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Abstract

Some basic properties of relative order and relative lower order of entire
functions have been discussed in this paper.
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1 Introduction, Definitions and Notations

Let f be an entire function defined in the open complex plane C. The
function M (r) on |z| = r known as maximum modulus function corresponding
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to f is defined as follows:
My (r) = max|z| =7 |f (2)] .

If f is non-constant then M; (r) is strictly increasing and continu-
ous and its inverse M;~! : (|f(0)],00) — (0,00) exists and is such that

lim M;~! (s) = co. On the other hand, the Nevanlinna’s Characteristic func-
S§—00

tion of f denoted by T (r) is defined as

Ty (r) = %/logJr ‘f (rew) } do
0

where

log* x = max (log x,0) for all x >0 .
My (r)
. . . o My(r) .
is called the growth of f with respect to ¢ in terms of their maximum moduli.

The order of an entire function f which is generally used in computational
purpose is defined in terms of the growth of f with respect to the exponential
function as

For any two given entire functions f and g, the ratio as r — oo

‘ log log M (1) , log log M ()
ps = limsup = limsup————— .
rooo 10g1log Moy, . (1) r—00 log r

L. Bernal [1,2] introduced the definition of relative order of an entire
function ¢g with respect to an entire function f denoted by ps(g) to avoid
comparing growth just with exp z which is as follows:

pr(g) =inf{p > 0: M, (r) < My (r*) for all r > ro (1) > 0}
. log Mf_lMg (r)
= lim sup .

00 logr

Definitely the above definition coincides with the classical one [10] if
f(z) =expz.

Similarly, one can define the relative lower order of g with respect to
f, denoted by A; (g) as follows :

log M;*M, (r
Af(g) = liminf B My M, ( )
r—00 logr

An entire function g is said to be of regular relative growth with respect
to f if its relative order with respect to f coincides with its relative lower order
with respect to f.
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During the past decades, several authors ( see [5],[6],[7]) made close
investigations on the properties of relative order of entire functions. In this
connection the following definition is relevant:

[2] A non-constant entire function f is said have the Property (A) if for any
o > 1 and for all large 7, [M; (r)]* < My (r®) holds. For exapmles of functions
with or without the Property (A), one may see [2].

In this paper we wish to investigate some basic properties of relative order
and relative lower order of entire functions under somewhat different condi-
tions. We do not explain the standard definitions and notations of the theory
of entire functions as those are available in [T1].

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
[2] Suppose f be an entire function and «, are such that o > 1 and
0 < B < a. Then
My (ar) > BM; (r).

[2] Let f be an entire function satisfying the Property (A). Then for any
positive integer n and for all sufficiently large r,

[My (r)]" < My (r°)

holds where § > 1.
[8] Every entire function f satisfying the Property (A) is transcendental.
[9] Let f be an entire function. Then for all sufficiently large values of r,

Ty (r) <log My (r) < 3Ty (2r) {cf. [9],p. 18} .

3 Main Results

In this section we present the main results of the paper. First we recall
related four theorems which are needed in order to prove our results.
Theorem A. [2] Let fi,g; and g be any three entire functions. Then

P (91 £ g2) < pg (9i)

where py, (g;) = max {py, (gx) | k =i =1,2}. The sign of equality holds when

P (91) # P (92)
Theorem B. {[2],[9]} Let fi, g and g, be any three entire functions. Then

pp (91 92) < pp (95)
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where py, (9;) = max{pys, (gx) | k =i =1,2}. The sign of equality holds when
ph (g1) # ppy (g2) . Similar results hold for the quotient Z—; provided Z—; is entire.
Theorem C. [3] Let fi, f> and g; be any three entire functions. Then

)‘flifz (91) > >\fi (91)

where Ay, (1) = min{Ay, (1) | K =@ = 1,2}. The sign of equality holds when

Ar(g1) # g (91) -
Theorem D. [3] Let fi, fo and g; be any three entire functions. Then

)‘f1~f2 (91) > )\fi (gl)

where g, (¢1) = min{As, (g1) | K =1 = 1,2}. The sign of equality holds when
Af (g1) # A, (g1) - Similar results hold for the quotient % provided % is entire.
Now we prove the following results of the paper:
Let fi1, f2, g1 and go be any four entire functions. Then
(i)
Pfitf (gl) = Pf; (91)

where py, (g1) = min{py, (¢1) | K =i = 1,2} and g; is of regular relative growth
with respect to at least any one of f; or fs. The sign of equality holds when

