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Abstract

We start from the algebraic point of view on a spacetime. In par-
ticular, the base structure is not an event represented by a point on a
manifold, but the certain algebra of functions. In fact, both approaches
are dual to each other – but the second one allows to use algebraic tech-
niques. Next, due to Clarke embedding theorem, we consider the causal
boundary of a Lorentzian spacetime (Geroch–Kronheimer–Penrose con-
struction). Then, having algebraic methods already at our disposal, we
classify the possible types of singularities.
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1 Introduction

To use the algebraic approach towards the geometry of spacetime is not only
an aesthetic motivation. It comes from physical considerations on the process
of observability. For example, in [32] it is widely discussed why algebraic
approach can be fruitful. The arguments goes as follows.

First of all, one describes the surrounding reality by certain measurements.
Therefore the possessed knowledge about a physical system is a collection
of outcomes from some measuring devices. In fact, these measurements are
done in certain points x of a manifold M . Therefore, the measuring devices
(laboratory) corresponds to some family of real (or complex, or any other)
functions. Moreover, this family is an algebra (R–algebra, if real functions are
considered). Denote this family by A. In other words, a point is just a state of
the physical system and the collection of readings in the given state is just a
homomorphism (R–homomorphism) of A with values in R. (This scheme can
be generalized over arbitrary field, but to keep the clarity, we will restrict to
real numbers.)

The above scheme can be summarized in the following way: Any manifold
M is determined by certain R–algebra A of functions on this manifold, and
every point x on M corresponds to the R–algebra homomorphism x : A → R,
which assigns to every function f ∈ A its value f(x) at the point x.

The above duality does not hold for every space. If it does not hold, it
means that there are devices, which introduce no new knowledge about the
system; or at least one point is ”unobservable”. But, actually, this duality
works well for manifolds. Of course, this result is well–known and usually
connected with Gelfand and Kolmogorov [16]. Sometimes, it is called ”Milnor
and Stasheff exercise” [30].

It is worth noticing that such research topic dates back to the work of
Kähler [25] and it is embedded in the wider context of generalizing differen-
tial calculus to commutative algebras (or even more general structures). Such
research brought many powerful tools both for pure mathematics and for the-
oretical physics also [38, 3, 11, 44, 45, 37, 4]. For a deeper and fundamental
considerations see, for example, [34]. For a particular example of a cosmological
toy model, in which algebraic methods lead to surprising reinterpretations see,
for example, [23]. The causality itself on the background of non–commutative
structures is discussed, for example, in [13].

Notice also, that there has been various kind of such generalizations. For a
review of them see, for example, [1] and references therein. This paper will deal
with a particular kind of the Sikorski differential spaces. These spaces seem
to be the most straightforward objects, for which the mentioned observability
principle can be applied.

Unfortunately, there seems to be little interest in applying such methods to
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cosmology and general relativity yet. The first, who proposed to reformulate
the classical theory in such a way, that the events play no role seems to be
Geroch and his approach to quantization of general relativity [14]. Neverthe-
less, his proposition was later exploited rather by philosophers of science than
active physicists or mathematicians [27].

Despite the above facts, the Polish group gathered around Heller and Sasin
did much in this direction in 1990s (see [24] and references therein). However,
their research was mostly motivated by endeavor to find suitable category,
which would allow to describe spacetime with its singularities (in a well–known
sense arising from celebrated Penrose–Hawking theorems [22, 35, 21]). Yet,
their research direction was initiated directly from Sikorski ideas. Whereas
Mallios and his collaborators developed ”abstract differential geometry” start-
ing from the theory of Banach spaces and topological algebras. Yet, their
differential triads over topological spaces are just another endeavor to build
generalized differential calculus [28, 29].

In this paper we will discuss the applicability of methods presented in [8]
and [10] to the case of the causal boundary.

2 Differential spaces

Suppose that we are given some set M and a collection of real functions,
defined on this set. Denote the family of these functions by A0 and call them
generators. Of course, one can demand that these functions are continuous,
and as a result some topology, τA0

, is obtained on M . Now, a real function f
(which domain is M) is called a local A0–function, if for every point p ∈ M ,
there exists some neighborhood U ∈ τ and g ∈ A0, such that f |U = g|U . The
set of all possible local A0–functions on M is denoted by (A0)M . Moreover,
consider

sc(A0) := {ω ◦ (f1, . . . , fn) | ω ∈ C∞(Rn), f1, . . . , fn ∈ A0, n ∈ N} .

sc(A0) is called a superposition closure of A0.
Now, suppose that we start from having some set M and a family of real

valued functions, defined on this set (denoted by A0). Suppose, that we first
take a closure of this family with respect to the superposition closure, and
next we take a closure of a family obtained in such a way, with respect to the
localization.

