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1 Introduction

In numerical analysis, the Simpson’s quadrature is a numerical integration
method used to obtain the approximate value of definite integrals. This
quadrature is a combination of the Simpson’s rule and inequality. To show
this, we define the Simpson’s rule first. For f : [a, b] → R a continuous func-
tion, the Simpson’s rule approximates the value of the integral of f in (a, b) as
follow:

∫ b

a

f(x)dx ≈ b− a

6

[

f(a) + 4f

(

a+ b

2

)

+ f(b)

]

. (1)

One of the most known numerical integration results is the Simpson’s in-
equality. Suppose that f : [a, b] → R is a four times continuously differentiable
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mapping on (a, b) and having the fourth derivative bounded on (a, b), that is,
||f (4)||∞ := supx∈(a,b) |f (4)(x)| < ∞, then the following inequality:

∣

∣

∣

∣

1

6

[

f(a) + 4f

(

a+ b

2

)

+ f(b)

]

− 1

(b− a)

∫ b

a

f(x)dx

∣

∣

∣

∣

≤ 1

2880
||f (4)||∞(b− a)5,

(2)
holds and it is well known in the literature as Simpson’s inequality.

Now, if we assume that π : a = x0 < x1 < · · · < xn−1 < xn = b is a
partition of the interval [a, b] and f is as above, then we have the Simpson’s
quadrature formula:

∫ b

a

f(x)dx = PS(f, π) +RS(f, π), (3)

where PS(f, π) is the Simpson’s rule:

PS(f, π) :=
1

6

n−1
∑

i=0

[f(xi) + f(xi+1)]hi +
2

3

n−1
∑

i=0

f

(

xi + xi+1

2

)

hi, (4)

and the remainder term RS(f, π) satisfies the estimation:

|RS(f, π)| :=
1

2880
||f (4)||∞

n−1
∑

i=0

h5
i , (5)

where hi := xi+1 − xi for i = 0, . . . n− 1.
The Simpson’s inequality and quadrature formula are one of the most used

quadrature formula in practical applications [1]. Many authors have estab-
lished error estimations for the Simpson’s inequality, for refinements, counter-
parts, generalizations and new Simpson’s type inequality. In the years 1998
and 1999, Dragomir in [6], [7], [8], worked in estimations of remainder for
Simpson’s quadrature formula for mapping of bounded variation, Lipschitzians
and differentiable mappings whose derivatives belong to Lp spaces and appli-
cations in theory of special means. However, in 2000, Dragomir et. al [9],
established some very recent developments on Simpson’s inequality for which
the remainder is expressed in terms of lower derivatives than the fourth. In
the same year, Dragomir et. al in [10] gave new trapezoid inequality as well as
Simpson and Ostrowski type inequalities for monotonic functions. They pro-
vided their applications in probability theory, numerical analysis and for spe-
cial means [10]. In 2000, Pečarić et. al in [19] generalized the results obtained
by Dragomir in [7] using functions whose nth derivatives, n ∈ {2, 3, 4}, belong
to Lp spaces. Later, in 2004 Ujević in [24], presented two sharp inequalities,
the first is a sharp Simpson’s inequality and the second is a sharp inequality
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of Ostrowski type. The mentioned inequalities given error bounds for some
known quadrature rules together with applications in numerical analysis were
given as well. Then in the same year Ujević in [25] established two sharp in-
equalities if Simpson type whose first derivatives are absolutely continuous and
second derivatives belong to L2(a, b) and gave some applications in numerical
integration. Also, they obtained a sharp inequality with also gives an error
bound for Simpson’s quadrature rule for functions whose second derivatives are
absolutely continuous and third derivatives belong to L2(a, b). The sharpness
is demonstrated by showing an equality for a particular function of such type
getting therefore an error bound for Simpson’s quadrature rule. Subsequently,
in 2005, Ujević in [26] presented a generalization of the modified Simpson’s
rule and established various error bounds for this generalization and, in the
year 2007 in [27] derived a new error bounds for the well-known Simpson’s
quadrature rule. Using these bounds the Simpson’s rule can then be applied
to functions whose first, second and third derivatives are unbounded below or
above, furthermore, these error bounds can be much better than some recently
obtained bounds. In 2008, Alomari et. al in [1] introduced, in terms of the first
derivative, some inequalities of Simpson’s type based on s-convexity and gave
best Midpoint type inequalities as well as obtained error estimates for special
means and some numerical quadrature rules. Recently, in 2010, Sarikaya et.

al in [20], obtained for differentiable convex mappings which were connected
with Simpson’s inequality and, in the same year, [21] introduced some new
inequalities of Simpson’s type based on s-convexity and some applications to
special means of real numbers. However, in the same year, Alomari et. al in
[2] introduced some inequalities of Simpson’s type for quasi-convex functions
and restrict the conditions on f to get best error estimates for the midpoint
rule than the original. Also, Alomari et. al in [3] establish some inequalities
of Simpson’s type for quasi-convex functions in terms of third derivatives and
gave some applications to Simpson’s numerical quadrature rule.

In 1974, Nagy [16] applied a characterization of measurable stochastic pro-
cesses to solving a generalization of the (additive) Cauchy functional equation.
Soon after, in 1980, K. Nikodem in [17], established some properties of con-
vex stochastic processes and, in [18], introduced properties of quasi-convex
stochastic processes. Later, D. Kotrys in 2011 presented in [14] an inequality
of Hermite-Hadamard type for Jensen-convex stochastic processes and N. Mer-
entes et al., proved in [4] a generalization for h-convex stochastic processes.
In particular, with the function h equals to the identity, a Hermite-Hadamard
inequality type for convex stochastic processes were obtained in [4]. Neverthe-
less, in 2014 Set et. al in [22], presented the s-convex stochastic processes in
the second sense and some well-known results concerning s-convex functions
are extended to s-convex stochastic processes in the second sense. Also, they
investigated a relation between s-convex stochastic processes in the second
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sense and convex stochastic processes. Then, in 2015 Set et. al [15], obtained
a similar result to the previous one but for s-convex functions. The previous
result extended the concept of s-convex functions, which was introduced and
improved by Hudzik, Maligranda [12] and Dragomir, Fitzpatrik [5] to s-convex
stochastic processes and obtained some results similar to the ones in s-convex
functions. Recently, in 2015, Merentes et. al [11] presented some estimates of
the left and right-hand side of the Hermite-Hadamard inequality for convex
stochastic processes with convex or quasi-convex first second derivatives in ab-
solute value establishing for the first time an estimate of error for this kind of
inequalities in stochastic processes.

The aim of this paper is establish a counterpart of the results for s-convex
and quasi-convex functions of Alomari et. al in [1] - [3], to convex stochastic
processes with s-convex and quasi-convex derivatives in absolute value, in order
to estimate the error in the integrals approximation by Simpson’s quadrature
for stochastic process.

2 Preliminary Notes

Let (Ω,A,P) be a probability space. A function X : Ω → R is a random

variable if it is A−measurable. A function X : I × Ω → R, where I ⊆ R is
an interval, is a stochastic process if for every t ∈ I the function X(t, ·) is a
random variable.

