R

 satisfies the condition 

(3.1) aR

= aR


. 

 Wherein ais a non-zero recurrent tensor field. 

Definition 3.2: 
 A Kaehlerian manifold is called Kaehlerian manifold with Ricci-

recurrent curvature tensor if its curvature tensor R satisfies the 

condition 

(3.2) aR= aR. 

 Wherein ais a non-zero recurrent tensor field. 

 

Definition 3.2: 
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 If an infinitesimal holomorphically projective curvature tensorof an 

infinitesimal holomorphically projective transformationsin Kaehlerian 

manifold with curvature tensor holds the condition 

(3.3) aP

= aP


, 

is called an infinitesimal holomorphically projective recurrentcurvature 

tensor of an infinitesimal holomorphically projective transformations in 

Kaehlerian manifold with recurrent curvature tensor. 

 Wherein ais a non-zero recurrent tensor field. 

In this regard, we have the following theorem: 

Theorem 3.1: 

If Kaehlerian manifold with curvature tensor is Ricci-recurrent then 

an infinitesimal holomorphically projective curvature tensor of an 

infinitesimal holomorphically projective transformations in Kaehlerian 

manifoldadmits the condition aP= aP. 

Proof: 

 Taking the covariant differentiation of equation (2.9), we get 

(3.4) aP = [(n+5)/(n+2)](aR) 

 Since Kaehlerian manifold with curvature tensor is Ricci-recurrent 

then from equations (3.2) and (3.4), we obtain 

(3.5) aP = [(n+5)/(n+2)](aR) 

 In view of equations (2.9) and (3.5), we get 

(3.6) aP = aP. 
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