In other words, consider the pair (M,A), where A = (scA0))M . (M,A)
is called a differential space and A is called a differential structure on M ,
then. If only the superposition closure is demanded (i.e. A = scA), then
(M,A) is called a predifferential space. Of course, every differential space is
predifferential, but not vice verse. It should be noticed that τA0

= τscA0
([7]).
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It is known, that if A = C∞(M), then (M,A) is just an infinitely dif-
ferentiable manifold (in a classical sense). However, the differential calculus
and the differential geometry can be constructed over an arbitrary differential
space [41, 7, 6]. For example, manifolds with boundaries are a special case of
differential spaces.

Generally, one can take an arbitrary ”weird” function (for example: non–
smooth one) and incorporate it into the initial family of generators A0. Classi-
cally, developing the differential geometry over such a space requires some spe-
cial techniques at the edges; and in ”singular” points. But differential spaces
gives unified techniques, and smooth manifolds are just a special subcases of
them.

3 Causal boundary

Let M be a spacetime, i.e. infinitely differentiable, 4–dimensional manifold
with a Lorentzian metric. For arbitrary points p, q ∈ M consider the relation

≺, defined in the following way: p ≺ q
def.
⇔ there exists a smooth future directed

timelike curve from p to q. Then, the chronological future of p is defined in
the following way: I+(p) := {q ∈ M | p ≺ q}. In a similar way, one can define
the chronological past : I−(p) := {q ∈ M | p ≻ q}.

Next, the set A ⊂ M is called a future set, if I+(A) ⊆ A. Similarly, the set
A ⊂ M is called a past set, if I−(A) ⊆ A. Moreover, if I+(A) = A, then A is
called an open future set, and if I−(A) = A, then A is called an open past set.

An open future set, which cannot be expressed as a union of two proper
subsets, both of which are open future sets, is called an indecomposable future
set, or shortly an IF. Similarly, an indecomposable past set, or shortly an IP, is
defined.

Moreover, if A is an IF and A is not I+(p) for any p ∈ M , then such A
is called a terminal indecomposable future set, or shortly a TIF. Similarly, a
terminal indecomposable past set, or shortly a TIP, is defined.

Now, consider the collection of all IFs and denote it by M̌ . Similarly,
denote all IPs by M̂ .

Now, in order to keep clarity, let us remind that a spacetime is called
strongly causal, if it is strongly causal in its every point. Strong causality in a
point p means that p has an arbitrarily small causally convex neighbourhoods.
Whereas an open set U , such that no non–spacelike curve intersects U in a
disconnected set, is called a causally convex. It is also important to stress, that
the set of points of an arbitrary spacetime, at which it is strongly causal is an
open subset of this spacetime [2]. (More on causal boundary can be found, for
example, in [15, 2, 43].)

It is known, that for an arbitrary strongly causal spacetime, IFs (IPs),
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which are not TIFs (TIPs), are in one–to–one correspondence with the points
of this spacetime [2]. (It can be false, if the spacetime is not strongly causal,
as the following example shows: Consider R× S1 with the metric ds2 = dtdθ.
Then W := {(t, θ) | t < 0} is an IP and suppose that W = I−(γ) for a
future directed and future inextendible timelike curve γ. But W is also a
chronological past of an arbitrary point from the circle {t = 0}.)

In view of the above remarks, let us consider the quotient space M ♯ :=
M̂ ∪ M̌/∼, where the relation ∼ identifies I−(p) with I+(p) for every p ∈ M .
Then, consider the map I+ : M ∋ p 7→ I+(p) ∈ M ♯, which identifies M with
a subset of M ♯. As a result, M ♯ corresponds to M together with all TIPs and
TIFs.

The next step is to identify the smallest number of points in M ♯, as neces-
sary, to obtain the Hausdorff space M∗ = M ∪ ∂cM . The ”additional” points,
∂cM , are called c–boundary or causal boundary. This topological identifica-
tion is equivalent to consider M∗ as M ♯/Rh

, where Rh is the intersection of all
equivalence relations R on M ♯, such that M ♯/R has the Hausdorff property. In
order to ensure that Rh exists, a spacetime has to be strongly causal. There-
fore, it is an important problem how to define the topology on M ♯ and which
points should be identified.

Classically, the topology considered on M ♯ is defined through the following
steps. For A ∈ M̌ , let Aint := {U ∈ M̂ | U∩A 6= ∅} and Aext := {U ∈ M̂ | U =
I−(V ) ⇒ ¬I+(V ) ⊂ A}. For B ∈ M̂ , let Bint := {U ∈ M̌ | U ∩ B 6= ∅} and
Bext := {U ∈ M̌ | U = I+(V ) ⇒ ¬I−(V ) ⊂ B}. Then, Aint, Aext, Bint and
Bext considered for all As and Bs form the subbasis of the topology of M ♯.

