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Abstract

In this research we show some characterizations in terms of inequal-

ities, for strongly convex functions defined on inner product spaces.

These results generalize the ones for functions defined on real intervals.

They involve ideas of the first and second derivatives on inner product

spaces.

Mathematics Subject Classification: 26A51, 39B62

Keywords: Strongly Convex Functions, Support of a Convex Function,
Inner Product Space.

1 Introduction

Strongly convex functions have been introduced by Polyak ([6]), he used them
for proving the convergence of a gradient type algorithm for minimizing a func-
tion. They play an important role in optimization theory and mathematical
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economics. Many properties and applications are available in the literature,
for instance in [1, 2, 3, 4, 5, 7]. In this paper we show characterizations of
strongly convex functions in terms of inequalities similar to the known for the
real case but now on inner product spaces.

2 Preliminaries

In this section we recall some results for strongly convex functions with mod-
ulus c defined on real intervals. A function f : (a, b) → R is called strongly
convex with modulus c > 0 if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2,

with x, y ∈ (a, b) and t ∈ [0, 1]. It is known that f : (a, b) → R is strongly
convex with modulus c > 0 if and only if at every point x0 ∈ (a, b) it has a
support of the form

f(x) ≥ f(x0) + L(x− x0) + c(x− x0)
2;

where L ∈ [f ′

−
(x0), f

′

+(x0)] and f ′

±
(x0) are the right and left derivative respec-

tively of f at x0 ([7]). Actually, in the case f differentiable L = f ′(x0).
For differentiable f the following statements take place ([7])

1. f is strongly convex with modulus c if and only if f ′ is strongly increasing,
that is,

(f ′(x)− f ′(y))(x− y) ≥ 2c(x− y)2.

2. For twice differentiable f , f is strongly convex with modulus c if and
only if f ′′(x) ≥ 2c.

3 Strongly Convex Functions on Inner Pro-

duct Spaces

Here we state and prove our main results, those are similar to the case on real
intervals but now on inner product spaces. First we recall some facts about
derivatives on normed spaces; let X and Y be normed spaces, g : U ⊆ X → Y

a function and U an open subset. Then g is said to be differentiable at x0 ∈ U

if there exists a linear transformation S : X → Y such that, for h ∈ X small
enough,

g(x0 + h) = g(x0) + S(h) + ||h||ǫ(x0, h),

where ǫ(x0, h) ∈ Y and goes to zero as ||h|| → 0. This linear transformation
is called the derivative and is denoted by g′(x0). It is worth to notice that we
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can think of g′ as a mapping g′ : U → F(X, Y ), where F(X, Y ) is the set of
linear transformations from X to Y . If g′ is continuous and differentiable at x
then we may define g′′(x) as a linear transformation from X to F(X, Y ),

g′′(x) : X → F(X, Y ),

so g′′(x)(h) ∈ F(X, Y ) and [g′′(x)(h)(k)] makes sense for k ∈ X . Again we
may notice that the expression [g′′(x)(h)(k)] is linear in both variables h and
k, so g′′(x) is bilinear transformation from X × X to Y and it is denoted as
g′′(x)(h, k).

Through this section, let X be an inner product space, Ω ⊆ X a convex
set and f : Ω → R a function.

Definition 1 ([1, 3, 4]). f : Ω → R is called strongly convex with modulus
c > 0 if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t) ‖ x− y ‖2

for any x, y ∈ Ω, t ∈ [0, 1].

Theorem 2 Let f : Ω → R be a differentiable function. Then f is strongly
convex with modulus c > 0 if and only if

f(x) ≥ f(x0) + f ′(x0)(x− x0) + c ‖ x− x0 ‖
2,

for any x, x0 ∈ Ω.

