Some inequalities for the *n*-th Derivative of the Incomplete Zeta Functions

Banyat Sroysang

Department of Mathematics and Statistics,
Faculty of Science and Technology,
Thammasat University, Pathumthani 12121 Thailand
banyat@mathstat.sci.tu.ac.th

Abstract

Recently, we gave new inequalities involving the n-th derivative of the incomplete zeta functions. In this paper, we present some inequalities for the n-th derivative of the incomplete zeta functions.

Mathematics Subject Classification: 26D15

Keywords: Incomplete zeta function, inequality, derivative

1 Introduction

In [2], the incomplete zeta function $\xi_{a,b}$ is defined by

$$\xi_{a,b}(s) = \frac{1}{\Gamma(s)} \int_{a}^{b} \frac{t^{s-1}}{e^t - 1} dt,$$

for any $0 \le a < b$ and s > 1, where Γ is the gamma function. In [1], for any $0 \le a < b$, we define the function $h_{a,b}(x)$ by

$$h_{a,b}(x) = \int_a^b \frac{t^{x-1}}{e^t - 1} dt$$

for all x > 1.

It is easy to see on the *n*-th derivative of $h_{a,b}$ that, for any $0 \le a < b$,

$$h_{a,b}^{(n)}(x) = \int_{a}^{b} \frac{(\log_{e} t)^{n} t^{x-1}}{e^{t} - 1} dt$$

for all x > 1.

Moreover, we [1] gave new inequalities involving the n-th derivative of the incomplete zeta function as follows.

Theorem 1.1. [1] Let $0 \le a < b$ and y > 0 and let n be a positive odd integer. Then

$$h_{a,b}^{(n)}(x+y) \ge h_{a,b}^{(n)}(x)$$

for all x > 1.

Theorem 1.2. [1] Let $0 \le a < b$ and $x_1, x_2, ..., x_n > 1$ and let $k_1, k_2, ..., k_n$ be non-negative even integers and let $k = \sum_{i=1}^n k_i$. Then

$$\left(h_{a,b}^{(k)}\left(\sum_{i=1}^n \frac{x_i}{n}\right)\right)^n \le \prod_{i=1}^n h_{a,b}^{(nk_i)}(x_i).$$

Theorem 1.3. [1] Let 1 < a < b and $x_1, x_2, ..., x_n > 1$ and let $k_1, k_2, ..., k_n$ be non-negative integers and let $k = \sum_{i=1}^n k_i$. Then

$$\left(h_{a,b}^{(k)}\left(\sum_{i=1}^n \frac{x_i}{n}\right)\right)^n \le \prod_{i=1}^n h_{a,b}^{(nk_i)}(x_i).$$

In this paper, we present some inequalities for the n-th derivative of the incomplete zeta functions.

2 Results

Theorem 2.1. Let $0 \le a < b$ and y > 0 and let n be a positive odd integer. Then

$$h_{ab}^{(n)}(x-y) \le h_{ab}^{(n)}(x) \tag{1}$$

for all x > 1 + y.

Proof. For any x > 1 + y,

$$\begin{split} h_{a,b}^{(n)}(x) - h_{a,b}^{(n)}(x-y) &= \int_a^b \frac{(\log_e t)^n t^{x-1}}{e^t - 1} dt - \int_a^b \frac{(\log_e t)^n t^{x-y-1}}{e^t - 1} dt \\ &= \int_a^b \frac{(\log_e t)^n}{e^t - 1} \left(t^{x-1} - t^{x-y-1} \right) dt \\ &= \int_a^b \frac{(\log_e t)^{n-1}}{e^t - 1} (\log_e t) \left(t^{x-1} - t^{x-y-1} \right) dt \\ &> 0. \end{split}$$

This implies the inequality (1).

