Some cardinal properties of complete linked systems with compact elements and absolute regular spaces

Ruzinazar B. Beshimov

National University of Uzbekistan named after Mirzo Ulugbek Tashkent, 100174, Uzbekistan rbeshimov@mail.ru

Farkhod G. Mukhamadiev

National University of Uzbekistan named after Mirzo Ulugbek Tashkent, 100174, Uzbekistan farhod8717@mail.ru

Abstract

In the paper, we study cardinal properties of the space of complete linked systems containing compact elements and absolute regular space.

Mathematics Subject Classification: 54B20, 54A25

Keywords: Cardinal invariant, compact, linked systems.

1 Introduction

In the paper, we study the density, net weight, π -weight, the Souslin number, weakly density of the space of complete linked systems with compact elements. We also consider absolute regular spaces. If two absolute spaces X and Y are co-absolute, they have common properties, as, for example, c(X) = c(Y), d(X) = d(Y), $\pi w(X) = \pi w(Y)$, and if one from these spaces is compact, finally compact, paracompact, locally compact, complete in the Čech sense, respectively, then the other space is the same [1].

2 Preliminary Notes

A system $\xi = \{F_{\alpha} : \alpha \in A\}$ of closed subsets of a space X is called *linked* if any two elements from ξ intersect. Any linked system can be complemented to

a maximal linked system (MLS), but this complement is, as a rule, not unique [2].

Proposition 2.1 . [2]. A linked system ξ of a space X is a MLS iff it possesses the following completeness property:

if a closed set $A \subset X$ intersects with any element form ξ , then $A \in \xi$.

Denote by λX the set of all MLS of the space X. For a closed set $A \subset X$, put

$$A^+ = \{ \xi \in \lambda X : A \in \xi \}.$$

For an open set $U \subset X$, set

$$O(U) = \{ \xi \in \lambda X : \text{ there is an } F \in \xi \text{ such that } F \subset U \}.$$

The family of subsets in the form of O(U) covers the set λX ($O(X) = \lambda X$), that's why it forms an open subbase of the topology on λX . The set λX equipped with this topology is called the superextension of X.

A.V. Ivanov [3] defined the space NX of complete linked systems (CLS) of a space X in a following way:

Definition 2.2 . [3]. A linked system M of closed subsets of a compact X is called a complete linked system (CLS) if for any closed set of X, the condition

"Any neighborhood OF of the set F consists of a set $\Phi \in M$ " implies $F \in M$.

A set NX of all complete linked systems of a compact X is called the space NX of CLS of X. This space is equipped with the topology, the open basis of which is formed by sets in the form of

 $E = O(U_1, U_2, \ldots, U_n) \langle V_1, V_2, \ldots, V_s \rangle = \{ M \in NX : \text{ for any } i = 1, 2, \ldots, n \text{ there exists } F_i \in M \text{ such that } F_i \subset U_i, \text{ and for any } j = 1, 2, \ldots, s, F \cap V_j \neq \emptyset \text{ for any } F \in M \}, \text{ where } U_1, U_2, \ldots, U_n, V_1, V_2, \ldots, V_s \text{ are nonempty open in } X \text{ sets } [3].$

Definition 2.3. [4]. Let M be a complete linked system of a compact X. The CLS M will be said a thin complete linked system if M contains at least one finite element.

We denote a thin complete linked system M by a TCLS.

Definition 2.4 . [4]. We call an N-thin kernel of a topological space X the space

$$N^*X = \{M \in NX : M \text{ is a TCLS}\}.$$

Definition 2.5 . [1]. A continuous mapping $f: X \to Y$ is called perfect if X is a Hausdorff space, f is a closed mapping and all preimages $f^{-1}(y)$ are compact spaces for each $y \in Y$.

Proposition 2.6 . [4]. Let $\mu = \{\Phi_1, \Phi_2, \dots, \Phi_n\}$ be a finite linked system of closed subsets of a space X. Then the system

$$M = \{ F \in \exp X : \exists \Phi_i \in \mu, \ \Phi_i \subset F \}$$

is a complete linked system of X.

