Solutions of the Pell Equations $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}=N$
 when $N \in\{ \pm 1, \pm 4\}$

Merve Güney
Sakarya University
Mathematics Department
Sakarya,Turkey

Abstract

Let a and b be natural number and $d=a^{2} b^{2}+2 b$. In this paper, by using continued fraction expansion of \sqrt{d}, we find fundamental solution of the equations $x^{2}-d y^{2}= \pm 1$ and we get all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 1$ in terms of generalized Fibonacci and Lucas sequences. Moreover, we find all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 4$ in terms of generalized Fibonacci and Lucas sequences.

Mathematics Subject Classification:11B37, 11B39, 11B50, 11B99, 11A55
Keywords: Diophantine Equations, Pell Equations, Continued Fraction, Generalized Fibonacci and Lucas numbers

1 Introduction

The quadratic Diophantine equation of the form $x^{2}-d y^{2}=1$ where d is a positive square-free integer is called a Pell Equation after the English mathematician John Pell. The equation $x^{2}-d y^{2}=1$ has infinitely many solutions (x, y) whereas the negative Pell equation $x^{2}-d y^{2}=-1$ does not always have a solution. Continued fraction plays an important role in solutions of the Pell equations $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$. Whether or not there exists a positive integer solution to the equation $x^{2}-d y^{2}=-1$ depends on the period length of the continued fraction expansion of \sqrt{d}. It can be seen that the equation $x^{2}-15 y^{2}=-1$ has no positive integer solutions. To find all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 1$, one first determines a fundamental solution. In this paper, after the Pell equations are described briefly, the fundamental solution to the Pell equations $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}= \pm 1$ are calculated
by means of the convergent of continued fraction of $\sqrt{a^{2} b^{2}+2 b}$. Moreover, all positive integer solutions of $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}= \pm 4$ and $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}= \pm 1$ are given in terms of the generalized Fibonacci and Lucas sequences. Especially, all positive integer solutions of the equations $x^{2}-\left(k^{2}+2\right) y^{2}= \pm 4$ and $x^{2}-\left(k^{2}+2\right) y^{2}= \pm 1$ are discovered.

Now we briefly mention the generalized Fibonacci and Lucas sequences $\left(U_{n}(k, s)\right)$ and $\left(V_{n}(k, s)\right)$. Let k and s be two nonzero integers with $k^{2}+4 s>0$. Generalized Fibonacci sequence is defined by

$$
U_{0}(k, s)=0, U_{1}(k, s)=1
$$

and

$$
U_{n+1}(k, s)=k U_{n}(k, s)+s U_{n-1}(k, s)
$$

for $n \geq 1$ and generalized Lucas sequence is defined by

$$
V_{0}(k, s)=2, V_{1}(k, s)=k
$$

and

$$
V_{n+1}(k, s)=k V_{n}(k, s)+s V_{n-1}(k, s)
$$

for $n \geq 1$, respectively. It is well known that

$$
\begin{equation*}
U_{n}(k, s)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}(k, s)=\alpha^{n}+\beta^{n} \tag{2}
\end{equation*}
$$

where $\alpha=\left(k+\sqrt{k^{2}+4 s}\right) / 2$ and $=\left(k-\sqrt{k^{2}+4 s}\right) / 2$. The above identities are known as Binet's formula. Clearly, $\alpha+\beta=k, \alpha-\beta=\sqrt{k^{2}+4 s}$, and $\alpha \beta=-s$.

For more information about generalized Fibonacci and Lucas sequences, one can consult [14],[7],[13],[9] and [10].

2 Preliminary Notes

Let d be a positive integer which is not a perfect square and N be any nonzero fixed integer. Then the equation $x^{2}-d y^{2}=N$ is known as Pell equation. For $N= \pm 1$, the equations $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$ are known as classical Pell equation. If $a^{2}-d b^{2}=N$, we say that (a, b) is a solution to the Pell equation $x^{2}-d y^{2}=N$. We use the notations (a, b) and $a+b \sqrt{d}$ interchangeably to denote solutions of the equation $x^{2}-d y^{2}=N$. Also, if a and b are both positive, we say that $a+b \sqrt{d}$ is a positive solution to the equation $x^{2}-d y^{2}=N$. Among these there is a least solution $a_{1}+b_{1} \sqrt{d}$, in
which a_{1} and b_{1} have their least positive values. Then the number $a_{1}+b_{1} \sqrt{d}$ is called the fundamental solution of the equation $x^{2}-d y^{2}=N$. Recall that if $a+b \sqrt{d}$ and $r+s \sqrt{d}$ are two solutions to the equation $x^{2}-d y^{2}=N$, then $a=r$ if and only if $b=s$, and $a+b \sqrt{d}<r+s \sqrt{d}$ if and only if $a<r$ and $b<s$.