E{Jfl) (91) # s (1) 5 and
An (91 £ 92) < Ap, (92)

where Af, (¢;) = max{\y (gr) | k =i =1,2} and at least g; or gs is of regular
relative growth with respect to fi. The sign of equality holds when Ay, (¢1) #

)‘f 1 (gQ)'
From the definition of relative order and relative lower order of entire func-
tions, we have for all sufficiently large values of r that

My, (r) < My, (r(ento0)) 1)

Mg, (r) > My, (r(’\fk (9k)—5))
e, My (r) < M, (Tm ) | o
and also for a sequence values of r tending to infinity we get that
My, (r) > My, (T(pmgk)fs))

1
1.€., Mfk (T‘) < Mgk (’rpfk(gk)_g) , (3)
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My, (1) < My, (rOa00+2)) (4)

where ¢ (> 0) is any arbitrary positive number and ¢ = 1, 2.

Case L. If pf, 1y, (91) = oo then pr,1p, (1) > py, (91) is obvious. So we suppose
that prap, (g1) < co. We can clearly assume that py, (¢1) | ¢ = 1,2 is finite.
Also suppose that py, (91) < py, (91) where k =i = 1,2 with f; # fi and ¢ is
of regular relative growth with respect to at least any one of f; or f5. Now in
view of , and Lemma , we obtain for a sequence of values of r tending
to infinity that

Mflifz ( ) < Mf1 ( ) + Mf2 (T)

1
Mflifz Z ( Pfk(gl)—5)>

1

e, Mpxp, (r) < 2M,, (r(”fi(gﬂ_g))

e, Mgy, (T(pfi(gl)7€)> < 2M,, (r)

T(Pfi(gl)—E)
en Mpap, () < My (1)

Pfl g1)—
i.e., log < log M, ifM (r)

ie., (pg(g1) —e)logr+0O(1) < log Mf + Mg, (1)
O(1) log Mflj:sz (r)

< .
log r log r

ie; (py; (1) —€) +
Since € > 0 is arbitrary, we get from above that

log M; . My, (r)
— 1 fiEfo
Pfritfa (gl) H:Liljp logr

> Pt (gl> .

Now without loss of genetality, we may consider that ps, (¢1) < py, (g1) and
f = fi£ fo. Then ps(g1) > pp, (¢1) . Further, fi = (f £ f2) and in this case
we obtain that pg (g1) > min{ps (¢1),ps (91)} - As we assum that py, (g1) <
ps, (1), therefore we have py, (91) > py(g1) and hence py (1) = pp, (91) =

min {py, (91),pp, (91)} - Therefore, p1p (91) = pr (91) | © = 1,2 provided
pf (g1) # pg, (g1) . Thus the first part of the theorem follows.

Case II. If Ay, (g1 £ g2) = 0 then Ay, (g1 £ g2) < Ay, (gi) is obvious. So we
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suppose that Ap (g1 £ ¢2) > 0. We can clearly assume that Ag, (¢;) | i = 1,2
is finite. Also suppose that Af, (gr) < Ap (¢;) where k =i = 1,2 with g # g
and at least g; or gs is of regular relative growth with respect to f;. Now in
view of , and Lemma , we get for a sequence of values of r tending to
infinity that

MgliQQ (7') < Mgl (7’) + Mg2 (7’)
2
1.€., Mg1:|:g2 (7’) < ZMfl (,r<>\ﬂf1(9k)+a))
k=1
v.e., Mg, +g, (7") < 2My, (T(Afl(gi)-&-s))
Qe Mysg (1) < My, <3T(Ah<gi)+a))

i.e., log Mf’llMglig2 (r) < (Ap (gi)+¢)logr+0O(1)

log MﬂlMgligz (r) - (Af, (gi) +€)logr 4+ O(1)
log r log r '

i.e.,
Since € > 0 is arbitrary, it follows from above that

log M ' M r
Ap, (g1 £ g2) = liminf g My, Mg, g, (1)
r—00 lOg r

< )\fl (gl) :

Further without loss of genetality, let Ay, (g1) < Ap (g2) and g = g1 £ go.
Then A, (9) < Ap (g2). Further, go = £ (g —¢1) and in this case we ob-
tain that Ay (g2) < max{A; (9),As (91)} . As we assume that Ay, (g1) <
Af, (g2), therefore we have Af, (92) < Ap, (¢9) and hence Ay, (9) = Ap, (92) =
max {As, (g1),Ap (g2)} . Therefore, Ay, (91 £ g2) = Ap, (g:) | @ = 1,2 provided
At (91) # Apy (g2) - Thus the second part of the theorem is established.