Definition 2.7 . [1]. A continuous mapping $f: X \to Y$ of a space X onto a space Y is called irreducible if $f(A) \neq Y$ for any proper closed subset A of the space X.

Definition 2.8. [1]. A continuous mapping $f: X \to Y$ is called separated if for any $x_1 \neq x_2 \in X$, satisfying the condition $f(x_1) = f(x_2)$, there exist disjunct in X neighborhoods.

Definition 2.9 . [1]. Let X be a topological space. An extremally disconnected space qX is called an absolute of X if there exists a perfect irreducible continuous mapping $\pi_X : qX \xrightarrow{onto} X$.

Definition 2.10 . [5]. We say that the weakly density of a topological space X is equal to $\tau \geq \aleph_0$ if τ is the least cardinal number such that there is in X a π -base decomposing on τ centered systems of open sets, i.e. $B = \bigcup \{B_\alpha : \alpha \in A\}$ is a π -base where B_α is a centered system of open sets for any $\alpha \in A$, $|A| = \tau$.

The weakly density of a topological space X is denoted by wd(X). If $wd(X) = \aleph_0$, then the topological space X is called weakly separable [6].

Theorem 2.11 . [6]. Two regular spaces X and Y are co-absolute iff there exists a regular space Z and perfect irreducible mappings $p_X : Z \to X$ and $p_Y : Z \to Y$ such that $p_X(Z) = X$, $p_Y(Z) = Y$.

Proposition 2.12 . [5]. If Y is everywhere dense in X, then wd(X) = wd(Y).

3 Main Results

Obviously, any MLS ξ is a CLS, hence, $\lambda X \subset NX$.

Let's cite an example of a linked system which is a CLS and is not a MLS.

Example 3.1 . Let X = [-10, 10]. For a finite linked system $\xi = \{[0, 1], [1, 3]\}$, put $M = \{F \in \exp X : [0, 2] \subset F \text{ or } [1, 3] \subset F\}$. We show that M is a CLS, but it is not a MLS.

Suppose that the system M is not a CLS. Then there is a closed in X subset F_0 , any neighborhood OF_0 of which contains any element $F \in M$ and $F_0 \notin M$. Since $F_0 \notin M$, we have, by constructing the system M, $[0;2] \not\subset F_0$ and $[1;3] \notin F_0$. Now let's show that $[0;2] \cap F_0 \neq \emptyset$ and $[1;3] \cap F_0 \neq \emptyset$. Suppose that there exists a set $[0;2] \in \mu$ such that $[0;2] \cap F_0 = \emptyset$. By virtue of normality of the space X, there is a neighborhood OF_0 of the set F_0 such that $[0;2] \cap OF_0 = \emptyset$. By supposition, the neighborhood OF_0 contains an element $F \in M$, hence, there will be the set $[1;3] \in \mu$ such that $[1;3] \subset F \subset OF_0$, hence, $[0;2] \cap [1;3] = \emptyset$. The obtained contradiction proves that $[0;2] \cap F_0 \neq \emptyset$ and $[1;3] \cap F_0 \neq \emptyset$. Thus, we have $[0;2] \setminus F_0 \neq \emptyset$ and $[1;3] \setminus F_0 \neq \emptyset$. Take a point x_1 and x_2 from each set $[0;2] \setminus F_0 \neq \emptyset$ and $[1;3] \setminus F_0 \neq \emptyset$, respectively, then we get the set $\mu = \{x_1, x_2\}$. Obviously, the set $O'F_0 = X \setminus \mu$ is a neighborhood of F_0 , and it is clear, $O'F_0$ does not contain any element F from M, what contradicts to the fact that any neighborhood of the set F_0 contains an element from the system M. The obtained contradiction proves that the system M is a CLS of the topological space X, but it is not a MLS since $[0,2] \cap [1,3] = [1,2] \notin M$.

Definition 3.2 . Let M be a complete linked system of a topological space X. A CLS M is called a compact complete linked system if M contains at least one compact element.

We denote a compact complete linked system M by a CCLS.