A stochastic process X : I × Ω → R is:

1. Jensen-convex if, for every a, b ∈ I, the following inequality is: satisfied:

X

(

a+ b

2
, ·
)

≤ X(a, ·) +X(b, ·)
2

, (a.e). (6)

2. convex if, for every a, b ∈ I, t ∈ (0, 1), the following inequality is tales
place:

X(ta+ (1− t)b, ·) ≤ tX(a, ·) + (1− t)X(b, ·), (a.e). (7)

3. quasi-convex if, for every a, b ∈ I, t ∈ (0, 1), the following inequality is
satisfied:

X(ta+ (1− t)b, ·) ≤ max{X(a, ·), X(b, ·)}, (a.e). (8)

4. s-convex in the first sense if, for some fixed s ∈ (0,∞] and for every
a, b > 0, a, b ∈ I and α, β > 0 with αs + βs = 1, the following inequality
holds:



Some estimates on the Simpson’s type inequalities for stochastic processes 677

X(αa+ βb, ·) ≤ αsX(a, ·) + βsX(b, ·), (a.e). (9)

This class of stochastic process is denoted by C1
s .

5. s-convex in the second sense if, for some fixed s ∈ (0,∞] and for every
a, b > 0, a, b ∈ I and t ∈ (0, 1), the following inequality holds:

X(ta+ (1− t)b, ·) ≤ tsX(a, ·) + (1− t)sX(b, ·), (a.e). (10)

Also, a stochastic process X : I × Ω → R is:

1. continuous in probability in the interval I, if for all t0 ∈ I we have

P − lim
t→t0

X(t, ·) = X(t0, ·),

where P − lim denotes the limit in probability.

2. mean-square continuous in I, if for all t0 ∈ I

lim
t→t0

E[(X(t, ·)−X(t0, ·))2] = 0,

where E[X(t, ·)] denotes the expectation value of the random variable
X(t, ·).

3. differentiable at a point t ∈ I if there is a random variable
X ′(t, ·) : I × Ω → R:

X ′(t, ·) = P − lim
t→t0

X(t, ·)−X(t0, ·)
t− t0

.

4. mean-square differentiable at a point t ∈ I if there is a random variable
X ′(t, ·) : I × Ω → R:

lim
t→t0

E

[

(

X(t, ·)−X(t0, ·)
t− t0

−X ′(t, ·)
)2
]

= 0.

Note that mean-square continuity implies continuity in probability, but the
converse is not true.

Fixed X : I ×Ω → R a stochastic process with E[X(t)2] < ∞ for all t ∈ I,
[a, b] ⊆ I, a = t0 < t1 < ... < tn = b a partition of [a, b] and Θk ∈ [tk−1, tk]
for all k = 1, ..., n, a random variable Y : Ω → R is called the mean-square

integral of the process X on [a, b], if for a normal sequence of partitions of the
interval [a, b] and for all Θk ∈ [tk−1, tk], k = 1, ..., n we have
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lim
n→∞

E





(

n
∑

k=1

X(Θk, ·)(tk − tk−1)− Y (·)
)2


 = 0.

In such case, we write

Y (·) =
∫ b

a

X(s, ·)ds (a.e).

For the existence of the mean-square integral is enough to assume the
mean-square continuity of the stochastic process X . Basic properties of the
mean-square integral can be read in [23].

The Simpson’s rule for stochastic process is similar to the one for functions
and reads as follow:

Theorem 2.1 Let X : I × Ω → R be a mean-square continuous stochastic

process, then the mean-square integral on [a, b] is approximated as:

∫ b

a

X(t, ·)dt ≈ b− a

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

, (a.e). (11)

This is known as Simpson’s rules by Lagrange form with n = 2, for stochastic

process.

Proof. We want to approximate X(t, ·) as follow:

P2(t) = X(a, ·) (t− tm)(t− b)

(a− tm)(a− b)
+X(tm, ·)

(t− a)(t− b)

(tm − a)(tm − b)

+X(b, ·) (t− a)(t− tm)

(b− a)(b− tm)
.

Denote h =
b− a

2
= tm − a = b− tm, then

P2(t) =
X(a, ·)
2h2

(t− tm)(t− b)− X(tm, ·)
2h2

(t− a)(t− b) +
X(b, ·)
2h2

(t− a)(t− tm).

Integrating on [a, b],

∫ b

a

P2(t, ·)dx =
X(a, ·)
2h2

∫ b

a

(t− tm)(t− h)dt− X(tm, ·)
h2

∫ b

a

(t− a)(t− b)dx

+
X(b, ·)
2h2

∫ b

a

(t− a)(t− tm)dt.
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We define:

I1 =

∫ b

a

(t− tm)(t− b)dt,

I2 =

∫ b

a

(t− a)(t− b)dt,

I3 =

∫ b

a

(t− a)(tm)dt.

I1 =

∫ b

a

(t− tm)(t− b)dx

= (t− tm)
(t− b)2

2
− (t− b)3

6

∣

∣

∣

∣

b

a

= −(a− tm)
(a− b)2

2
+

(a− b)3

6
= −(−h)

(−2h)2

2
+

(−2h3)

6

= 2h3 − 4

3
h3

=
2

3
h3,

I2 =

∫ b

a

(t− a)(t− b)dt

= (t− a)
(t− b)2

2
− (t− b)3

6

∣

∣

∣

∣

b

a

=
(a− b)3

b

=
(−2h)3

6

=
4

3
h3,

I3 =

∫ b

a

(t− a)(t− tm)dx

= (t− a)
(t− xm)

2

2
− (t− tm)

3

6

∣

∣

∣

∣

b

a

= (b− a)
(b− xm)

2

2
− (b− tm)

3

6
+

(a− xm)
3

6

= (2h)
h2

2
− h3

6
+

(−h)3

6
− h3 − h3

3
− 2h3

3
.
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Therefore,

∫ b

a

P2(t, ·)dx =
X(a, ·)
2h2

(

2

3
h3

)

− X(tm, ·)
h2

(

−4

3
h3

)

+
X(b, ·)
2h2

(

2

3
h2

)

= X(a, ·)h
3
+X(tm, ·)

4

3
h+X(b, ·)h

3

=
h

3
[X(a, ·) + 4X (tm, ·) +X(b, ·)] .

Setting h =
b− a

2
,

∫ b

a

X(t, ·)dx ≈ (b− a)

6
[X(a, ·) + 4X(tm, ·) +X(b, ·)] .

Also, the Simpson’s inequality has a counterpart for stochastic processes.
In order to prove this inequality, we present the next result which represents the
analogous weighted mean value theorem for integrals to stochastic processes.

Lemma 2.2 Let X : I × Ω → R be a mean-square continuous stochastic

process on [a, b], with a < b and let f : R → R be a monotonic integrable

function on (a, b). Then, there is ξ ∈ [a, b] such that

∫ b

a

X(t, ·)f(t)dt = X(ξ, ·)
∫ b

a

f(t)dt (12)

almost everywhere.

Proof. Suppose f(t) ≥ 0 on [a, b]. Because X(t, ·) is a mean-square continuous
stochastic process, there is m(·) = inft∈[a,b] X(t, ·) and M(·) = supt∈[a,b] X(t, ·)
random variables. Then, m(·) ≤ X(t, ·) ≤ M(·) for all x ∈ [a, b]. Multiplying
this last inequality by f(x) we get m(·)f(t) ≤ X(t, ·)f(t) ≤ M(·)f(t) and
integrating on [a, b],:

m(·)
∫ b

a

f(t)dt ≤
∫ b

a

X(t, ·)f(t)dt ≤ M(·)
∫ b

a

f(t)dt, (13)

almost everywhere.