In the line of Theorem A, Theorem C and Theorem [3| one may state the
following theorem without its proof :

Let fi1, f2, 91 and go be any four entire functions. Then

(1) prts (1 £ g2) < max [min{pp (g1), ps, (1)}, min{ps, (92), ps, (92)}]

when pr, (91) # pg, (91) 1 (92) # pp. (92) and g1 and g1 are both of regular
relative growth with respect to at least any one of f; or fs. The sign of equality

holds when min {py, (91), ps, (91)} # min{py, (92) , ps, (92)} and
(”) )‘flifz (91 + g2> > min [max {)\fl (gl> ) )‘fz (91)} , IMax {/\fl (g2> ) )‘fz (92)}]

when A, (g1) # Ap, (91), Ap (92) # Ap, (92) and at least gy or gy is of regular
relative growth with respect to f; and f, respectively. The sign of equality

holds when maX{)‘fl (gl) ) )‘f2 (gl)} 7£ maX{)‘fl (92> ) )‘fz <92)}-
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Let fi1, f2, 91 and go be any four entire functions. Then
(i)
Ph-f2 (91) = Py (91)

where py, (1) = min{py, (g1) | k =i = 1,2}, g1 has the Property (A) and also
g1 is of regular relative growth with respect to at least any one of f; or fs.
The sign of equality holds when py, (g1) # py, (g1) . Similar results hold for the

quotient % provided % is entire and

(i)
>‘f1 (gl : 92) < )\fl (gl>

where Ay, (¢;) = max{Ay, (gx) | k=i =1,2}, f1 has the Property (A) and
at least g; or go is of regular relative growth with respect to f;. The sign of
equality holds when Ag (g1) # Ap, (92). Similar results hold for the quotient
g—; provided g—; is entire.

For any two entire functions h; and hs, we have for all sufficiently large
values of r that

Thl»h2 (r) < Th, (T) + Th, (T) : (5)

Case I. By Lemma [2 g, is transcendental. Suppose that py.p, (g1) < oo.
Otherwise if py,.f, (91) = oo then the result is obvious. We can clearly assume
that py, (1) | # = 1,2 is finite. Also suppose that py, (91) < py, (91) where
k=1=1,2with f; # fr and gy is of regular relative growth with respect to at
least any one of f; or fy,. Now for a sequence of values of r tending to infinity
and for any § > 1, we get from (2)), (3), (considering h = f in (j5))) and
also in view of Lemma [2] and Lemma [2

1 r
§ 1Og f1-f2 (5) S lOg Mfl (7") + 1Og Mfg (T)
. 1 r 2 R B
t.c., glOngl.fQ <§) < ZlogMgl (rpfk<91) 5)
k=1
. 1 r 1
i.e., §10ng1'f2 <§> < 2log M, (Tpfkm)—a)
r 1
i.e., IOngyfz (5) = 610g Jwg1 (rpfi(m)—s)
T 1 \1°8
be. Mf1~f2 (5) < |:Mg1 (Tpfi(gl)s>:|
r TACTYES
1.€., f1-f2 <§> S Mgl (T fit91 )
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rf,(91)—¢
. r s
ie, M, . — < M, (r)
rf,(91)—¢
r 5
i.e., log 5 < longlsz (r)

i.e., (%) logr+0(1) < log My ', My, (r)

prg) e 0Q1) log My, 'y, My, (r)
— — <+ < :
) 0  logr logr

1.€.,

Since € > 0 is arbitrary, we obtain by letting § — 1+,

. log M; 1, M, (r)
pfl'fQ (91) - llmsup f1-f2

> e )
st log 7 Z Pf; (91)

Now without loss of any genetality, we may consider that py, (g1) < py, (91) and
f = fi-fo- Then ps (1) > py, (g1) - Further, f; = and and T, (r) = T% (r)+

O(1). Therefore Ty, (r) < Ty (r)+T}, (r)+0(1), and in this case we obtain that

pp (g1) > min{ps (g1), o5, (91)} - As we assume that py, (g1) < py, (g1), so we
have py, (g1) > py (91) and hence py (91) = py, (91) = min{py, (91).pp (91)}-

Therefore, py,.r, (91) = py, (91) | i = 1,2 provided py, (91) # py, (91) -

Further suppose that f = % where fi, fo, f are entires and let pg (g1) >

pp, (91). We have fi = f- fa . Therefore pys (91) = py(g1) if py(g1) <
P, (g1) . So it follows that pg, (g1) < py, (g1), which contradicts the hypothesis

“pr (1) = pp(9)” Hence ps(g1) = 2 (91) = pp(g)