Definition 3.3 . Let X be a topological space. The space

$$N_cX = \{M \in NX : M \text{ is a CCLS}\}\$$

will be said the compact kernel of X.

Definition 3.4 . Let M be a complete linked system of a topological space X. A CLS M will be said a metrizable compact complete linked system if M contains at least one metrizable compact element.

We denote a metrizable compact complete linked system M by a MCCLS.

Definition 3.5 . Let X be a topological space. A space

$$N_{cm}X = \{M \in NX : M \text{ is a MCCLS}\}\$$

will be said the metrizable compact kernel of X.

It is clear, $N^*X \subseteq N_{cm}X \subseteq N_cX \subseteq NX$ for any topological space X. Obviously, if X is a discrete space, then $N^*X = N_cX$, and $N_cX = NX$ for a compact space X.

Theorem 3.6 . Let X be a topological T_1 -space. Then:

- 1) $\pi w(N^*X) = \pi w(N_{cm}X) = \pi w(N_cX) = \pi w(X);$
- 2) $d(X) = d(N^*X) = d(N_{cm}X);$
- 3) $n\pi w(N^*X) = n\pi w(N_{cm}X) = n\pi w(X);$
- 4) If X is an infinite Tychonoff space, then

$$c(N^*X) = c(N_cX) = c(N_{cm}X) = c(NX) = Sup\{c(X^n) : n \in N\}.$$

5) If X is an infinite Tychonoff space, then

$$wd(N^*X) = wd(N_cX) = wd(N_cX) = wd(NX) \le wd(X).$$

- **Proof.** 1) In [4], it was proved that $[N^*X]_{NX} = NX$, what implies immediately $[N_{cm}X]_{NX} = [N_cX]_{NX} = NX$. It is known, π -weights of everywhere dense subsets coincide. Hence, we have $\pi w(N^*X) = \pi w(N_{cm}X) = \pi w(N_cX) = \pi w(X)$.
- 2) a) We show that $d(N_{cm}X) \leq d(X)$. Let X_0 be an everywhere dense in X subset such that $|X_0| = d(X) = \tau$. Set:

$$\exp_{\omega}(X_0, X) = \{ \Phi \in \exp X : \Phi \subset X_0 \text{ and } |\Phi| \le \omega \},$$

and

$$\Sigma(X_0, X) = \{ \mu \subset \exp(X_0, X) : \mu \text{ is a MCCLS} \}.$$

Now let $\mu \in \Sigma(X_0, X)$. Put $M_{\mu} = \{F \in \exp X : \exists \Phi \in \mu : \Phi \subset F\}$. Obviously, the set $N_{cm}(X_0, X) = \{M_{\mu} : \mu \in \Sigma(X_0, X)\}$ has the power equal to $\tau = d(X)$, and by Proposition 2.6 [4], we have $N_{cm}(X_0, X) \subset N_{cm}X$. Let's show that a set in $N_{cm}(X_0, X)$ is an everywhere dense set in $N_{cm}X$. Let

 $E = O(U_1, U_2, \dots, U_n) \langle V_1, V_2, \dots, V_s \rangle$ be arbitrary nonempty open base element in $N_{cm}X$. Recall that the system