Let us call I =

∫ b

a

f(t)dt. If I = 0 then

∫ b

a

X(t, ·)f(t)dt = 0, almost

everywhere. Hence, for each ξ, (12) is satisfied almost surely.
Otherwise, if I > 0 we can divide (13) by I and, because the fact that

X(t, ·) is mean-square continuous on [a, b], there is ξ such that
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m(·) < X(ξ, ·) < M(·), (a.e).

In consequence,

X(ξ, ·) = 1

I

∫ b

a

X(t, ·)f(t)dt, (a.e).

Therefore,
∫ b

a

X(t, ·)f(t)dt = X(ξ, ·)
∫ b

a

f(t)dt,

almost everywhere.

Theorem 2.3 Suppose X : I × Ω → R is a four times mean-square con-

tinuous differentiable stochastic process on I◦ and having the fourth derivative

bounded on I◦, that is, ||X(4)(t, ·)||∞ := supt∈I◦ |X(4)(t, ·)| < ∞, then the fol-

lowing inequality:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

(b− a)

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ 1

2880
||X(4)(t, ·)||∞(b− a)5, (14)

holds almost everywhere and it is the Simpson’s inequality for stochastic pro-

cesses.

Proof. Consider the Taylor polynomial of the processes X(t, ·) around t1 =
a + b

2
, as follow:

X(t, ·) = X(t1, ·) +X ′(t1, ·)(t− t1) +
X ′′(t1, ·)

2
(t− t1)

2

+
X(3)(t1, ·)

6
(t− t1)

3 +
X(4)(ξ(t), ·)

24
(t− t1)

4.

Integrating on [a, b], we have:

∫ b

a

X(t, ·)dt =

[

X(t1, ·)(t− t1)
X ′(t1,·)

2
(t− t1)

2 +
X ′′(t1, ·)

6
(t− t1)

3

+
X(3)(t1, ·)

24
(t− t1)

4

]t=b

t=a

+

∫ b

a

X(4)(ξ(t), ·)
24

(t− t1)
4dt,

almost everywhere.
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Applying the weighted mean value theorem for integral to stochastic pro-
cesses,

∫ b

a

X(4)(ξ(t), ·)
24

(t− t1)
4dt =

X(4)(ξ1, ·)
24

∫ b

a

(t− t1)
4dt

=
X(4)(ξ1, ·)

24
(t− t1)

5

∣

∣

∣

∣

b

a

=
X(4)(ξ1, ·)

24

[

(b− t1)
5 − (a− t1)

5
]

,

with ξ ∈ (a, b), almost surely.
Otherwise, we can develop X ′′(t1, ·) as follows:

X ′′(t1, ·) =
1

h2
[X(t1 − h, ·)− 2X(t1, ·) +X(t1 + h1, ·)]−

h2

12
X(4)(ξ, ·),

almost everywhere, where h =
(b− a)

2
. Then

X ′′(t1, ·) =
1

h2
[X(a, ·)− 2X(t1, ·) +X(b, ·)]− h2

12
X(4)(ξ, ·), (15)

ξ ∈ (a, b), almost everywhere.
Hence, as h = b− t1 = t1 − a, so

∫ b

a

X(t, ·)dt = X(t1, ·)2h+
X ′′(t1, ·)

6
2h3 +

X(4)(ξ, ·)
120

2h5.

almost everywhere.
Replacing (15) in the last expression,

∫ b

a

X(t, ·) = h

3
[X(a, ·)− 4X(t1, ·) +X(b, ·)]− h5

90
X(4)(ξ, ·),

almost surely.
Therefore,

∣

∣

∣

∣

h

3
[X(a, ·)− 4X(t1, ·) +X(b, ·)]−

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

=

∣

∣

∣

∣

h5

90
X(4)(ξ, ·)

∣

∣

∣

∣

=

∣

∣

∣

∣

(b− a)5

2880
X(4)(ξ, ·)

∣

∣

∣

∣

≤ (b− a)5

2880
||X(4)(ξ, ·)||∞
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almost everywhere.
Now, we present an equivalent results presented by Alomari et al. in [1] and

[2] for stochastic processes whose first derivative at certain powers are s-convex
and whose second and third derivatives at certain powers are quasi-convex.

3 Main Result

3.1 Inequalities for s-convex stochastic processes

In order to prove our main theorems for s-convex stochastic processes, let us
begin with the following lemma which is a generalization of lemma presented
by Alomari et. al in [1] for s-convex functions.

Lemma 3.1 Let X : I × Ω → R be a stochastic process mean-square dif-

ferentiable on I◦ and X ′ mean-square integrable on [a, b], a, b ∈ I with a < b.
If X ′(t, ·) is mean-square integrable on [a, b], then the following equality holds

almost everywhere:

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt (16)

= (b− a)

∫ b

a

p(t)X ′(at+ (1− t)b, ·)dt,

where

p(t) =















t− 1

6
, t ∈

[

0,
1

2

)

,

5

6
− t, t ∈

[

1

2
, 1

)

.

Proof. Integrating by part

I =

∫ 1

0

p(t)X ′(at + (1− t)b, ·)dt

=

∫ 1/2

0

(

t− 1

6

)

X ′(at+ (1− t)b, ·)dt

+

∫ 1

1/2

(

t− 5

6

)

X ′(at+ (1− t)b, ·)dt

=

(

t− 1

6

)

X(at + (1− t)b, ·)
b− a

∣

∣

∣

∣

1/2

0
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−
∫ 1/2

0

X(at+ (1− t)b, ·)
b− a

dt

+

(

t− 5

6

)

X(at+ (1− t)b, ·)
b− a

∣

∣

∣

∣

1

1/2

−
∫ 1

1/2

X(at + (1− t)b, ·)
b− a

dt

=
1

6(b− a)

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

(17)

−
∫ 1

0

X(at+ (1− t)b, ·)
b− a

dt, (a.e).

Setting x = at+ (1− t)b, and dx = (b− a)dt, gives

(b− a) · I =
1

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt., (a.e),

which gives the desired representation.

The next theorems gives a new refinements of the Simpson’s inequality via
s-convex stochastic processes and are the analogous to that obtained by [1] for
s-convex functions.

Theorem 3.2 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′ mean-square integrable on [a, b], a, b ∈ I with a <
b. If |X ′| is s-convex on [a, b], for some fixed s ∈ (0, 1], then the following

inequality takes place almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

(18)

≤ (b− a)

(

6−s − 9(2−s) + (5s+1)(6−s) + 3s− 12

18(s2 + 3s+ 2)

)

[|X ′(a, ·)|+ |X ′(b, ·)|] .

Proof. First we point out that

∫ 1/2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

tsdt+

∫ 1

1/2

∣

∣

∣

∣

t− 5

6

∣

∣

∣

∣

tsdt =

∫ 1/2

0

∣

∣

∣

∣

1

6
− t

∣

∣

∣

∣

(1− t)sdt

+

∫ 1

1/2

∣

∣

∣

∣

5

6
− t

∣

∣

∣

∣

(1− t)sdt

=
6−s − 9(2−s) + (5s+2)(6−s) + 3s− 12

18(s2 + 3s+ 2)
.
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Then, from Lemma 3.1 and since |X ′| is s-convex,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

∫ 1

0

|p(t)||X ′(at + (1− t)b, ·)|dt

≤ (b− a)

∫ 1/2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

(ts|X ′(a, ·)|+ (1− t)s|X ′(b, ·)|) dt

+(b− a)

∫ 1

1/2

∣

∣

∣

∣

t− 5

6

∣

∣

∣

∣

(ts|X ′(a, ·)|+ (1− t)s|X ′(b, ·)|) dt

≤ (b− a)|X ′(a, ·)|
[

∫ 1/2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

tsdt+

∫ 1

1/2

∣

∣

∣

∣

t− 5

6

∣

∣

∣

∣

tsdt

]

+(b− a)|X ′(b, ·)|
[

∫ 1/2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

(1− t)sdt+

∫ 1

1/2

∣

∣

∣

∣

t− 5

6

∣

∣

∣

∣

(1− t)sdt

]

,

= (b− a)

(

6−s − 9(2−s) + (5s+1)(6−s) + 3s− 12

18(s2 + 3s+ 2)

)

[|X ′(a, ·)|+ |X ′(b, ·)|] ,

almost everywhere, which completes the proof.

