Some Inequalities for the p-Digamma Function

Kwara Nantomah

Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana. mykwarasoft@yahoo.com, knantomah@uds.edu.gh

Edward Prempeh

Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. eprempeh.cos@knust.edu.gh

Abstract

Some inequalities involving the p-digamma function are presented. These results are the p-analogues of some recent results.

Mathematics Subject Classification: 33B15, 26A48.

Keywords: digamma function, p-digamma function, Inequality.

1 Introduction and Preliminaries

The classical Euler's Gamma function $\Gamma(t)$ and the digamma function $\psi(t)$ are commonly defined as

$$\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} dx$$
, and $\psi(t) = \frac{d}{dt} \ln(\Gamma(t)) = \frac{\Gamma'(t)}{\Gamma(t)}$, $t > 0$.

Similarly the p-Gamma and p-digamma functions are defined as (see [1])

$$\Gamma_p(t) = \frac{p!p^t}{t(t+1)\dots(t+p)} = \frac{p^t}{t(1+\frac{t}{1})\dots(1+\frac{t}{p})}, \quad p \in N, \quad t > 0.$$

and

$$\psi_p(t) = \frac{d}{dt} \ln(\Gamma_p(t)) = \frac{\Gamma_p'(t)}{\Gamma_n(t)}, \qquad t > 0.$$

The functions $\psi(t)$ and $\psi_p(t)$ as defined above exhibit the following series representations.

$$\psi(t) = -\gamma + (t - 1) \sum_{n=0}^{\infty} \frac{1}{(1+n)(n+t)}, \quad t > 0.$$

$$\psi_p(t) = \ln p - \sum_{n=0}^{p} \frac{1}{n+t}, \quad p \in N, \quad t > 0.$$

where γ is the Euler-Mascheroni's constant.

By taking the m-th derivative of the above functions, we arrive at the following statements for $m \in N$.

$$\psi^{(m)}(t) = (-1)^{m+1} m! \sum_{n=0}^{\infty} \frac{1}{(n+t)^{m+1}}, \quad t > 0.$$

$$\psi_p^{(m)}(t) = (-1)^{m-1} m! \sum_{n=0}^{p} \frac{1}{(n+t)^{m+1}}, \quad p \in \mathbb{N}, \quad t > 0.$$

In 2011, Sulaiman [3] presented the following results.

$$\psi(t+s) \ge \psi(t) + \psi(s) \tag{1}$$

where t > 0 and 0 < s < 1.

$$\psi^{(m)}(t+s) \le \psi^{(m)}(t) + \psi^{(m)}(s) \tag{2}$$

where m is a positive odd integer and t, s > 0.

$$\psi^{(m)}(t+s) \ge \psi^{(m)}(t) + \psi^{(m)}(s) \tag{3}$$

where m is a positive even integer and t, s > 0.

In a recent paper, Sroysang [2] presented the following geralizations of the above inequalities.

$$\psi(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi(t) + \sum_{i=1}^{\alpha} \beta_i \psi(s_i)$$
(4)

where t > 0, $\beta_i > 0$ and $0 < s_i < 1$ for all $i \in N_{\alpha}$.

$$\psi^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \le \psi^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi^{(m)}(s_i)$$
 (5)

where m is a positive odd integer, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_\alpha$.

$$\psi^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi^{(m)}(s_i)$$
 (6)

where m is a positive even integer, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_{\alpha}$.

The objective of this paper is to establish that the inequalities (4), (5) and (6) still hold true for the p-digamma function.

2 Main Results

We now present our results.

Theorem 2.1. Let $p \in N$, t > 0, $\beta_i > 0$ and $0 < s_i < 1$ for all $i \in N_{\alpha}$. Then the following inequality is valid.

$$\psi_p(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi_p(t) + \sum_{i=1}^{\alpha} \beta_i \psi_p(s_i)$$
 (7)

Proof. Let $f(t) = \psi_p(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p(t) - \sum_{i=1}^{\alpha} \beta_i \psi_p(s_i)$. Then fixing s_i for each i we have,

$$f'(t) = \psi_p'(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p'(t)$$
$$= \sum_{n=0}^{p} \left[\frac{1}{(n+t+\sum_{i=1}^{\alpha} \beta_i s_i)^2} - \frac{1}{(n+t)^2} \right] \le 0$$

That implies f is non-increasing. In addition,

$$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} \left[\psi_p(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p(t) - \sum_{i=1}^{\alpha} \beta_i \psi_p(s_i) \right]$$

$$= -\ln p \sum_{i=1}^{\alpha} \beta_i$$

$$+ \lim_{t \to \infty} \left[-\sum_{n=0}^{p} \frac{1}{(n+t + \sum_{i=1}^{\alpha} \beta_i s_i)} + \sum_{n=0}^{p} \frac{1}{(n+t)} + \sum_{n=0}^{p} \sum_{i=1}^{\alpha} \frac{\beta_i}{(n+s_i)} \right]$$

$$= -\ln p \sum_{i=1}^{\alpha} \beta_i + \sum_{n=0}^{p} \sum_{i=1}^{\alpha} \frac{\beta_i}{(n+s_i)} \ge 0.$$

Therefore $f(t) \geq 0$ yielding the result.