Proof. If f is strongly convex with modulus c > 0 then

f(tx+ (1− t)x0) ≤ tf(x) + (1− t)f(x0)− ct(1− t) ‖ x− x0 ‖
2,

so
tf(x) + (1− t)f(x0) ≥ f(tx+ (1− t)x0) + ct(1− t) ‖ x− x0 ‖

2,

but then

tf(x) + f(x0)− tf(x0) ≥ f(tx+ x0 − tx0) + ct(1− t) ‖ x− x0 ‖
2,

that is,

t[f(x)− f(x0)] ≥ f(tx+ x0 − tx0)− f(x0) + ct(1− t) ‖ x− x0 ‖
2, (1)

dividing both side of (1) by t we get

f(x)− f(x0) ≥
f(t(x− x0) + x0)− f(x0)

t
+ c(1− t) ‖ x− x0 ‖

2
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and letting t → 0+,

f(x)− f(x0) ≥ f ′(x0)(x− x0) + c ‖ x− x0 ‖
2 .

For the converse let x1, x2 ∈ Ω, t ∈ [0, 1] and x0 = tx1 + (1− t)x2. It is clear
that

f(x0) = f(x0) + f ′(x0)[t(x1 − x0) + (1− t)(x2 − x0)],

or better

f(x0) = f(x0) + tf ′(x0)(x1 − x0) + (1− t)f ′(x0)(x2 − x0),

therefore

f(x0) = t[f(x0) + f ′(x0)(x1 − x0)] + (1− t)[f(x0) + f ′(x0)(x2 − x0)].

By hypothesis,

f(x) ≥ f(x0) + f ′(x0)(x− x0) + c ‖ x− x0 ‖
2, (2)

now we change x by x1 in (2) and multiply by t the resulting expression to get

tf(x1) ≥ t[f(x0) + f ′(x0)(x1 − x0) + c ‖ x1 − x0 ‖
2],

that is,
tf(x0) + tf ′(x0)(x1 − x0) + ct ‖ x1 − x0 ‖

2≤ tf(x1). (3)

In the same way we change x by x2 in (2) and multiply the expression that
comes out by (1− t),

(1− t)f(x2) ≥ (1− t)[f(x0) + f ′(x0)(x2 − x0) + c ‖ x2 − x0 ‖
2],

or

(1− t)f(x0)+ (1− t)f ′(x0)(x2−x0)+ c(1− t) ‖ x2−x0 ‖
2≤ (1− t)f(x2). (4)

Now by adding up (3) and (4),

f(x0) ≤ tf(x1) + (1− t)f(x2)− ct ‖ x1 − x0 ‖
2 −c(1− t) ‖ x2 − x0 ‖

2 . (5)

But x1−x0 = x1−(tx1+(1−t)x2) = (1−t)(x1−x2) and x2−(tx1+(1−t)x2) =
t(x2 − x1). Thus, using the fact that Ω is an inner product space we have

‖ x1 − x0 ‖= (1− t) ‖ x1 − x2 ‖ and ‖ x2 − x0 ‖= t ‖ x1 − x2 ‖ .

Hence, (5) can be written as

f(tx1+(1−t)x2) ≤ tf(x1)+(1−t)f(x2)−ct(1−t)2 ‖ x1−x2 ‖
2 −c(1−t)t2 ‖ x1−x2 ‖

2

or better

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)− ct(1− t) ‖ x1 − x2 ‖
2 .

Therefore f is strongly convex with modulus c > 0.

The following result follows ideas from [2] and [7].
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Theorem 3 Let f : Ω → R be differentiable. Then f is strongly convex with
modulus c > 0 if and only if

[f ′(x)− f ′(y)](x− y) ≥ 2c ‖ x− y ‖2,

for any x, y ∈ Ω.

Proof.

If f is strongly convex with modulus c > 0, then by foregoing Theorem 2

f(x) ≥ f(x0) + f ′(x0)(x− x0) + c ‖ x− x0 ‖
2,

for any x, x0 ∈ Ω. Then for x0 = y

f(x) ≥ f(y) + f ′(y)(x− y) + c ‖ x− y ‖2 . (6)

Similarly, switching x and y

f(y) ≥ f(x) + f ′(x)(y − x) + c ‖ y − x ‖2, (7)

and adding up (6) and (7)

f(x) + f(y) ≥ f(y) + f(x) + f ′(y)(x− y) + f ′(x)(y − x) + 2c ‖ x− y ‖2 .