Corollary 3.3 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′ mean-square integrable, a, b ∈ I with a < b. If

|X ′|p/(p−1) is convex on [a, b] and p > 1, then the following inequality holds

almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ 5(b− a)

72
[|X ′(a, ·)|+ |X ′(b, ·)|] . (19)

Theorem 3.4 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′ mean-square integrable on [a, b], a, b ∈ I with a < b.
If |X ′|p/(p−1) is s-convex on [a, b], for some fixed s ∈ (0, 1] and p > 1, then the

following inequality is true almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

(1 + s)1/q

(

1 + 2p+1

6p+1(p+ 1)

)1/p
[

(

|X ′(a, ·)|q +
∣

∣

∣

∣

X ′

(

a+ b

2
, ·
)∣

∣

∣

∣

q)1/q
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+

(
∣

∣

∣

∣

X ′

(

a + b

2
, ·
)
∣

∣

∣

∣

q

+ |X ′(b, ·)|q
)1/q

]

. (20)

Proof. From Lemma 3.1,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

∫ 1

0

|p(t)||X ′(at+ (1− t)b, ·)|dt

≤ (b− a)

[

∫ 1/2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

|X ′(at+ (1− t)b, ·)|dt

+

∫ 1

1/2

∣

∣

∣

∣

t− 5

6

∣

∣

∣

∣

|X ′(at + (1− t)b, ·)|dt
]

≤ (b− a)





(

∫ 1/2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

p

dt

)1/p(
∫ 1/2

0

|X ′(at + (1− t)b, ·)|pdt
)1/p

+

(
∫ 1

1/2

∣

∣

∣

∣

t− 5

6

∣

∣

∣

∣

p

dt

)1/p(∫ 1

1/2

|X ′(at + (1− t)b, ·)|pdt
)1/p

]

≤ (b− a)





(

∫ 1/6

0

(

1

6
− t

)p

dt+

∫ 1/2

1/6

(

t− 1

6

)p

dt

)1/p

(

∫ 1/2

0

|X ′(at+ (1− t)b, ·)|pdt
)1/p

+

(

∫ 5/6

1/2

(

5

6
− t

)p

dt+

∫ 1

5/6

(

t− 5

6

)p

dt

)1/p

(21)

(

∫ 1/2

0

|X ′(at+ (1− t)b, ·)|pdt
)1/p



 , (a.e).

Since, |X ′| is s-convex by (??), we have

∫ 1/2

0

|X ′(at+ (1− t)b, ·)|qdt =
1

b− a

∫ b

a+b

2

|X ′(t, ·)|qdt

≤ 1

2

[

|X ′(b, ·)|q +
∣

∣X ′
(

a+b
2
, ·
)
∣

∣

q

s+ 1

]

(22)

≤ |X ′(b, ·)|q +
∣

∣X ′
(

a+b
2
, ·
)
∣

∣

q

s+ 1
, (a.e).
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and

∫ 1

1/2

|X ′(at+ (1− t)b, ·)|qdt =
1

b− a

∫ a+b

2

a

|X ′(t, ·)|qdt

≤ 1

4

[

|X ′(b, ·)|q +
∣

∣X ′
(

a+b
2
, ·
)
∣

∣

q

s+ 1

]

(23)

≤
∣

∣X ′
(

a+b
2
, ·
)
∣

∣

q
+ |X ′(a, ·)|q

s+ 1
, (a.e).

Also,

∫ 1/6

0

(

1

6
− t

)p

dt =

∫ 1

5/6

(

5

6
− t

)p

dt =
1

3

(

3−p

p+ 1

)

, (24)

∫ 1/2

1/6

(

t− 1

6

)p

dt =

∫ 5/6

1/2

(

t− 5

6

)p

dt =
1

6

(

6−p

p+ 1

)

. (25)

Therefore, by (22)-(25), proof is complete.

If we put s = 1 in the Theorem 3.4, we have a corollary which result
if |X ′|p/(p−1) is asked to be convex on [a, b]. This is because s-convexity for
stochastic processes is a generalization of convexity.

Corollary 3.5 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′ mean-square integrable on [a, b], a, b ∈ I with a < b.
If |X ′|p/(p−1) is convex on [a, b] and p > 1, then the following inequality holds

almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

21/q

(

1 + 2p+1

6p+1(p+ 1)

)1/p
[

(

|X ′(a, ·)|q +
∣

∣

∣

∣

X ′

(

a+ b

2
, ·
)
∣

∣

∣

∣

q)1/q

+

(
∣

∣

∣

∣

X ′

(

a+ b

2
, ·
)
∣

∣

∣

∣

q

+ |X ′(b, ·)|q
)1/q

]

. (26)

Theorem 3.6 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′ mean-square integrable on [a, b], a, b ∈ I with a < b.
If |X ′|p/(p−1) is s-convex on [a, b], for some fixed s ∈ (0, 1] and p > 1, then the

following inequality is satisfied almost everywhere:
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∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

[216(s2 + 3s+ 2)]1/q

(

5

72

)1−1/q

(27)

{

([(3−s(21−s) + 3s(21−s) + 3(2−s))]|X ′(b, ·)|q

+[5s+23−s21−s − 6s(2−s)− 21(2−s) + 6s− 24]|X ′(a, ·)|q)1/q

+
(

[(3−s)(21−s) + 3s(21−s) + 3(2−s)]|X ′(a, ·)|q

+[5s+23−s21−s − 6s(2−s)− 21(2−s) + 6s− 24]|X ′(b, ·)|q
)1/q
}

.

Proof. From previous lemma and the power mean inequality,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(u, ·)du
∣

∣

∣

∣

≤ (b− a)

∫ 1

0

|s(t)||X ′(tb+ (1− t)a, ·)| dt

≤ (b− a)

∫ 1

2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

|X ′(tb+ (1− t)a, ·)|dt

+

∫ 1

1

2

∣

∣

∣

∣

t− 5

6

∣

∣

∣

∣

|X ′(tb+ (1− t)a, ·)|dt

≤ (b− a)

(

∫ 1

2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

dt

)1−1/q

(

∫ 1

2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

|X ′(tb+ (1− t)a, ·)|qdt
)1/q

+(b− a)

(

∫ 1

1

2

∣

∣

∣

∣

(

t− 5

6

)
∣

∣

∣

∣

dt

)1−1/q

(

∫ 1

1

2

∣

∣

∣

∣

(

t− 5

6

)
∣

∣

∣

∣

|X ′(tb+ (1− t)a, ·)|qdt
)1/q

, (a.e).