Continued fraction plays an important role in solutions of the Pell equations $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$. Let d be a positive integer that is not a perfect square. Then there is a continued fraction expansion of \sqrt{d} such that $\sqrt{d}=\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{l-1}, 2 a_{0}}\right]$ where l is the period length and the a_{j} 's are given by the recursion formulas;

$$
\alpha_{0}=\sqrt{d}, a_{k}=\left\lfloor\alpha_{k}\right\rfloor
$$

and

$$
\alpha_{k+1}=\frac{1}{\alpha_{k}-a_{k}}, k=0,1,2,3, \ldots
$$

Recall that $a_{l}=2 a_{0}$ and $a_{l+k}=a_{k}$ for $k \geq 1$. The $n^{\text {th }}$ convergent of \sqrt{d} for $n \geq 0$ is given by

$$
\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot \frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

By means of the $k^{\text {th }}$ convergent of \sqrt{d}, we can give the fundamental solution of the equations $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$.

If we know fundamental solution of the equations $x^{2}-d y^{2}= \pm 1$ and $x^{2}-d y^{2}= \pm 4$, then we can give all positive integer solutions to these equations. For more information about Pell equation, one can consult [12] and [15].

Now we give the fundamental solution of the equations $x^{2}-d y^{2}= \pm 1$ by means of the period length of the continued fraction expansion of \sqrt{d}.

Lemma 2.1 Let l be the period length of continued fraction expansion of \sqrt{d}. If l is even, then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is given by

$$
x_{1}+y_{1} \sqrt{d}=p_{l-1}+q_{l-1} \sqrt{d}
$$

and the equation $x^{2}-d y^{2}=-1$ has no integer solutions. If l is odd, then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is given by

$$
x_{1}+y_{1} \sqrt{d}=p_{2 l-1}+q_{2 l-1} \sqrt{d}
$$

and the fundamental solution to the equation $x^{2}-d y^{2}=-1$ is given by

$$
x_{1}+y_{1} \sqrt{d}=p_{l-1}+q_{l-1} \sqrt{d} .
$$

Theorem 2.2 Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=1$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}
$$

with $n \geq 1$.
Theorem 2.3 Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=-1$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=-1$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{2 n-1}
$$

with $n \geq 1$.
Now we give the following two theorems from [15]. See also [4].
Theorem 2.4 Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=4$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=4$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(x_{1}+y_{1} \sqrt{d}\right)^{n}}{2^{n-1}}
$$

with $n \geq 1$.
Theorem 2.5 Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=-4$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=-4$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(x_{1}+y_{1} \sqrt{d}\right)^{2 n-1}}{4^{n-1}}
$$

with $n \geq 1$.
From now on, we will assume that k, a, b are positive integers. We give continued fraction expansion of \sqrt{d} for $d=a^{2} b^{2}+2 b$ and $d=a^{2} b^{2}+b$. The proofs of the following two theorems are easy and they can be found many text books on number theory as an exercise.

Theorem 2.6 Let $d=a^{2} b^{2}+2 b$. Then

$$
\sqrt{d}=[a b, \overline{a, 2 a b}] .
$$

Theorem 2.7 Let $d=a^{2} b^{2}+b$. If $b \neq 1$ then

$$
\sqrt{d}=[a b, \overline{2 a, 2 a b}]
$$

and if $b=1$ then

$$
\sqrt{d}=[a, \overline{2 a}] .
$$

Corollary 2.8 Let $d=a^{2} b^{2}+2 b$. Then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is

$$
x_{1}+y_{1} \sqrt{d}=a^{2} b+1+a \sqrt{d},
$$

and the equation $x^{2}-d y^{2}=-1$ has no positive integer solutions.
Proof The continued fraction expansion of $\sqrt{d}=a^{2} b^{2}+2 b$ is 2 by Theorem 2.6. Therefore the fundamental solution to the equation $x^{2}-d y^{2}=1$ is $p_{1}+q_{1} \sqrt{d}$ by Lemma 2.1. Since

$$
\frac{p_{1}}{q_{1}}=a b+\frac{1}{a}=\frac{a^{2} b+1}{a},
$$

the proof follows. Moreover, the period length of continued fraction expansion of $\sqrt{a^{2} b^{2}+2 b}$ is always even by Theorem 2.6. Thus by Lemma 2.1, it follows that the equation $x^{2}-d y^{2}=-1$ has no positive integer solutions

Corollary 2.9 Let $d=a^{2} b^{2}+b$. Then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is

$$
x_{1}+y_{1} \sqrt{d}=2 a^{2} b+1+2 a \sqrt{d} .
$$

Moreover, when $b \neq 1$, the equation $x^{2}-d y^{2}=-1$ has no positive integer solutions and when $b=1$, the fundamental solution to the equation $x^{2}-d y^{2}=$ -1 is $x_{1}+y_{1} \sqrt{d}=a+\sqrt{d}$.