Thus,
f ′(x)(x− y)− f ′(y)(x− y) ≥ 2c ‖ x− y ‖2,

that is
[f ′(x)− f ′(y)](x− y) ≥ 2c ‖ x− y ‖2 .

Conversely, let x0, x1 ∈ Ω, and consider the univariate function ϕ(t) =
f(xt), where xt = x0 + t(x1 − x0), for t ∈ [0, 1]; ϕ is well defined because
xt ∈ Ω, for any t ∈ [0, 1] and is differentiable because f is, even more, ϕ′(t) =
f ′(xt)(x1 − x0), but then for 0 ≤ t′ < t ≤ 1,

ϕ′(t)− ϕ′(t′) = (f ′(xt)− f ′(xt′))(x1 − x0).

Because xt − xt′ = (t− t′)(x1 − x0),

(f ′(xt)− f ′(xt′))(x1 − x0) = (f ′(xt)− f ′(xt′))
(

xt − xt′

t− t′

)

=
1

t− t′
(f ′(xt)− f ′(xt′))(xt − xt′),

thus

ϕ′(t)− ϕ′(t′) =
1

t− t′
(f ′(xt)− f ′(xt′))(xt − xt′).
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By hypothesis, the right hand side is greater than or equal to 1

t−t′
[2c ‖ xt −

xt′ ‖
2]. Now if we set t′ = 0,

ϕ′(t)− ϕ′(0) ≥
1

t
2c ‖ xt − x0 ‖

2= 2tc ‖ x1 − x0 ‖
2 .

Therefore we can deduce

ϕ(1)− ϕ(0)− ϕ′(0) =
∫

1

0

[ϕ′(t)− ϕ′(0)]dt ≥ c ‖ x1 − x0 ‖
2,

or
f(x1)− f(x0)− f ′(x0)(x1 − x0) ≥ c ‖ x1 − x0 ‖

2,

hence
f(x1) ≥ f(x0) + f ′(x0)(x1 − x0) + c ‖ x1 − x0 ‖

2,

conclusion follows from Theorem 2.

Theorem 4 If f ′′(x0) exists for any x0 ∈ Ω, then f is strongly convex with
modulus c > 0 if and only if for all x0, x ∈ Ω

f ′′(x0)(x, x) ≥ 2c ‖ x ‖2 .

Before going over the the proof we recall that f : Ω → R and, as done at the
beginning of this section, f ′′(x0) can be thought as a bilinear transformation
from Ω× Ω to R.
Proof. For any x, y ∈ Ω, f can be written as

f(x) = f(y) + f ′(y)(x− y) +
1

2
f ′′(y + s(x− y))(x− y, x− y)

for some s ∈ (0, 1) ([7]), but then

f ′′(y + s(x− y))(x− y, x− y) = 2[f(x)− f(y)− f ′(y)(x− y)].

Now, by the hypothesis and Theorem 2, the right hand side is greater than or
equal to 2c ‖ x− y ‖2. In other words,

f ′′(y + s(x− y))(x− y, x− y) ≥ 2c ‖ x− y ‖2

or
f ′′(y + sh)(h, h) ≥ 2c ‖ h ‖2, where h = x− y.

Conversely, given x0, x ∈ Ω again we may write f as

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0 + s(x− x0))(x− x0, x− x0),

for some s ∈ (0, 1) . By hypothesis

1

2
f ′′(x0 + s(x− x0))(x− x0, x− x0) ≥ c ‖ x− x0 ‖

2

that is
f(x) ≥ f(x0) + f ′(x0)(x− x0) + c ‖ x− x0 ‖

2,

and by Theorem 2, f is strongly convex.
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