Since |X ′| is s-convex, we have

∫ 1

2

0

∣

∣

∣

∣

(

t− 1

6

)
∣

∣

∣

∣

|X ′(tb+ (1− t)a, ·)|qdt
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≤
∫ 1

6

0

(

1

6
− t

)

(ts|X ′(b, ·)|q + (1− t)s|X ′(a, ·)|q)dt

+

∫ 1

2

1

6

(

t− 1

6

)

(ts|X ′(b, ·)|q + (1− t)s|X ′(a, ·)|q)dt

=

[

(3−s)(21−s) + 3s(21−s) + 3(2−s)

36(s2 + 3s+ 2)

]

|X ′(b, ·)|q

+

[

(5s+2)(3−s)(21−s)− 6s(2−s)− 21(2−s) + 6s− 24

36(s2 + 3s+ 2)

]

|X ′(a, ·)|q, (a.e).

and

∫ 1

1

2

∣

∣

∣

∣

(

t− 5

6

)
∣

∣

∣

∣

|X ′(tb+ (1− t)a, ·)|qdt

≤
∫ 5

6

1

2

(

5

6
− t

)

(ts|X ′(b, ·)|q + (1− t)s|X ′(a, ·)|q)dt

+

∫ 1

5

6

(

t− 5

6

)

(ts|X ′(b, ·)|q + (1− t)s|X ′(a, ·)|q)dt

=

[

(3−s)(21−s) + 3s(21−s) + 3(2−s)

36(s2 + 3s+ 2)

]

|X ′(a, ·)|q

+

[

(5s+2)(3−s)(21−s)− 6s(2−s)− 21(2−s) + 6s− 24

36(s2 + 3s+ 2)

]

|X ′(b, ·)|q, (a.e).

Also, we note that

∫ 1

2

0

∣

∣

∣

∣

(

t− 1

6

)
∣

∣

∣

∣

dt =

∫ 1

1

2

∣

∣

∣

∣

(

t− 5

6

)
∣

∣

∣

∣

dt =
5

72
.

which completes the proof.

Corollary 3.7 Let X : I×Ω → R be as in Theorem 3.6, then the following

inequality holds almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

[216(s2 + 3s+ 2)]1/q

(

5

72

)1−1/q

(|X ′(a, ·)|+ |X ′(b, ·)|)
[

[

(3−s)(21−s) + 3s(21−s) + 3(2−s)
]1/q

+
[

(5s+2)(3−s)(21−s)− 6s(2−s)− 21(2−s) + 6s− 24
]1/q
]

.
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Moreover, if s = 1,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ 5

72

[

1668

6480

]1/q

(b− a) (|X ′(a, ·)|+ |X ′(b, ·)|)

Proof. We consider in the previous inequality for p > 1, q = p/(p − 1) and
we called:

a1 =
[

(3−s)(21−s) + 3s(21−s) + 3(2−s)
]

|X ′(b, ·)|q

b1 =
[

(5s+2)(3−s)(21−s)− 6s(2−s)− 21(2−s) + 6s− 24
]

|X ′(a, ·)|q
a2 =

[

(3−s)(21−s)− 6s(2−s)− 21(2−s) + 6s− 24
]

|X ′(b, ·)|q
b2 =

[

(5s+2)(3−s)(21−s)− 6s(2−s)− 21(2−s) + 6s− 24
]

|X ′(b, ·)|q.

Here, 0 < 1/q < 1, for q > 1. Using the fact

n
∑

i=1

(ai + bi)
r ≤

n
∑

i=1

ari +

n
∑

i=0

bri ,

for 0 < r < 1, ai, a2, . . . an ≥ 0 and b1, b2, . . . , bn ≥ 0, we obtain

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(u, ·)du
∣

∣

∣

∣

≤ (b− a)

[216(s2 + 3s+ 2)]1/q

(

5

72

)1−1/q
{

[

(3−s)(21−s) + 3s(21−s) + 3(2−s)
]1/q

+
[

(5s+2)(3−s)(21−s)− 6s(2−s)− 21(2−s) + 6s− 24
]1/q
}

· (|X ′(a, ·) + |X ′(b, ·)|)

which completes the proof.

Corollary 3.8 Let X : I×Ω → R be as Theorem 3.6, and let s = 1, there-
fore the forecoming inequality holds almost everywhere for convex functions:

∣

∣

∣

∣

1

6

[

X ′(a, ·) + 4X ′

(

a + b

2
, ·
)

+X ′(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

(1296)1/q

(

5

72

)1−1/q
[

(20|X ′(b, ·)|q + 61|X ′(a·)|q)1/q

+(61|X ′(b, ·)|q + 29|X ′(a, ·)|q)1/q
]

.
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Moreover, if |X ′| ≤ M, for any x ∈ I,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X ′

(

a + b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ 5(b− a)

36
M, (a.e).

Proof. Calculating as in the first theorem

∫ 1

2

0

∣

∣

∣

∣

t− 1

6

∣

∣

∣

∣

|X ′(ta + (1− t)b, ·)|dt+
∫ 1

1

2

∣

∣

∣

∣

t− 5

6

∣

∣

∣

∣

|X ′(ta + (1− t)a, ·)|dt

≤
∫ 1

6

0

(

1

6
− t

)

ts|X ′(a, ·)|q +
(

1

6
− t

)

(1− t)s|X ′(b, ·)|qdt

+

∫ 1

2

1

6

(

t− 1

6

)

ts|X ′(a, ·)|q +
(

t− 1

6

)

(1− t)s|X ′(b, ·)|qdt

+

∫ 5

6

1

2

(

5

6
− t

)

ts|X(a, ·)|qdt+
(

5

6
− t

)

(1− t)s|X ′(b, ·)|qdt

+

∫ 1

5

6

(

t− 5

6

)

ts|X ′(a, ·)|q +
(

t− 5

6

)

(1− t)s|X ′(b, ·)|qdt

= |X ′(a, ·)|q
[

∫ 1

6

0

(

1

6
− t

)

tsdt+

∫ 1

2

1

6

(

t− 1

6

)

tsdt

+

∫ 5

6

1

2

(

5

6
− t

)

tsdt+

∫ 1

5

6

(

t− 5

6

)

ts

]

+|X ′(b, ·)|q
[

∫ 1

6

0

(

1

6
− t

)

(1− t)sdt+

∫ 1

2

1

6

(

t− 1

6

)

(1− t)sdt

+

∫ 5

6

1

2

(

t− 5

6

)

(1− t)sdt+

∫ 1

5

6

(

t− 5

6

)

(1− t)sdt

]

.

By Theorem 3.6 and replacing s = 1,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

[1296]1/q

(

5

72

)1−1/q
[

(29|X ′(b, ·)|q + 61|X(a, ·)|q)1/q

+ (29|X ′(a, ·)|q + 61|X ′(b, ·)|q)1/q
]

.

Therefore, if X ′(u, ·) ≤ M, for any u ∈ I we have
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∣

∣

∣

∣

1

6

[

X ′(a, ·) + 4X ′

(

a+ b

2
, ·
)

+X ′(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

(1296)1/q

(

5

72

)1−1/q

[29M q + 61M q]1/q + [61M q + 29M q]1/q

≤ (b− a)

(1296)1/q

(

5

72

)1−1/q
[

(90M q)1/q + (90M q)1/q
]

=
(b− a)

(1296)1/q

(

5

72

)1−1/q
[

2(90)1/qM
]

= (b− a)

(

5

72

)(

5

72

)

−1/q
(

2

(

5

72

)1/q

M

)

≤ 5(b− a)

36
M.

3.2 Inequalities for quasi-convex stochastic processes

In order to prove the result for quasi-convex stochastic processes, we need the
following lemma which is a generalization of the result obtained by Alomari et
al. in [2] to quasi-convex functions.