Theorem 2.2. Let $p \in N$, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_{\alpha}$. Suppose that m is a positive odd integer, then the following inequality is valid.

$$\psi_p^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \le \psi_p^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi_p^{(m)}(s_i)$$
 (8)

Proof. Let $g(t) = \psi_p^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_p^{(m)}(s_i)$. Then fixing s_i for each i we have,

$$g'(t) = \psi_p^{(m+1)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p^{(m+1)}(t)$$

$$= (-1)^m (m+1)! \sum_{n=0}^p \left[\frac{1}{(n+t+\sum_{i=1}^{\alpha} \beta_i s_i)^{m+2}} - \frac{1}{(n+t)^{m+2}} \right]$$

$$= -(m+1)! \sum_{n=0}^p \left[\frac{1}{(n+t+\sum_{i=1}^{\alpha} \beta_i s_i)^{m+2}} - \frac{1}{(n+t)^{m+2}} \right], \text{ (for odd } m)$$

$$\geq 0.$$

That implies g is non-decreasing. In addition,

$$\lim_{t \to \infty} g(t) = \lim_{t \to \infty} \left[\psi_p^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_p^{(m)}(s_i) \right]$$

$$= (-1)^{m-1} m! \times$$

$$\lim_{t \to \infty} \sum_{n=0}^{p} \left[\frac{1}{(n+t+\sum_{i=1}^{\alpha} \beta_i s_i)^{m+1}} - \frac{1}{(n+t)^{m+1}} - \sum_{i=1}^{\alpha} \beta_i \frac{1}{(n+s_i)^{m+1}} \right]$$

$$= -m! \sum_{n=0}^{p} \sum_{i=1}^{\alpha} \frac{\beta_i}{(n+s_i)^{m+1}} \le 0. \quad \text{(since } m \text{ is odd)}$$

Therefore $g(t) \leq 0$ yielding the result.

Theorem 2.3. Let $p \in N$, t > 0, $\beta_i > 0$ and $s_i > 0$ for all $i \in N_{\alpha}$. Suppose that m is a positive even integer, then the following inequality is valid.

$$\psi_p^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) \ge \psi_p^{(m)}(t) + \sum_{i=1}^{\alpha} \beta_i \psi_p^{(m)}(s_i)$$
 (9)

Proof. Let $h(t) = \psi_p^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_p^{(m)}(s_i)$. Then fixing

 s_i for each i we have,

$$h'(t) = \psi_p^{(m+1)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p^{(m+1)}(t)$$

$$= (-1)^m (m+1)! \sum_{n=0}^p \left[\frac{1}{(n+t+\sum_{i=1}^{\alpha} \beta_i s_i)^{m+2}} - \frac{1}{(n+t)^{m+2}} \right]$$

$$= (m+1)! \sum_{n=0}^p \left[\frac{1}{(n+t+\sum_{i=1}^{\alpha} \beta_i s_i)^{m+2}} - \frac{1}{(n+t)^{m+2}} \right], \text{ (for even } m)$$

$$\leq 0.$$

That implies h is non-increasing. In addition,

$$\lim_{t \to \infty} g(t) = \lim_{t \to \infty} \left[\psi_p^{(m)}(t + \sum_{i=1}^{\alpha} \beta_i s_i) - \psi_p^{(m)}(t) - \sum_{i=1}^{\alpha} \beta_i \psi_p^{(m)}(s_i) \right]$$

$$= (-1)^{m-1} m! \times$$

$$\lim_{t \to \infty} \sum_{n=0}^{p} \left[\frac{1}{(n+t+\sum_{i=1}^{\alpha} \beta_i s_i)^{m+1}} - \frac{1}{(n+t)^{m+1}} - \sum_{i=1}^{\alpha} \beta_i \frac{1}{(n+s_i)^{m+1}} \right]$$

$$= m! \sum_{n=0}^{p} \sum_{i=1}^{\alpha} \frac{\beta_i}{(n+s_i)^{m+1}} \ge 0. \quad \text{(since } m \text{ is even)}$$

Therefore $h(t) \geq 0$ yielding the result.

Remark 2.4. If we let $p \to \infty$ in inequalities (7), (8) and (9) then we repectively recover the inequalities (4), (5) and (6).

References

- [1] V. Krasniqi, A. Sh. Shabani, Convexity Properties and Inequalities for a Generalized Gamma Function, Applied Mathematics E-Notes **10**(2010), 27-35.
- [2] B. Sroysang, More on some inequalities for the digamma function, Math. Aeterna, 4(2)(2014), 123-126.
- [3] W. T. Sulaiman, Turan inequalites for the digamma and polygamma functions, South Asian J. Math. 1(2)(2011), 49-55.

Received: May, 2014