Proof When $b \neq 1$, the period length of the continued fraction expansion of $\sqrt{a^{2} b^{2}+b}$ is 2 by Theorem 2.7. Therefore the fundamental solution to the equation $x^{2}-d y^{2}=1$ is $p_{1}+q_{1} \sqrt{d}$ by Lemma 2.1. Since

$$
\frac{p_{1}}{q_{1}}=a b+\frac{1}{2 a}=\frac{2 a^{2} b+1}{2 a},
$$

the proof follows. When $b=1$, the period length of the continued fraction expansion of $\sqrt{a^{2}+1}$ is 1 by Theorem 2.7. Therefore the fundamental solution to the equation $x^{2}-d y^{2}=1$ is $p_{1}+q_{1} \sqrt{d}$ by Lemma 2.1. Since

$$
\frac{p_{1}}{q_{1}}=a+\frac{1}{2 a}=\frac{2 a^{2}+1}{2 a},
$$

the proof follows. Moreover, when $b \neq 1$, the period length of continued fraction expansion of $\sqrt{a^{2} b^{2}+b}$ is always even by Theorem 2.7. Thus, by Lemma 2.1, it follows that the equation $x^{2}-d y^{2}=-1$ has no positive integer solutions. When $b=1$, it can be seen that the fundamental solution to the equation $x^{2}-d y^{2}=-1$ is $a+\sqrt{d}$ by Lemma 2.1 and Theorem 2.7.

3 Main Results

Theorem 3.1 Let $d=a^{2} b^{2}+2 b$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by

$$
(x, y)=\left(V_{n}\left(2 a^{2} b+2,-1\right) / 2, a U_{n}\left(2 a^{2} b+2,-1\right)\right)
$$

with $n \geq 1$.
Proof By Corollary 2.8 and Theorem 2.2, all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\left(a^{2} b+1+a \sqrt{d}\right)^{n}
$$

with $n \geq 1$. Let $\alpha=a^{2} b+1+a \sqrt{d}$ and $\beta=a^{2} b+1-a \sqrt{d}$. Then $\alpha+\beta=2 a^{2} b+2$, $\alpha-\beta=2 a \sqrt{d}$ and $\alpha \beta=1$. Therefore

$$
x_{n}+y_{n} \sqrt{d}=\alpha^{n}
$$

and

$$
x_{n}-y_{n} \sqrt{d}=\beta^{n} .
$$

Thus it follows that

$$
x_{n}=\frac{\alpha^{n}+\beta^{n}}{2}=\frac{V_{n}\left(2 a^{2} b+2,-1\right)}{2}
$$

and

$$
y_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{d}}=a \frac{\alpha^{n}-\beta^{n}}{2 a \sqrt{d}}=a \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=a U_{n}\left(2 a^{2} b+2,-1\right)
$$

by (1) and (2). Then the proof follows. Now we give all positive integer solutions of the equations $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}= \pm 4$. Before giving all solutions of the equations $x^{2}-d y^{2}= \pm 4$, we give the following theorems from [5].

Theorem 3.2 Let $d \equiv 2(\bmod 4)$ or $d \equiv 3(\bmod 4)$. Then the equation $x^{2}-$ $d y^{2}=-4$ has positive integer solution if and only if the equation $x^{2}-d y^{2}=-1$ has positive integer solutions.

Theorem 3.3 Let $d \equiv 0(\bmod 4)$. If fundamental solution to the equation $x^{2}-(d / 4) y^{2}=1$ is $x_{1}+y_{1} \sqrt{d / 4}$, then fundamental solution to the equation $x^{2}-d y^{2}=4$ is $\left(2 x_{1}, y_{1}\right)$.

Theorem 3.4 Let $d \equiv 1(\bmod 4)$ or $d \equiv 2(\bmod 4)$ or $d \equiv 3(\bmod 4) 4$. If fundamental solution to the equation $x^{2}-d y^{2}=1$ is $x_{1}+y_{1} \sqrt{d}$, then fundamental solution to the equation $x^{2}-d y^{2}=4$ is $\left(2 x_{1}, 2 y_{1}\right)$.