Lemma 3.9 Let X : I × Ω → R be a stochastic process mean-square dif-

ferentiable on I◦ and X ′′ mean-square integrable on [a, b], a, b ∈ I with a < b.
If X ′′(t, ·) is mean-square integrable on [a, b], then the following equality holds

almost everywhere:

1

b− a

∫ b

a

X(t, ·)dt− 1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

(28)

= (b− a)2
∫ b

a

p(t)X ′′(at + (1− t)b, ·)dt,

where

p(t) =























1

6
t (3t− 1) , t ∈

[

0,
1

2

]

,

1

6
(t− 1) (3t− 1) , t ∈

(

1

2
, 1

]

.
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Proof. We note that integrating by parts

I =

∫ 1

0

p(t)X ′′(at + (1− t)b, ·)dt

=
1

6

∫ 1/2

0

t (3t− 1)X ′(at + (1− t)b, ·)dt

+
1

6

∫ 1

1/2

(t− 1) (3t− 1)X ′(at + (1− t)b, ·)dt.

=
1

6
t (3t− 1)

X(at+ (1− t)b, ·)
b− a

∣

∣

∣

∣

1/2

0

(29)

−
[

1

2
t +

1

6
(3t− 1)

X(at + (1− t)b, ·)
(b− a)2

∣

∣

∣

∣

1/2

0

]

+

∫ 1/2

0

X(at + (1− t)b, ·)
(b− a)2

dt+
1

6
(t− 1)(3t− 2)

X(at + (1− t)b, ·)
b− a

∣

∣

∣

∣

1

1/2

−
[

1

2
(t− 1) +

1

6
(3t− 2)

]

X(at+ (1− t)b, ·)
(b− a)2

∣

∣

∣

∣

1

1/2

+

∫ 1

1/2

X(at+ (1− t)b, ·)
(b− a)2

dt

=
1

24

X ′
(

a+b
2
, ·
)

b− a
− 1

3

X ′
(

a+b
2
, ·
)

(b− a)2
− 1

6

X ′ (a, ·)
(b− a)2

+

∫ 1/2

0

X(at+ (1− t)b, ·)
(b− a)2

dt

−1

6

X ′ (b, ·)
(b− a)2

− 1

24

X ′
(

a+b
2
, ·
)

b− a
− 1

3

X ′
(

a+b
2
, ·
)

(b− a)2

+

∫ 1

1/2

X(at + (1− t)b, ·)
(b− a)2

dt

=
1

(b− a)2

∫ 1

0

X(at + (1− t)b, ·)dt

− 1

6(b− a)2

[

X(a, ·) +X(b, ·) + 4X

(

a+ b

2
, ·
)]

. (a.e).

Setting x = at+ (1− t)b, and dx = (b− a)dt, gives

(b− a) · I =
1

b− a

∫ b

a

X(t, ·)dt− 1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

, (a.e),
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which leads to the desired representation (28).

The next theorems gives a new refinement of Simpson’s inequality for quasi-
convex stochastic processes.

Theorem 3.10 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′ mean-square integrable on [a, b], a, b ∈ I with a < b.
If |X ′′| is quasi-convex on [a, b], for some fixed s ∈ (0, 1], then the following

inequality holds almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)2

162

[

max

{

|X ′′(a, ·)|,
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

}

(30)

+ max

{
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

, |X ′′(b, ·)|
}]

.

Proof.

First, we notice that

∫ 1/3

0

t(1− 3t)dt =

∫ 1

1/3

t(3t− 1)dt =

∫ 2/3

1/3

(1− t)(2− 3t)dt

=

∫ 1

2/3

(1− t)(3t− 2)dt =
1

54
. (31)

Then, by Lemma 3.9 and since |X ′′| is quasi-convex,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)2
∫ 1

0

|p(t)||X ′′(at + (1− t)b, ·)|dt

≤ (b− a)2

6

[

∫ 1/2

0

t |3t− 1|max

{

|X ′′(a, ·)|,
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

}

dt

+

∫ 1

1/2

|t− 1| |3t− 2|max

{
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

, |X ′′(a, ·)|
}

dt

]

=
(b− a)2

6
max

{

|X ′′(a, ·)|,
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

}

[

∫ 1/3

0

t(1− 3t)dt+

∫ 1/2

1/3

t(3t− 1)dt

]
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+
(b− a)2

6
max

{
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

, |X ′′(a, ·)|
}

[

∫ 2/3

1/2

(1− t)(2− 3t)dt+

∫ 1

2/3

(1− t)(3t− 2)dt

]

,

=
(b− a)2

162

[

max

{

|X ′′(a, ·)|,
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)∣

∣

∣

∣

}

+max

{
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

, |X ′′(b, ·)|
}]

, (a.e).

which completes the proof.

Corollary 3.11 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′ mean-square integrable on [a, b], a, b ∈ I with

a < b. If |X ′′| is quasi-convex on [a, b], for some fixed s ∈ (0, 1] and X(s, ·) =
X
(

a+b
2
, ·
)

= X(b, ·), then the following inequality is true almost everywhere:

∣

∣

∣

∣

1

b− a

∫ b

a

X(t, ·)dt−X

(

a + b

2
, ·
)
∣

∣

∣

∣

≤ (b− a)2

162

[

max

{

|X ′′(a, ·)|,
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

}

(32)

+max

{
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

, |X ′′(b, ·)|
}]

.

For instance, for M > 0, if |X ′′(t, ·)| < M for all t ∈ [a, b], then

∣

∣

∣

∣

1

b− a

∫ b

a

X(t, ·)dt−X

(

a+ b

2
, ·
)
∣

∣

∣

∣

≤ (b− a)2

162
M, (a.e). (33)

The corresponding version for powers of the absolute value of second deriva-
tive is incorporated in the following result:

Theorem 3.12 Let X ′ : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′ mean-square integrable on [a, b], a, b ∈ I with a < b.
If |X ′′| is quasi-convex on [a, b], for some fixed s ∈ (0, 1] and p > 1, then the

following inequality takes place almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)2

6

(√
π12−pΓ(p+ 1)

6Γ
(

3
2
+ p
) +

4(3−p) + 3(2−p)(p− 1)

12(2 + 3p+ p2)

)1/p

(34)



696 Jesús Materano, Nelson Merentes and Maira Valera-López



max

{

|X ′′(a, ·)|p/(p−1),

∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

p/(p−1)
}(p−1)/p

+max

{

∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

p/(p−1)

, |X ′′(b, ·)|p/(p−1)

}(p−1)/p


 .

Proof.

From Lemma 3.9 and since |X ′′| is quasi-convex,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

∫ 1

0

|p(t)||X ′′(at + (1− t)b, ·)|dt

≤ (b− a)2

6





(

∫ 1/2

0

(t |3t− 1|)pdt
)1/p(

∫ 1/2

0

|X ′′(at+ (1− t)b, ·)|qdt
)1/q

+

(
∫ 1

1/2

(|t− 1| |3t− 2|)pdt
)1/p(∫ 1

1/2

|X ′′(at+ (1− t)b, ·)|qdt
)1/q

]

≤ (b− a)2

6





(

∫ 1/3

0

tp(1− 3t)pdt+

∫ 1/2

1/3

tp(3t− 1)pdt

)1/p

(

∫ 1/2

0

|X ′′(at+ (1− t)b, ·)|qdt
)1/q

+

(

∫ 2/3

1/2

(t− 1)p(2− 3t)pdt+

∫ 1

2/3

(t− 1)p(3t− 2)pdt

)1/p

(
∫ 1

1/2

|X ′′(at+ (1− t)b, ·)|qdt
)1/q

]

, (a.e).