$$S(E) = \{U_i \cap V_j : i = 1, 2, \dots, n, j = 1, 2, \dots, s\} \cup S(O)$$

of open in X subsets is called the pairwise trace of the base element E in X. Here S(O) is the pairwise trace of the element $O(U_1, U_2, \ldots, U_n)$ in X. Let $S(E) = \{W_1, W_2, \ldots, W_n\}$ be the pairwise trace of the element E in X. Since X_0 is an everywhere dense set in X, we have $X_0 \cap W_i \neq \emptyset$ where $i = 1, 2, \ldots, m$. Now take a point x_i from each intersection $X_0 \cap W_i \neq \emptyset$, then we obtain the set $\sigma = \{x_1, x_2, x_m\}$. Set $\Phi_j = \{x_j \in \sigma : x_j \in U_i\}$, $i = 1, 2, \ldots, n$. Obviously, the system $\mu = \{\Phi_1, \Phi_2, \ldots, \Phi_n\}$ is a linked system of sets closed in X, and it is clear that $\mu \in \Sigma(X_0, X)$. Hence, $M_\mu \in N(X_0, X)$. By constructing the system M_μ , $\Phi \cap V_j \neq \emptyset$ for any $F \in M_\mu$ and for each $j = 1, 2, \ldots, s$. Moreover, it is clear, $\Phi_i \subset U_i$ where $i = 1, 2, \ldots, n$. Hence, we get $M_\mu \in E$. Thus, $N_{cm}(X_0, X) \cap E \neq \emptyset$. By virtue of arbitrariness of a base element E in $N_{cm}X$, the set $N_{cm}(X_0, X)$ intersects with any set open in $N_{cm}X$. Hence, $N_{cm}(X_0, X)$ is a set everywhere dense in $N_{cm}X$. Since $|N_{cm}(X_0, X)| = |X_0| = d(X)$, we have $d(N_{cm}X) \leq d(X)$.

b) Now we show that $d(X) \leq d(N_{cm}X)$. Let $B = \{M_i : i \in \theta\}$ be a set everywhere dense in $N_{cm}X$ such that $|B| = d(N_{cm}X) = \tau$. Fix a countable set F_i from any MCCLS $M_i \in B$. Then we obtain the system $H = \{F_i : i \in \theta\}$. Put $X_0 = \cup H$. It is clear, $|X_0| = \tau$. Let's show that X_0 is everywhere dense in X. Let U be arbitrary nonempty set open in X. Then the set E = O(U)(X) is a set open in NX, hence, the set $E_{cm} = O(U)(X) \cap N_{cm}X$ is a set open in $N_{cm}X$. Then there will be at least an element $M_i \in B$ such that $M_i \in E_{cm}$, hence $F_i \cap U \neq \emptyset$, moreover $X_0 \cap U \neq \emptyset$. Thus, by virtue of arbitrariness of the set U in X, the set X_0 intersects with any set open in X, i.e. $[X_0] = X$. Therefore $d(X) \leq |X_0| = \tau = d(N_{cm}X)$. We obtain from a) and b) the equality $d(N_{cm}X) = d(X)$.

The equality $d(X) = d(N^*X) = d(N_{cm}X)$ follows from a) and b).

- 3) The proof of the equality 3) follows immediately from the equality 2).
- 4) It is known, the Souslin numbers of everywhere dense subsets are equal. It is clear, the sets $N_{cm}(X)$ and $N_c(X)$ are everywhere dense in N(X). Then $c(N^*X) = c(N_cX) = c(N_cX) = c(NX) = sup\{c(X^n) : n \in N\}$.
- 5) The equality $wd(N^*X) = wd(N_cX) = wd(N_{cm}X) = wd(NX)$ follows from Proposition 2.12 [5]. Lets' show correctness of the inequality

$$wd(NX) \le wd(X)$$
.

Let $wd(X) = \tau \geq \aleph_0$. Then $d(bX) = wd(X) = \tau$ for any compactification bX of the space X. We obtain from [4] that $d(N(bX)) \leq d(bX) = \tau$. Then $wd(NX) \leq wd(X) = \tau$.

Proposition 3.7 . Let Y is everywhere dense in X. Then N^*Y is everywhere dense in NX.

Proof. Let $E = O(U_1, U_2, \ldots, U_n) \langle V_1, V_2, \ldots, V_s \rangle$ be arbitrary nonempty open base element in NX. Consider the pairwise trace of E in X, i.e. consider the following system of subsets open in X:

$$S(E) = \{U_i \cap V_j : i = 1, 2, \dots, n, j = 1, 2, \dots, s\} \cup S(O)$$

where S(O) is the pairwise trace of the element $O(U_1, U_2, \ldots, U_n)$ in X. Let $S(E) = \{W_1, \ldots, W_p\}$ be the pairwise trace of the element E in X. Since Y is a set everywhere dense in X, we have $Y \cap W_i \neq \emptyset$ where $i = 1, 2, \ldots, p$. Fix a point x_i in each intersection in the form of $Y \cap W_i$. Then we obtain the set $\sigma = \{x_1, x_2, \ldots, x_p\}$. Set $\Phi_i = \{x_j \in \sigma : x_j \in W_i\}$ where $i = 1, 2, \ldots, n$. It is clear, the system $\mu = \{\Phi_1, \Phi_2, \ldots, \Phi_n\}$ is a linked system of the space X. Put $M_{\mu} = \{F \in \exp X : \exists \Phi_i \in \mu : \Phi_i \subset F\}$. By constructing the system M_{μ} , we have $F \cap V_j \neq \emptyset$ for any $F \in M_{\mu}$ and for each $j = 1, 2, \ldots, s$. Moreover, it is clear, $\Phi_i \subset U_i$ where $i = 1, 2, \ldots, n$. Then by Proposition 2.6 [4] we have that M_{μ} is a CLS and, it is obvious, M_{μ} is a TCLS, and $M_{\mu} \in E$. By virtue of arbitrariness of an open base element E in NX, the set N^*Y intersects with any set open in NX. Therefore N^*Y is everywhere dense in NX.

Corollary 3.8 . Let Y be everywhere dense in X. Then NY is everywhere dense in NX.

Theorem 3.9 . Let X, Y be arbitrary topological T_1 -spaces and there be a continuous, closed and irreducible mapping "onto" $f: X \to Y$. Then wd(X) = wd(Y).

Proof. At first, we show correctness of the inequality $wd(Y) \leq wd(X)$. Let $wd(X) = \tau \geq \aleph_0$, i.e. there be a π -base in X $B = \bigcup \{B_\alpha : \alpha \in A, |A| = \tau \}$ where $B_\alpha = \{U_s^\alpha : s \in A_\alpha\}$ is a centered system of open sets for each $\alpha \in A$. Let's show that $wd(Y) \leq \tau$. Put $B'_\alpha = \{f(U_s^\alpha) : s \in A_\alpha\}$ and

 $B' = \bigcup \{B'_{\alpha} : \alpha \in A\}$. Let's show that each system B'_{α} is centered for any $\alpha \in A$. Choose arbitrary finite sets $f\left(U^{\alpha}_{s_1}\right) \in B'_{\alpha}, \ldots, f\left(U^{\alpha}_{s_k}\right) \in B'_{\alpha}$. Consider preimages of these sets $f^{-1}\left(f\left(U^{\alpha}_{s_i}\right)\right), i = 1, \ldots, k$. It is clear, $U^{\alpha}_{s_i} \subset f^{-1}\left(f\left(U^{\alpha}_{s_1}\right)\right), i = 1, \ldots, k$. By virtue of centrality of the system B_{α} , we have $\bigcap_{i=1}^k U^{\alpha}_{s_i} \neq \emptyset$, hence $\emptyset \neq f\left(\bigcap_{i=1}^k U^{\alpha}_{s_i}\right) \subset \bigcap_{i=1}^k f\left(U^{\alpha}_{s_i}\right)$. It means that the system B'_{α} is centered for each $\alpha \in A$.

Let's show that the system B'_{α} is a π -net in Y. Let G be arbitrary nonempty open set in X. The system B is a π -base in X, that's why there exists $U_s^{\alpha} \in$

 $B_{\alpha} \subset B$ such that $U_s^{\alpha} \subset f^{-1}(G)$. Hence, $f(U_s^{\alpha}) \subset G$. Therefore $f(U_s^{\alpha}) \in B_{\alpha}'$. It means that $wd(Y) \leq \tau$.