= min{py, (91).pp (91)} - Also suppose that py, (g1) > sz (91) - Then py, (91)
= min {py (91), ps, (91)} = py, (1), if ps (91) > py, (g1), which is also a contra-
diction. Thus ps (g1) = 2 (g1) = min{py, (1), ps, (91)} . Thus the first part
of the theorem is estabhshed

Case II. By Lemmal[2] g is transcendental. If Ay, (g1 - g2) = O then Ay, (g1 - g2) <
A, (gi) is obvious. So we suppose that Ar, (g1 - g2) > 0. We can clearly assume
that Af, (¢;) | @ = 1,2 is finite. Also suppose that Ag (gx) < Ay, (g;) where
k=i = 1,2 with g, # ¢; and at least g; or gy is of regular relative growth
with respect to fi;. Now for a sequence of values of r tending to infinity and
for any 6 > 1, we obtain from (), (4), (considering h = g in () and in
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view of Lemma [2] and Lemma

< log M, (r) + log My, (r)

2

Z log My, ( APfy (gk)+5>)

21og My, (r0no+2))

IN

1.€.,

i.e.,

< Glog My, (r(en(0+2))

< ()]

S Mf ( 5<)‘f1(gz)+5))

1

N—— — N—— — N——— N—
IN

i.e., log Mf:l]\{ql.g2 <£) < d(Ap (gi) +¢)logr

2
ie log M£1M91'92 (%) < 6 (Ap, (9i) +¢€)logr
o log (%) - logr +0(1)

As € > 0 is arbitrary, we get from above by letting 6 — 1+,

log]\Jf1 f2M (r)

log r

A (91 - g2) = lim inf <A (gi) -
Moreover without loss of any genetality, let Af, (91) < Az, (92) and g = g1 - go.
Then Ay, (9) < Ap, (92) - Further, go = % and Ty, (r) = T1 (r) + O(1). There-

fore Ty, (1) < T, (r)+ T, (r)+O(1), and in this case we obtain that Af (g2) <
max {Af, (9), s, (91)} - As we assume that Ay, (¢1) < Ap, (92), therefore we
have )‘fl <92) < )‘fl (g) and hence )\fl (g> = )\fl <92) = max {)\fl (91) 7)‘f1 (g2>}'
Therefore, Af, (g1 - 92) = Ap, (9:) | @ = 1,2 provided A, (g1) # A, (92) . Now let
g= g—; where g1, go, g are all entires and suppose that Ay, (g1) < Ay, (g2). We
have g1 = g - g2 . Therefore Ay, (1) = Ap, (9) if Ap, (9) > Ay, (92) - So it follows
that Ag, (g1) > Ay, (92) , which contradicts the hypothesis “Ag, (g1) < Ap, (g2)”.

Hence Ar (9) = Af (g—l) < At (92) =

g2
max {As, (1), App (g2)} . Also suppose that Ay, (g1) > Ap, (g2) . Then Ay, (g1)
— max A, (9) A (92)} = A, (68). i Ag (9) < Ay, (92), which is also a con-

tradiction. Thus Ay, (9) = Ap <g—;> =max {Af, (91),Apy, (g2)}. Therefore the

second part of the theorem follows.
The proof of Theorem |3| is omitted because it can be carried in view of
Theorem B, Theorem D and Therorem
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Let fi1, f2, 91 and go be any four entire functions. Then

(a') Pfifa (gl '92) < max [min {pfl (91) y Pfa (91)} , min {pfl (92) » Pfa (92)}] )

g1

) g (2 < max i o, (1) ()} i (o, a2) 9

when (7) p, (91) # P (91), (@) pp(92) 7 Py (92) (440) fu- fay g1 and go
have the Property (A) and (iv) g; and g; are both of regular relative growth
with respect to at least any one of f; or fs. The sign of equality holds when

min {ps, (91), s, (91)} # min{py, (92), o, (92)} ; and
(C) )‘f1~f2 (91 '92) > min [maX{/\ﬁ (91) ) )‘f2 (gl)} , Max {)\fl (92) ) )‘f2 (92)}] )

@) A (g—) > min fmax {As, (91): Ap (92)} ,max {Ag, (92) A (92))

f2 \ 92
when (Z) )‘f1 (91) # )‘f2 (gl)a (”) )‘f1 (92) # /\fz (92>7 (m) g1+ 92, fi1 and
fo have the Property (A) and (iv) at least g; or gs is of regular relative
growth with respect to fi and f5 respectively. The sign of equality holds when

max{)\fl (gl) , )\f2 (91)} 7£ maX{)‘fl (92) ) )‘f2 <92)}-
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