
Mathematica Aeterna, Vol. 4, 2014, no. 8, 855 - 861

Some characterizations of

strongly convex stochastic processes

Dawid Kotrys

Department of Mathematics and Computer Science
University of Bielsko–Biała

Willowa 2, 43–309 Bielsko–Biała, Poland
dkotrys@gmail.com

Abstract
In this paper some well-known characterizations of convex functions are

extended to convex and strongly convex stochastic processes.

Mathematics Subject Classification:26A51, 26D15, 39B62, 60G99

Keywords: Strongly convex stochastic process, mean-square integral, mean-
square derivative

1 Introduction

In 1980 K. Nikodem [5] introduced and investigated properties of convex stochastic
processes. Next, A. Skowronski described the properties ofJensen-convex stochas-
tic processes in [8]. Later, the Hermite-Hadamard inequality for convex stochastic
processes was proved in [1].

In this article we will present the counterpart for convex and strongly convex
stochastic processes of the well-known theorems from real analysis, which charac-
terize the convex and strongly convex functions.

Let (Ω,A, P ) be an arbitrary probability space. A functionX : Ω → R is called
a random variable if it isA-measurable. A functionX : I × Ω → R, whereI ⊂ R

is an interval, is called astochastic processif for every t ∈ I the functionX(t, ·) is
a random variable.

Let X : I × Ω → R be a stochastic process, such thatE[X(t)]2 < ∞ for
all t ∈ I, whereE[X(t)] denotes the expectation value ofX(t, ·). Recall that the
stochastic processX is called

(i) mean-square differentiablein the intervalI, if there exists a stochastic process
X ′ (the derivative ofX) such that for allt0 ∈ I we have

lim
t→t0

E
[X(t)−X(t0)

t− t0
−X ′(t0)

]2

= 0;
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(ii) twice mean-square differentiablein the intervalI, if there exists a stochastic
processX ′′ (the second derivative ofX) such that for allt0 ∈ I

lim
t→t0

E
[X ′(t)−X ′(t0)

t− t0
−X ′′(t0)

]2

= 0;

(iii) mean-square integrablein [a, b] ⊂ I, if there exists a random variableY such
that for all normal sequence of partitions of the interval[a, b] a = t0 < t1 <

t2 < ... < tn = b and for allΘk ∈ [tk−1, tk], k = 1, ..., n, we have

lim
n→∞

E
[

n
∑

k=1

X(Θk) · (tk − tk−1)− Y
]2

= 0.

The random variableY : Ω → R is called the mean-square integral of the
processX on [a, b]. We can also write

Y (·) =

∫

b

a

X(s, ·)ds (a.e.).

For the definition and more basic properties of mean-square derivative and mean-
square integral see [9].

Now, let C : Ω → R be a positive random variable. A stochastic process
X : I × Ω → R is said to bestrongly convex with modulusC(·) if, for all u, v ∈ I

and for allλ ∈ [0, 1] the following inequality holds

X
(

λu+(1−λ)v, ·
)

6 λX(u, ·)+(1−λ)X(v, ·)−C(·)λ(1−λ)(u−v)2 (a.e.). (1)

For more details we refer to [2]. If we omit the termC(·)λ(1 − λ)(u − v)2 in
the inequality (1), we immediately get the definition of a convex stochastic process
introduced by K. Nikodem in 1980 (see [5]).

The definition of strongly convex stochastic processes is motivated by the def-
inition of strongly convex functions. Such functions play an important role in op-
timization theory and mathematical economies (see, for instance [6], [4], and the
references therein).

In this paper we present some characterizations of stronglyconvex stochastic
processes. These results generalize the ones for convex functions defined on real
intervals involving the notions of support functions and the first and the second
derivatives (cf. [7]; see also [3] ).
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2 Main results

We start our investigation with two very useful lemmas.

Lemma 2.1([2]). A stochastic processX : I × Ω → R is strongly convex with
modulusC(·) if and only if the stochastic processY : I × Ω → R defined by
Y (t, ·) := X(t, ·)− C(·)t2 is convex.

Lemma 2.2. A stochastic processX : I × Ω → R is convex if and only ifX is
supported at any pointt0 ∈ intI by the process of the formA(·)(t− t0) +X(t0, ·),
whereA : Ω → R is a random variable.

