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ABSTRACT:

Aim of thispaper is to delineate theinfinitesimal holomorphically
projective transformations in Kaehlerian manifold with recurrent
curvature tensor. In section 2 and 3, we haveestablished few theorems.
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1.INTRODUCTION:

Definition 1.1:

A n-dimensional Riemannian manifold M, with the metric tensor
0« and an affine structure F%; is called Kaehlerian manifold, if the
following relations are holds:

(1.1) F Fg=-8%,
(1.2) V,F% =0,
(1.3) GuppF’y =0,
(14) gOLB FByz F(xy;
(1.5) g”FP=F"
and

(1.6) Fap= - Fpa.

Wherein 3% is the Kronecker delta, V, denotes the covariant
derivative in Kaehlerian manifolds M.,,.

Further,R%,, and R,z are the Riemannian and Ricci tensors
respectively then we have the following conditions[1]:

(1.7) Rl F'sF\= R,
(1.8) Rep F*F’s=Ry,
(19) RSQBY Fag = Ragﬁy Fsa,
(1.10)Rop F*.= H,,

(1.11) RypysF™ =2H,p,
(1.12)Hop F= - Ry,
(113) HaB: - H[30c

and
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(1.14)H,g =R F,.

2. INFINITESIMALHOLOMORPHICALLY PROJECTIVE
TRANSFORMATIONS IN KAEHLERIAN MANIFOLD WITH
CURVATURE TENSOR:

Definition 2.1:

A vector field v” is calledholomorphically projective
transformation briefly HPT, if it satisfies the condition
(2-1) LV{BGY} = PS(SSBSGY - ggﬁgay) + PS(SSVSQB - E;SYE.\OLB)-

Wherein L, denotes the operator of Lie derivative with respect to
v®, {s° }is the Christoffel symbol of second kind, P.is certain vector and
&% is the complex structure.

Definition 2.2:

If a vector field v* satisfies the condition
(22) I—V{B(xy} = VBVYV(X + RQBYSVS =0
Is termed as infinitesimal affine transformation briefly IAT in Kaehlerian
manifold with curvature tensor.

Definition 2.3:

If a vector field v* satisfies the relation
(2.3) L%} =P,3% + Ppd®, - P",8% - P's8%

Is called infinitesimal holomorphically projective transformation briefly
IHPT in Kaehlerian manifold.

Wherein
(2.4) Pp=E%Pq.

Definition 2.4:

If a vector field v* satisfies the condition
(2.5) R%,V°=P,8% + Pd%, - P",8% - P'p8%, - VgV v*
istermed as infinitesimal holomorphically projective transformation
briefly IHPT in Kaehlerian manifold with curvature tensor.

Definition 2.5:

If an infinitesimal holomorphically projective transformation
reduces to an infinitesimal affine transformation then its satisfies the
condition
(2.6) P,=0.

Definition 2.6:

A tensor P, is said to be infinitesimal holomorphically projective
curvature tensorbriefly IHPC-tensor of infinitesimal holomorphically
projective transformations in Kaehlerian manifold with curvature tensor if
it satisfies the condition
(2.7) Pup=R’up,-[1/(n+2)][6°,Rop-0"sR oy (FRy-F*,Ryp)F o+ 2F Ry, Fs.

In this regard, we have the following theorems:
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Theorem 2.1:

Aninfinitesimal holomorphically projective curvature tensor of an
infinitesimal holomorphically projective transformations in Kaehlerian
manifold with curvature tensor holds the relation P,g = [(n+5)/(n+2)]R.
Proof:

Contracting equation (2.7) and using equation (1.10), we get
(28) Pocﬁz ROLB' [1/(n+2)] [HVBFV(X+ 2HVOLFVB]

By virtue of equations (1.12) and (2.8), we obtain
(2.9) Pop = [(1+5)/(n+2)]Ryp.

Theorem 2.2:

An infinitesimal holomorphically projective curvature tensor of an
infinitesimal holomorphically projective transformations in Kaehlerian
manifold with curvature tensor is symmetric with respect to the covariant
indices.

Proof:

Interchanging the indices o and B in equation (2.9), we get
(2.10) Pg,, = [(n+5)/(n+2)]Rpy

Since R,z is symmetric with respect to o and 3 then
(211) RaB = R[}a

From equations (2.10) and (2.11), we obtain
(2.12) Py, = [(+5)/(n+2)]Ryp

By virtue of equations (2.9) and (2.12), we get
(213) PBOL = PO‘B'

3. INFINITESIMALHOLOMORPHICALLY PROJECTIVE
TRANSFORMATIONS IN KAEHLERIAN MANIFOLD WITH
RECURRENT CURVATURE TENSOR:

Definition 3.1:

A Kaehlerian manifold is called Kaehlerian manifoldwith recurrent
curvature tensor if its curvature tensor R®,, satisfies the condition
(31) VaRsaﬁyz }\'aRS(xBy-

Wherein A,is a hon-zero recurrent tensor field.

Definition 3.2:

A Kaehlerian manifold is called Kaehlerian manifold with Ricci-
recurrent curvature tensor if its curvature tensor R satisfies the
condition
(32) VaRocB = }\'aR(xB-

Wherein A,is a non-zero recurrent tensor field.

Definition 3.2:
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If an infinitesimal holomorphically projective curvature tensorof an

infinitesimal holomorphically projective transformationsin Kaehlerian
manifold with curvature tensor holds the condition
(33) VaPsaBy= kapsaﬁy,
Is called an infinitesimal holomorphically projective recurrentcurvature
tensor of an infinitesimal holomorphically projective transformations in
Kaehlerian manifold with recurrent curvature tensor.

Wherein A,is a non-zero recurrent tensor field.

In this regard, we have the following theorem:

Theorem 3.1:

If Kaehlerian manifold with curvature tensor is Ricci-recurrent then
an infinitesimal holomorphically projective curvature tensor of an
infinitesimal holomorphically projective transformations in Kaehlerian
manifoldadmits the condition VP = AaPgp.

Proof:

Taking the covariant differentiation of equation (2.9), we get
(34) ViPus = [(N+5)/(n+2)](VaRep)

Since Kaehlerian manifold with curvature tensor is Ricci-recurrent
then from equations (3.2) and (3.4), we obtain
(3.5) ViPop = [(n+5)/(n+2)](AaRasp)

In view of equations (2.9) and (3.5), we get
(36) VaPocB = }\'aPaB-
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