Since |X ′′| is quasi-convex,

∫ 1/2

0

|X ′′(at + (1− t)b, ·)|qdt ≤ max

{

|X ′′(a, ·)|q,
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

q}

, (35)

∫ 1

1/2

|X ′′(at + (1− t)b, ·)|qdt ≤ max

{
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

q

, |X ′′(b, ·)|2
}

. (36)

Besides, for p > 1 we have to use the fact that
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∫ 1/3

0

tp(1− 3t)pdt =

∫ 1

2/3

(t− 1)p(3t− 2)pdt =
12−p

√
πΓ(p+ 1)

6Γ
(

3
2
+ p
) , (37)

∫ 1/2

1/3

tp(3t− 1)pdt =

∫ 2/3

1/2

(t− 1)p(2− 3t)pdt =
4(3−p) + 3(2−p)(p− 1)

12(2 + 3p+ p2)
. (38)

Then, because (35)-(38), the desired result shows up

Corollary 3.13 Let X ′ : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′ mean-square integrable on [a, b], a, b ∈ I with

a < b. If |X ′′| is quasi-convex on [a, b], for some fixed s ∈ (0, 1] and p > 1,
and X(a, ·) = X

(

a+b
2
, ·
)

= X(b, ·) then the following inequality holds almost

everywhere:

∣

∣

∣

∣

1

b− a

∫ b

a

X(t, ·)dt−X

(

a+ b

2
, ·
)
∣

∣

∣

∣

≤ (b− a)2

6

(√
π12−pΓ(p+ 1)

6Γ
(

3
2
+ p
) +

4(3−p) + 3(2−p)(p− 1)

12(2 + 3p+ p2)

)1/p

(39)



max

{

|X ′′(a, ·)|p/(p−1),

∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

p/(p−1)
}(p−1)/p

+max

{

∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

p/(p−1)

, |X ′′(b, ·)|p/(p−1)

}(p−1)/p


 .

The following theorem is a generalization of inequality (30).

Theorem 3.14 Let X ′ : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′ mean-square integrable on [a, b], a, b ∈ I with a < b.
If |X ′′| is quasi-convex on [a, b], for some fixed s ∈ (0, 1] and q > 1, then the

following inequality is valid almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

(40)

≤ (b− a)2

162

[

max

{

|X ′′(a, ·)|q,
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

q}1/q

+max

{
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

q

, |X ′′(b, ·)|q
}1/q

]

.
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Proof. From Lemma 3.9 and the power mean inequality,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

∫ 1

0

|p(t)||X ′′(at + (1− t)b, ·)|dt

≤ (b− a)2

6





(

∫ 1/2

0

t |3t− 1| dt
)1−1/q

(

∫ 1/2

0

t |3t− 1| |X ′′(at+ (1− t)b, ·)|qdt
)1/q

+

(
∫ 1

1/2

|t− 1| |3t− 2| dt
)1−1/q

(41)

(
∫ 1

1/2

|t− 1| |3t− 2| |X ′′(at+ (1− t)b, ·)|qdt
)1/q

]

≤ (b− a)2

6





(

∫ 1/3

0

t(1− 3t)dt+

∫ 1/2

1/3

t(3t− 1)dt

)1−1/q

·
(

∫ 1/2

0

t |3t− 1| |X ′′(at + (1− t)b, ·)|qdt
)1/q

+

(

∫ 2/3

1/2

(t− 1)(2− 3t)dt+

∫ 1

2/3

(t− 1)(3t− 2)dt

)1−1/q

·
(
∫ 1

1/2

|t− 1| |3t− 2| |X ′′(at + (1− t)b, ·)|qdt
)1/q

]

, (a.e).

Since |X ′′| is quasi-convex,

∫ 1/2

0

t |3t− 1| |X ′′(at+ (1− t)b, ·)|qdt

≤ 1

27
max

{

|X ′′(a, ·)|q,
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

q}

, (a.e), (42)

∫ 1

1/2

|t− 1| |3t− 2| |X ′′(at + (1− t)b, ·)|qdt

≤ 1

27
max

{
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

q

, |X ′′(b, ·)|q
}

, (a.e), (43)
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where we used the equality

∫ 1/3

0

t|3t− 1|dt =
∫ 1

1/2

|t− 1| |3t− 2| dt = 1

27
. (44)

Then, by a combination of (42)-(44), gives the required result which com-
pletes the proof.

Corollary 3.15 Let X ′ : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′ mean-square integrable on [a, b], a, b ∈ I with

a < b. If |X ′′| is quasi-convex on [a, b], for some fixed s ∈ (0, 1] and p > 1,
and X(a, ·) = X

(

a+b
2
, ·
)

= X(b, ·) then the following inequality holds almost

everywhere:

∣

∣

∣

∣

1

b− a

∫ b

a

X(t, ·)dt−X

(

a+ b

2
, ·
)
∣

∣

∣

∣

(45)

≤ (b− a)2

162

[

max

{

|X ′′(a, ·)|q,
∣

∣

∣

∣

X ′′

(

a + b

2
, ·
)
∣

∣

∣

∣

q}1/q

+max

{
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

q

, |X ′′(b, ·)|q
}1/q

]

.

The following lemma is very useful to get another result for quasi-convex
stochastic processes, but used the third derivative.

Lemma 3.16 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′′ mean-square integrable on [a, b], a, b ∈ I with

a < b. If X ′′′(t, ·) is mean-square integrable on [a, b], then the following equality

holds almost everywhere:

1

b− a

∫ b

a

X(t, ·)dt− 1

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

(46)

= (b− a)4
∫ b

a

p(t)X ′′′(at+ (1− t)b, ·)dt,

where

p(t) =























1

6
t2
(

t− 1

2

)

, t ∈
[

0,
1

2

]

,

1

6
(t− 1)2

(

t− 1

2

)

, t ∈
(

1

2
, 1

]

.
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Proof. We may integrate by parts, and get

I =

∫ 1

0

p(t)X ′′′(at+ (1− t)b, ·)dt

=
1

6

∫ 1/2

0

t2
(

t− 1

2

)

X ′′′(at+ (1− t)b, ·)dt

+
1

6

∫ 1

1/2

(1− t)2
(

t− 1

2

)

X ′′′(at + (1− t)b, ·)dt

=
1

6
t2
(

t− 1

2

)

X ′′(at+ (1− t)b, ·)
a− b

∣

∣

∣

∣

1/2

0

−1

6
t(3t− 1)

X ′(at + (1− t)b, ·)
(a− b)2

∣

∣

∣

∣

1/2

0

+

(

t− 1

6

)

X(at+ (1− t)b, ·)
(a− b)3

∣

∣

∣

∣

1/2

0

−
∫ 1/2

0

X(at+ (1− t)b, ·)
(a− b)3

dt

+
1

6
(1− t)2

(

t− 1

2

)

X ′′(at + (1− t)b, ·)
a− b

∣

∣

∣

∣

1

1/2

−1

6
(3t− 2)(t− 1)

X ′(at+ (1− t)b, ·)
(a− b)2

∣

∣

∣

∣

1

1/2

+

(

t− 5

6

)

X ′′(at + (1− t)b, ·)
(a− b)3

∣

∣

∣

∣

1

1/2

−
∫ 1

1/2

X ′′(at + (1− t)b, ·)
(a− b)3

dt

= − 1

24

X ′
(

a+b
2
, ·
)

(a− b)2
+

2

6

X ′
(

a+b
2
, ·
)

(a− b)3
+

1

6

X ′ (b, ·)
(a− b)3

−
∫ 1/2

0

X ′′(at + (1− t)b, ·)
(a− b)3

dt

+
1

24

X ′
(

a+b
2
, ·
)

(a− b)2
+

2

6

X ′
(

a+b
2
, ·
)

(a− b)3
+

1

6

X ′ (b, ·)
(a− b)3

−
∫ 1

1/2

X ′′(at + (1− t)b, ·)
(a− b)3

dt, (a.e).