Proof. Suppose that a processX is convex. By Proposition 2 from [1] we get the
support of the formA(·)(t− t0) +X(t0, ·) at any pointt0 ∈ intI.
Let the processX has a support at any pointt0 ∈ I. It means the following inequal-
ity holds

X(t, ·) > A(·)(t− t0) +X(t0, ·) (a.e.). (2)

We fix u, v ∈ I andλ ∈ [0, 1], such thatt0 = λu+(1−λ)v. Foru andv separately,
by the inequality (2) we get

λX(u, ·) > λA(·)(u− t0) + λX(t0, ·) (a.e.),

(1− λ)X(v, ·) > (1− λ)A(·)(v − t0) + (1− λ)X(t0, ·) (a.e.).

Adding by sides the above inequalities, we have

λX(u, ·) + (1− λ)X(v, ·) > X(t0, ·) (a.e.).

Finally, replacingt0 by λu+ (1− λ)v we can write

λX(u, ·) + (1− λ)X(v, ·) > X(λu+ (1− λ)v, ·) (a.e.).

It completes the proof.

Using the above lemmas, it can be easily shown the following theorem.

Theorem 2.3.LetX : I ×Ω → R be a stochastic process.X is strongly convex
with modulusC(·) if and only if for everyt0 ∈ intI there exists the support of the
form

C(·)(t− t0)
2 + A(·)(t− t0) +X(t0, ·),

whereA : Ω → R is a random variable.

Now, we will present a characterization of strongly convex processes via their
first derivatives.
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Lemma 2.4. LetX : I ×Ω → R be a mean-square differentiable stochastic pro-
cess.X is convex in the intervalI, if and only if the first derivative is nondecreasing
in I.

Proof. Obviously, mean-square differentiability implies differentiability in proba-
bility, but the converse implication is not true.X is convex, then by lemma 1 from
[8], there exist nondecreasing stochastic processesX

′

+, X
′

−
: I×Ω → R, called the

right and left derivative ofX, respectively such that

X
′

−
(u, ·) 6 X

′

+(u, ·) 6 X
′

−
(v, ·) 6 X

′

+(v, ·) (a.e.). (3)

for all u, t ∈ I, u < v.
By the differentiability ofX, we have

{

X
′

−
(u, ·) = X

′

+(u, ·) = X
′

(u, ·) (a.e.)

X
′

−
(v, ·) = X

′

+(v, ·) = X
′

(v, ·) (a.e.).
(4)

By (3) and (4), for all u, v ∈ I, such thatu < v, we get

X
′

(u, ·) 6 X
′

(v, ·) (a.e.) (5)

Suppose now, that a mean-square derivative is nondecreasing. It means the inequal-
ity (5) holds for allu, v ∈ I, such thatu < v. Fix t0 ∈ (a, b) ⊂ I and taket ∈ (a, b),
such thatt0 < t. By basic properties of mean-square integral (cf. [9]; see also [1] )
and the inequality (5) we get

X(t, ·)−X(t0, ·) =

∫

t

t0

X ′(s, ·)ds >

∫

t

t0

X ′(t0, ·)ds = X ′(t0, ·)(t− t0) (a.e.).

If t < t0 we receive similarly

X(t, ·)−X(t0, ·) =

∫

t

t0

X ′(s, ·)ds = −

∫

t0

t

X ′(s, ·)ds > −

∫

t0

t

X ′(t0, ·)ds

= X ′(t0, ·)(t− t0) (a.e.).

It meansX has the support of the form

X(t, ·) > X(t0, ·) +X ′(t0, ·)(t− t0) (a.e.)

at any pointt0 ∈ (a, b). Lemma2.2completes the proof.

As before, by Lemma2.1 and proved above Lemma2.4, it can be shown the
following theorem
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Theorem 2.5. Let X : I × Ω → R be a mean-square differentiable stochastic
process.X is strongly convex with modulusC(·) if and only if the first derivative is
strongly increasing, that is for allu, v ∈ I, such thatu < v the following inequality
holds

X ′(v, ·)−X ′(u, ·) > 2C(·)(v − u) (a.e.). (6)

Proof. By the representation of the strongly convex stochastic processes with mod-
ulusC(·) (Lemma2.1), there exists a convex stochastic processH : I × Ω → R,
such that

X(t, ·) = H(t, ·) + C(·)t2 (a.e.)

for all t ∈ I. H is convex and mean-square differentiable, so by Lemma2.4the first
derivative ofH is nondecreasing. For allu, v ∈ I, such thatu < v we have

H ′(u, ·) 6 H ′(v, ·) (a.e.). (7)

It can be easily shown, that the first mean-square derivativeof X(t, ·) = H(t, ·) +
C(·)t2 (a.e.) is equal to

X ′(t, ·) = H ′(t, ·) + 2C(·)t (a.e.) (8)

for all t ∈ I. By (8) for u, v ∈ I we have
{

X ′(u, ·) = H ′(u, ·) + 2C(·)u (a.e.)