Let's show the inverse, i.e. $wd(X) \leq wd(Y)$. Let $wd(Y) = \tau \geq \aleph_0$, i.e. there exists a π -base $B = \bigcup \{B_{\alpha} : \alpha \in A, |A| = \tau\}$ in Y where $B_{\alpha} = \{U_s^{\alpha} : s \in A_{\alpha}\}$ is a centered system of open sets for each $\alpha \in A$. It is clear, $f^{-1}(B_{\alpha}) =$ $\{f^{-1}(U_s^{\alpha}): s \in A_{\alpha}\}\$ is centered for each $\alpha \in A$. Really, for any finite set $U_{s_1}^{\alpha} \in A$ $B_{\alpha}, \ldots, U_{s_k}^{\alpha} \in B_{\alpha} \text{ in } Y, \text{ we have}$

$$\cap \{f^{-1}(U_{s_i}^{\alpha}) : i = 1, \dots, k\} = f^{-1}(\cap \{U_{s_i}^{\alpha} : i = 1, \dots, k\}).$$

Since B_{α} is centered, we have that $\cap \{U_{s_i}^{\alpha} : i = 1, \dots, k\} \neq \emptyset$.

Therefore $\cap \left\{ f^{-1}\left(U_{s_i}^{\alpha}\right) : i = 1, \dots, k \right\} \neq \emptyset$. Set $f^{-1}(B) = \cup \left\{ f^{-1}\left(B_{\alpha}\right) : \alpha \in A \right\}$ and show that the system $f^{-1}(B)$ is a π -base in X. Let $G \subset X$ be arbitrary nonempty open subset in X. If G = X, then for arbitrary $V \in B_{\alpha}$, $\alpha \in A$, we have $f^{-1}(V) \subset G$.

Let now $G \neq X$. Then $X \setminus G$ is a nonempty closed subset in X. By virtue of closeness and irreducibility of the mapping f, we obtain that $f(X \setminus G)$ is a closed subset in Y, and $f(X \setminus G) \neq Y$. It follows from here that $Y \setminus f(X \setminus G)$ is a nonempty open subset in Y. Therefore there is α and $U_{\alpha} \in B_{\alpha} \subset B$ such that $U_{\alpha} \subset Y \setminus f(X \setminus G)$. Hence, $f^{-1}(U_{\alpha}) \subset f^{-1}(Y \setminus f(X \setminus G)) = X \setminus f^{-1}(f(X \setminus G)) \subset$ $X \setminus (X \setminus G) = G$, i.e. $f^{-1}(U_{\alpha}) \subset G$. It means that the system $f^{-1}(B)$ is a π -base in X. Thus, $wd(X) \leq wd(Y)$.

Theorem 3.10 . Let regular spaces X and Y be co-absolute. Then

$$wd(X) = wd(Y).$$

Proof. If X and Y are co-absolute, then we consider their common absolute Z. By definition of the absolute, there are perfect irreducible mappings $p_X: Z \to X$ and $p_Y: Z \to Y$. If $wd(X) = \tau \geq \aleph_0$, then $wd(Z) \leq \tau$. By virtue of Theorem 3.9, $wd(Y) \leq \tau$. Conversely, let $wd(Y) = \tau \geq \aleph_0$. Then $wd(Z) < \tau$. By Theorem 3.9, $wd(X) < \tau$.

Corollary 3.11 . Let regular spaces X and Y be co-absolute. The space Xis weakly separable iff Y is weakly separable.

ACKNOWLEDGEMENTS. The authors is very grateful for the helpful suggestions of the referee.

References

[1] A.V.Arkhangelsky, V.I.Ponomarev, Foundations of General Topology in Examples and Exercises, Nauka, Moscow, 1974, 424 p.

- [2] V.V.Fedorchuk, V.V.Filippov, General Topology. Basic Constructions, Fizmatlit, Moscow, 2006, 332 p.
- [3] A.V.Ivanov, Cardinal-valued invariants and functors in the category of bicompacts. Doctoral thesis in physics and mathematics, Petrozavodsk, 1985, 235 p.
- [4] T.Makhmud, Cardinal-valued invariants of spaces of linked systems. Candidate thesis in physics and mathematics, Moscow State University, Moscow, 1993, 87 p.
- [5] R.B.Beshimov, Some cardinal properties of topological spaces connected with weakly density, Methods of Functional Analysis and Topology, 2004, 17-22 p.
- [6] R.B.Beshimov, A note of weakly separable spaces, Mathematica Moravica, 2002, 9-19 p.

Received: August, 2013