But it is already well–known, that:

Theorem 3.1 ([36]). The following conditions are equivalent:

• M is strongly causal.

• The Alexandrov topology induced on M agrees with the one given on the
manifold. (The basis of the Alexandrov topology is {I+(p)∩I−(p) | p, q ∈
M}.)

• The Alexandrov topology has the Hausdorff property.

The problem of the topology of causal boundary is not trivial, indeed. Some
examples and various discussions can be found, for example, in [12, 18, 26, 19,
20]. Yet, the described construction of the causal boundary has some other
drawbacks: there is, in principle, no direct information on singularities, there
emerge points at infinity, etc.

Now, let us describe the c–boundary topology construction in the differen-
tial spaces formalism. Suppose that we have a differential structure A on M
and a differential structure A♯ in M ♯. First, we should check, whether the map
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I+ : M ∋ p 7→ I+(p) ∈ M ♯ is smooth in the category of differential spaces. In
other words ([7]), whether a♯ ◦ I+ ∈ A for an arbitrary a♯ ∈ A♯. Therefore,
we see that the crucial point is in the relation between differential structures
A and A♯. The smoothness of I+ can be also seen as a commutativity of the
below diagram.

R

M ♯M

a
♯ ◦ I+

I+

a
♯

From the above diagram it is easily seen that if I+ is smooth in the category
of differential spaces, then A♯ ⊂ A.

For (M ♯,A♯) to posses the Hausdorff property, it is enough that for every
two points m,n ∈ M ♯, there exists a certain function a♯ ∈ A♯ such that
a♯(m) 6= a♯(n). Nevertheless (see, for example, [39] or [7]), even if such a
requirement is not fulfilled, then we can consider the following differential
space (M ♯/ρ,A♯/ρ), where ρ is an equivalence relation defined in the following
way a♯ ρ b♯ ⇔ ∀m∈M♯ a♯(m) = b♯(m). Therefore, we can assume that (M ♯,A♯)
has already the Hausdorff property. Of course, this information is encoded in
the differential structure A♯. Another significant role of A♯ is that it contains
the information about the topology on M ♯. In other words, it is the weakest
one, for which all functions from A♯ are continuous, i.e., τA♯ .

Now, the possible problems with the topology on the c–boundary, expressed
with a help of A♯, are clearly seen (in a similar way, as in [8]).

Proposition 3.2. If I+ is smooth in the category of differential spaces,
then exactly one of the below listed cases is possible:

• A contains significantly more functions than constant ones and A♯ con-
sists of only constant functions, i.e, A♯ ∼= R,

• A♯ ∼= A,

• A♯ 6∼= A, but (A♯)M ∼= A,

• A♯ ( A.

Yet, according to [8], the first and the last case correspond to a malicious
singularity. The second case corresponds to the c–complete spacetime, i.e., the
c–boundary is empty. The third case corresponds to the situation, in which
the c–boundary is exactly the topological boundary.
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Despite the mentioned problems with c–boundary (both in a classical and
presented in this paper approach), its main advantage (which is crucial for the
technique described in this paper) is that the causal boundary uses the causal
structure of spacetime. As an example, for a flat Minkowski spacetime the
future causal boundary is just the future lightlike infinity and timelike infinity.
For a Schwarzschild black hole, the causal boundary consists of an additional
singularity. Indeed, the causal boundary is invariant under conformal changes
of the spacetime. Notice, that, for example, b–boundary (bundle boundary) is
not invariant under conformal changes [40, 2].

According to Clarke [5]:

Theorem 3.3. The spacetime of general relativity can be embedded isomet-
rically in the pseudo–Euclidean space of signature q − 2, i.e. in E2,q+2, where
q = 46, if the spacetime is compact, or q = 87, if the spacetime is non–compact.

But, of course, the isometry guarantees that the causal structure is the
same. Therefore, instead of constructing the causal boundary of the initial
space, we will focus on the causal boundary of the isometrically embedded
subspace of the suitable pseudo–Euclidean space. Notice, that this is a subtle
argument, because specifying the causal structure and timelike geodesics de-
termines the metric, but the sole causal structure is not enough to determine
the metric structure (for a wider context, see, for example, [42]).

4 Main construction

For further considerations, it is important to define diffeomorphisms. This is
because we will identify diffeomorphic spaces. In other words we will consider
the category, in which differential spaces are the objects and below defined
diffeomorphisms are the morphisms in this category.