X ′(v, ·) = H ′(v, ·) + 2C(·)v (a.e.).
(9)

By (7) and (9) we get

X ′(u, ·)− 2C(·)u 6 X ′(v, ·)− 2C(·)v (a.e.).

It means (6) holds.
Suppose now, that the inequality (6) holds. Let us take

H ′(t, ·) := X ′(t, ·)− 2C(·)t (a.e.)

for all t ∈ I. By the definition processH is mean-square differentiable. From (6)
for fixedu, v ∈ I, such thatu < v, we getH ′(u, ·) 6 H ′(v, ·) (a.e.). By Lemma
2.4H is a convex stochastic process. Now, by Lemma2.1, we have that

X(t, ·) = H(t, ·) + C(·)t2 (a.e.)

is a strongly convex with modulusC(·) stochastic process. This completes the
proof.

Finally we present a characterization of strongly convex stochastic processes by
use of the second derivative.
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Lemma 2.6.LetX : I×Ω → R be a twice mean-square differentiable stochastic
process.X is convex inI if and only ifX ′′(t, ·) > 0 (a.e.) for everyt ∈ I.

Proof. Suppose first that a processX : I × Ω → R is convex. By Lemma2.4, the
first mean-square derivativeX ′(t, ·) is nondecreasing in the intervalI. Fix t, t0 ∈ I

such thatt0 < t. By the monotonicity of the first derivative, we have

X ′(t, ·)−X ′(t0, ·)

t− t0
> 0 (a.e.).

In the caset < t0, we get also

X ′(t0, ·)−X ′(t, ·)

t0 − t
> 0 (a.e.).

Passing to the mean-square limit, we obtain

X ′′(t0, ·) > 0 (a.e.).

Now, letX ′′(t, ·) > 0 (a.e.) for allt ∈ I. Fix t0 ∈ intI and taket ∈ I such that
t0 < t. Calculating the mean-square integral twice, we have

0 6

∫

t

t0

X ′′(s, ·)ds = X ′(t, ·)−X ′(t0, ·) (a.e.),

and

0 6

∫

t

t0

[

X ′(s, ·)−X ′(t0, ·)
]

ds =

∫

t

t0

X ′(s, ·)ds−

∫

t

t0

X ′(t0, ·)ds

= X(t, ·)−X(t0, ·)−X ′(t0, ·)(t− t0) (a.e.).

In the case whent < t0 we have

0 6

∫

t0

t

X ′′(s, ·)ds = X ′(t0, ·)−X ′(t, ·) (a.e.),

and

0 6

∫

t0

t

[

X ′(t0, ·)−X ′(s, ·)
]

ds =

∫

t0

t

X ′(t0, ·)ds−

∫

t0

t

X ′(s, ·)ds

= X ′(t0, ·)(t0 − t)−X(t0, ·) +X(t, ·) (a.e.).

Thus, there exists a support ofX the form

X(t, ·) > X(t0, ·) +X ′(t0, ·)(t− t0) (a.e.)

for any numbert0 ∈ intI. By Lemma2.2X is convex.

As an immediate consequence of Lemma2.6and Lemma2.1we get the follow-
ing theorem.

Theorem 2.7. Let X : I × Ω → R be a twice mean-square differentiable
stochastic process.X is strongly convex with modulusC(·) in I, if and only if
X ′′(t, ·) > 2C(·) (a.e.) fort ∈ I.
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[8] A. Skowrońki, On some properties of J-convex stochastic processes, Aequa-
tiones Math. 44 (1992), 249–258.

[9] K. Sobczyk,Stochastic differential equations with applications to physics and
engineering, Kluwer Academic Publishers B.V. 1991.

Received: September, 2014


	Introduction
	Main results