Setting s = at+ (1− t)b, gives

(b− a)4 · I =

∫ b

a

X(s, ·)ds− (b− a)

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

, (a.e).

which gives (46).
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Theorem 3.17 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′′ mean-square integrable on [a, b], a, b ∈ I with

a < b. If |X ′′′| is quasi-convex on [a, b], for some fixed s ∈ (0, 1] and q > 1,
then the following inequality holds almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

(47)

≤ (b− a)4

1152

[

max

{

|X ′′(a, ·)|,
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

}

+max

{
∣

∣

∣

∣

X ′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

, |X ′′(b, ·)|
}]

.

Proof.

First, we have

∫ 1/2

0

t2
(

1

2
− t

)

dt =

∫ 1

1/2

(1− t)2
(

t− 1

2

)

dt =
1

192
(48)

Then, by Lemma 3.16 and since |X ′′| is quasi-convex,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)4
∫ 1

0

|p(t)||X ′′′(at+ (1− t)b, ·)|dt

≤ (b− a)4

6

[

∫ 1/2

0

t2
∣

∣

∣

∣

t− 1

2

∣

∣

∣

∣

max

{

|X ′′′(a, ·)|,
∣

∣

∣

∣

X ′′′

(

a + b

2
, ·
)
∣

∣

∣

∣

}

dt

+

∫ 1

1/2

(t− 1)2
∣

∣

∣

∣

1

2
− t

∣

∣

∣

∣

max

{
∣

∣

∣

∣

X ′′′

(

a + b

2
, ·
)
∣

∣

∣

∣

, |X ′′′(a, ·)|
}

dt

]

=
(b− a)4

6
max

{

|X ′′′(a, ·)|,
∣

∣

∣

∣

X ′′′

(

a + b

2
, ·
)
∣

∣

∣

∣

}

[

∫ 1/2

0

t2
(

1

2
− t

)

dt

]

+
(b− a)4

6
max

{
∣

∣

∣

∣

X ′′′

(

a + b

2
, ·
)
∣

∣

∣

∣

, |X ′′′(a, ·)|
}[
∫ 1

1/2

(t− 1)2
(

t− 1

2

)

dt

]

=
(b− a)2

1552

[

max

{

|X ′′′(a, ·)|,
∣

∣

∣

∣

X ′′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

}

+max

{
∣

∣

∣

∣

X ′′′

(

a + b

2
, ·
)
∣

∣

∣

∣

, |X ′′′(a, ·)|
}]

, (a.e).
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The corresponding version of the inequality (47) for power in terms of the
third derivative is incorporated as follows:

Theorem 3.18 Let X ′ : I × Ω → R be a stochastic process mean-square

differentiable on I◦ and X ′′′ mean-square integrable on [a, b], a, b ∈ I with

a < b. If |X ′′′| is quasi-convex on [a, b], for some fixed s ∈ (0, 1] and p > 1,
then the following inequality is true almost everywhere:

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a+ b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)2

48(21/p)

(

Γ(p+ 1)Γ(2p+ 1)

Γ(3p+ 2)

)1/p
[

max

{

|X ′′′(a, ·)|q,
∣

∣

∣

∣

X ′′′

(

a + b

2
, ·
)
∣

∣

∣

∣

q}1/q

+max

{
∣

∣

∣

∣

X ′′′

(

a + b

2
, ·
)
∣

∣

∣

∣

q

, |X ′′′(b, ·)|q
}1/q

]

.

Proof. From Lemma 3.16 and since |X ′′′| is quasi-convex,

∣

∣

∣

∣

1

6

[

X(a, ·) + 4X

(

a + b

2
, ·
)

+X(b, ·)
]

− 1

b− a

∫ b

a

X(t, ·)dt
∣

∣

∣

∣

≤ (b− a)

∫ 1

0

|p(t)||X ′′′(at+ (1− t)b, ·)|dt

≤ (b− a)2

6





(

∫ 1/2

0

t2
∣

∣

∣

∣

t− 1

2

∣

∣

∣

∣

dt

)1/p(
∫ 1/2

0

|X ′′′(at + (1− t)b, ·)|qdt
)1/q

+

(
∫ 1

1/2

(t− 1)2
∣

∣

∣

∣

1

2
− t

∣

∣

∣

∣

dt

)1/p(∫ 1

1/2

|X ′′′(at+ (1− t)b, ·)|qdt
)1/q

]

≤ (b− a)2

6





(

∫ 1/2

0

t2
(

1

2
− t

)

dt

)1/p(
∫ 1/2

0

|X ′′′(at + (1− t)b, ·)|qdt
)1/q

+

(
∫ 1

1/2

(t− 1)2
(

t− 1

2

)

dt

)1/q

(
∫ 1

1/2

|X ′′′(at+ (1− t)b, ·)|qdt
)1/q

]

, (a.e).

Since |X ′′′| is quasi-convex, we have

∫ 1/2

0

|X ′′′(at+ (1− t)b, ·)|qdt ≤ max

{

|X ′′′(a, ·)|q,
∣

∣

∣

∣

X ′′′

(

a+ b

2
, ·
)
∣

∣

∣

∣

q}

, (49)
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∫ 1

1/2

|X ′′′(at+ (1− t)b, ·)|qdt ≤ max

{
∣

∣

∣

∣

X ′′′

(

a + b

2
, ·
)
∣

∣

∣

∣

q

, |X ′′′(b, ·)|2
}

, (50)

almost everywhere. Hence, for p > 1,

∫ 1/2

0

t2
(

1

2
− t

)

dt =

∫ 1

1/2

(t− 1)2
(

t− 1

2

)

dt =
2−1−3pΓ(p+ 1)Γ(2p+ 1)

Γ(3p+ 2)
. (51)

Because (49)-(51), we obtain the desired result.
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[19] J. Pečarić and S. Varošanec,Simpson’s formula for functions whose

derivatives belong to Lp spaces, Appl. Math. Lett., 14, (2001), pp. 131-135.

[20] M. S. Sarikaya, E. Set and M. E. Ozdemir,On new inequalities

of Simpson’s type for convex functions, RGMIA Res. Rep. Coll, 13 (2),
(2010), Article 2.

[21] M. S. Sarikaya, E. Set and M. E. Ozdemir,On new inequalities of

Simpson’s type for s-convex functions, Computers and Mathematics with
Applications, 60, (2010), pp. 2191-2199.



Some estimates on the Simpson’s type inequalities for stochastic processes 705

[22] E. Set, M. Tomar and S. Maden,Hermite-Hadamard type inequalities

for s-convex stochastic processes in the second sense, Turkish Journal of
Analysis and Number Theory, 2 (6), (2014), pp. 202-207.

[23] K. Sobczyk, Stochastic differential equations with applications to physics

and engineering, Kluwer, Dordrecht, 1991.
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