Theorem 2.2. Let $0 \le a < b$ and $x_1, x_2, ..., x_n > 0$ and let $k_1, k_2, ..., k_n$ be non-negative even integers and let $k = \sum_{i=1}^n k_i$. Then

$$\left(h_{a,b}^{(k)}\left(1+\sum_{i=1}^{n}\frac{x_i}{n}\right)\right)^n \le \prod_{i=1}^{n}h_{a,b}^{(nk_i)}(1+x_i).$$
(2)

Proof. By the assumption,

$$h_{a,b}^{(k)} \left(1 + \sum_{i=1}^{n} \frac{x_i}{n} \right) = \int_a^b \frac{(\log_e t)^k t^{\left(1 + \sum_{i=1}^n \frac{x_i}{n}\right) - 1}}{e^t - 1} dt$$

$$= \int_a^b \frac{(\log_e t)^k t^{\sum_{i=1}^n \frac{x_i}{n}}}{e^t - 1} dt$$

$$= \int_a^b \frac{(\log_e t)^{\sum_{i=1}^n k_i} t^{\sum_{i=1}^n \frac{x_i}{n}}}{((e^t - 1)^{1/n})^n} dt$$

$$= \int_a^b \frac{\prod_{i=1}^n (\log_e t)^{k_i} \prod_{i=1}^n t^{\frac{x_i}{n}}}{((e^t - 1)^{1/n})^n} dt$$

$$= \int_a^b \prod_{i=1}^n \frac{(\log_e t)^{k_i} t^{\frac{x_i}{n}}}{(e^t - 1)^{1/n}} dt$$

$$= \int_a^b \prod_{i=1}^n \left(\frac{(\log_e t)^{nk_i} t^{x_i}}{e^t - 1} \right)^{1/n} dt.$$

By the generalized Hölder inequality,

$$h_{a,b}^{(k)} \left(1 + \sum_{i=1}^{n} \frac{x_i}{n} \right) \le \prod_{i=1}^{n} \left(\int_{a}^{b} \frac{(\log_e t)^{nk_i} t^{x_i}}{e^t - 1} dt \right)^{1/n}$$

$$= \prod_{i=1}^{n} \left(\int_{a}^{b} \frac{(\log_e t)^{nk_i} t^{1 + x_i - 1}}{e^t - 1} dt \right)^{1/n}$$

$$= \prod_{i=1}^{n} \left(h^{(nk_i)} (1 + x_i) \right)^{1/n}$$

$$= \left(\prod_{i=1}^{n} h^{(nk_i)} (1 + x_i) \right)^{1/n}.$$

This implies the inequality (2).

Corollary 2.3. Let $0 \le a < b$ and x > 0 and let $k_1, k_2, ..., k_n$ be non-negative even integers and let $k = \sum_{i=1}^{n} k_i$. Then

$$\left(h_{a,b}^{(k)}(1+x)\right)^n \le \prod_{i=1}^n h_{a,b}^{(nk_i)}(1+x).$$

Proof. This follows from Theorem 2.2 in case $x_1 = x_2 = ... = x_n$

Theorem 2.4. Let 1 < a < b and $x_1, x_2, ..., x_n > 0$ and let $k_1, k_2, ..., k_n$ be non-negative integers and let $k = \sum_{i=1}^n k_i$. Then

$$\left(h_{a,b}^{(k)}\left(\sum_{i=1}^{n}\frac{1+x_i}{n}\right)\right)^n \le \prod_{i=1}^{n}h_{a,b}^{(nk_i)}(1+x_i).$$
(3)

Proof. This proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let 1 < a < b and x > 0 and let $k_1, k_2, ..., k_n$ be non-negative integers and let $k = \sum_{i=1}^{n} k_i$. Then

$$\left(h_{a,b}^{(k)}(1+x)\right)^n \le \prod_{i=1}^n h_{a,b}^{(nk_i)}(1+x).$$

Proof. This follows from Theorem 2.4 in case $x_1 = x_2 = ... = x_n$

References

- [1] B. Sroysang, On the n-th derivative of the incomplete zeta functions, Math. Aeterna, **3** (2013), 9–12.
- [2] W. T. Sulaiman, Turan inequalities for the Riemann zeta functions, AIP Conf. Proc., **1389** (2011), 1793–1797.

Received: November, 2013