Definition 4.1. For two predifferential spaces (M,A) and (N,B), the map-
ping F : M → N is called smooth, if ∀f∈B f ◦ F ∈ A. F is called diffeomor-
phism, if it is bijective and both F and F−1 are smooth.

The generator embedding is a very important example of a diffeomor-
phism. Let (M,A) be a predifferential space, generated by f1, . . . , fn, i.e.
A = sc{f1, . . . , fn}, where every fi : M → R and i = 1, . . . , n. A generator
embedding is the mapping defined in the following way:

F : (M,A) → (F (M), C∞(Rn)|F (M)) ,

M ∋ x 7→ (f1(x), . . . , fn(x)) ∈ Rn .

Then (F (M), C∞(Rn)|F (M)) is called the generator image. Notice that the
generators f1, . . . , fn can be understood as coordinates.
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Now, let A be a function R–algebra (an algebra – with respect to pointwise
addition and multiplication – of real functions defined on M). Then SpecA :=
{χ : A → R | χ ∈ Hom(A,R), χ(1) = 1}. SpecA is called the spectrum of an
algebra A. As it has been discussed previously, ”good” spaces are characterized
by a suitable correspondence between M and SpecA.

Definition 4.2. Consider mappings f̂ : SpecA → R, such that f̂(χ) :=

χ(f). The weakest topology on SpecA, for which f̂ are continuous for every
f ∈ A, is called the Gelfand topology. The collection of all such mappings is
denoted by Â, i.e. Â := {f̂ : SpecA → R | f ∈ A}.

Actually, it is not hard to prove that if (M,A) is a predifferential space,

then (SpecA, Â) is also a predifferential space (sometimes called a spectral
space). Indeed, the topology on a spectral space is introduced in the same
manner as on a predifferential space. The superposition closure is an easy
calculation, using the condition f̂(χ) := χ(f). It is also not hard to check
localization closure.

Now, we can ask, whether (M,A) and (SpecA, Â) are diffeomorphic. The
answer is positive for differential spaces, but for predifferential spaces the an-
swer is more subtle. In particular:

Theorem 4.3. (M,A) and (SpecA, Â) are diffeomorphic, if and only if the
generator image is closed with respect to the (pseudo–)Euclidean metric.

Proof. The detailed proof is rather technical and quite long, therefore it is
presented in [9].

The idea is the following:
If M is closed in Rn, then it can be shown that the smooth structure is

generated just by superposition closure of projections on all n axises. In other
words, that the localizations closure can be omitted; or that a predifferential
space is a differential space in such a case.

IfM is not closed in Rn, then certain function is constructed and its Gelfand
representation (in a sense of Def. 4.2) is computed. Also, certain sequence of
diffeomorphic spaces is constructed.

Therefore the topological boundary can be expressed in terms of spectra
as SpecA\SpecAM . Notice, that this representation is unique only up to a
diffeomorphism, because no metric structure is yet defined on spectral space.
But it is possible to lead these considerations further and obtain the isometry.
The technical details will be presented elsewhere (see also [8]).

Now, we will present application of the just presented theory to the prob-
lem of a causal boundary of a spacetime. Let M be a spacetime. In other
words, it is the differential space (M,C∞(M)) with an additional structure:
a Lorentzian metric g. For sufficiently large n ∈ N, according to Th. 3.3, M
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can be isometrically embedded in Rn with pseudo–Euclidean metric. In other
words, it is embedded in the differential space (Rn, C∞(Rn)) with the standard
pseudo–Euclidean metric. Because this embedding is an isometry, then both
differential spaces have the same causal structure, and as mentioned before,
they have ”equivalent” causal boundaries.

The details can be express in the following way: Th. 3.3 guarantees the
existence of the generator embedding

F : (M,C∞(M)) → (F (M), C∞(sc{π1, . . . , πn})F (M)) ,

where πi, i = 1, . . . , n, are the projections on i-th axis. In particular, the finite
collection of functions f1, . . . , fn, where F = (f1, . . . , fn) is obtained. Clearly,
{π∗

i (fi) := fi ◦ πi | i = 1, . . . , n} are the generators of C∞(M).
Now, it is clear that ∂cM is the causal boundary of the Lorentzian manifold.

Unfortunately, we cannot assume that

∂cM ∼= ∂genM
def.
= SpecA\SpecAM ,

where A = sc{f1, . . . , fn} and AM = C∞(M), as it was done for the case of
b–boundary in [10, 8]. However, with a help of Prop. 3.2, we can switch our
consideration to the relationship between A and A♯, which induces four types
of c–boundary.
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