Theorem 3.5 Let $d=a^{2} b^{2}+2 b$. Then the fundamental solution to the equation $x^{2}-d y^{2}=4$ is

$$
x_{1}+y_{1} \sqrt{d}=2\left(a^{2} b+1\right)+2 a \sqrt{d} .
$$

Proof Assume that b is even. Then $d \equiv 0(\bmod 4)$. Let $b=2 k$ for some $k \in Z$. Then $d / 4=a^{2} k^{2}+k$. Thus, by Corollary 2.9, it follows that the fundamental solution to the fundamental solution to the equation $x^{2}-\left(a^{2} k^{2}+\right.$ k) $y^{2}=1$ is $\left(2 a^{2} k+1,2 a\right)$. Then, by Theorem 3.3, the fundamental solution to the equation $x^{2}-d y^{2}=4$ is $\left(4 a^{2} k+2,2 a\right)$. Since $b=2 k$, the fundamental solution to the equation $x^{2}-d y^{2}=4$ is $2 a^{2} b+2+2 a \sqrt{d}$. Assume that b is odd. If a is odd, then $d \equiv 3(\bmod 4)$ and if a is even, then $d \equiv 2(\bmod 4)$. Thus, by Theorem 3.4 and Corollary 2.8, it follows that the fundamental solution to the equation $x^{2}-d y^{2}=-4$ is $\left(2\left(a^{2} b+1\right), 2 a\right)$. Then the proof follows.

Theorem 3.6 Let $d=a^{2} b^{2}+2 b$. Then the equation $x^{2}-d y^{2}=-4$ has no positive integer solutions.

Proof Assume that b is odd. If a is odd, then $d \equiv 3(\bmod 4)$ and if a is even, then $d \equiv 2(\bmod 4)$. Thus, by Theorem 3.2 and Corollary 2.8, it follows that the equation $x^{2}-d y^{2}=-4$ has no positive integer solutions. Assume that b is even and $m^{2}-d n^{2}=-4$ for some positive integer m and n. Then d is even and therefore m is even. Let $b=2 k$. Then

$$
m^{2}-\left(4 a^{2} k^{2}+4 k\right) n^{2}=-4
$$

and this implies that

$$
(m / 2)^{2}-\left(a^{2} k^{2}+k\right) n^{2}=-1
$$

This is impossible by Corollary 2.9. Then the proof follows.
Theorem 3.7 All positive integer solutions of the equation $x^{2}-\left(a^{2} b^{2}+\right.$ 2b) $y^{2}=4$ are given by

$$
(x, y)=\left(V_{n}\left(2 a^{2} b+2,-1\right), 2 a b U_{n}\left(2 a^{2} b+2,-1\right)\right)
$$

with $n \geq 1$.
Proof By Theorem 3.5, the fundamental solution to the equation $x^{2}-$ $\left(a^{2} b^{2}+2 b\right) y^{2}=4$ is $2 a^{2} b+2+2 a \sqrt{a^{2} b^{2}+2 b}$. Therefore, by Theorem 2.4, all positive integer solutions of the equation $x^{2}-d y^{2}=4$ are given by
$x_{n}+y_{n} \sqrt{d}=\frac{\left(2 a^{2} b+2+2 a \sqrt{a^{2} b^{2}+2 b}\right)^{n}}{2^{n-1}}=2\left(\left(2 a^{2} b+2+2 a \sqrt{a^{2} b^{2}+2 b}\right) / 2\right)^{n}$.

Let $\alpha=\left(2 a^{2} b+2+2 a \sqrt{a^{2} b^{2}+2 b}\right) / 2$ and $\beta=\left(2 a^{2} b+2-2 a \sqrt{a^{2} b^{2}+2 b}\right) / 2$. Then $\alpha+\beta=2 a^{2} b+2, \alpha-\beta=2 a \sqrt{d}$ and $\alpha \beta=1$. Thus it is seen that

$$
x_{n}+y_{n} \sqrt{d}=2 \alpha^{n}
$$

and

$$
x_{n}-y_{n} \sqrt{d}=2 \beta^{n} .
$$

Therefore we get

$$
x_{n}=\alpha^{n}+\beta^{n}=V_{n}\left(2 a^{2} b+2,-1\right)
$$

and

$$
y_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{d}}=2 a \frac{\alpha^{n}-\beta^{n}}{2 a \sqrt{d}}=2 a \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=2 a U_{n}\left(2 a^{2} b+2,-1\right)
$$

by (1) and (2). Then the proof follows.
Let $a=k$ and $b=1$. Then $d=a^{2} b^{2}+2 b=k^{2}+2$. Thus we can give the following corollaries.

Corollary 3.8 Let $d=k^{2}+2$. Then

$$
\sqrt{k^{2}+2}=[k, \overline{k, 2 k}] .
$$

Corollary 3.9 Let $d=k^{2}+2$. Then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is

$$
x_{1}+y_{1} \sqrt{d}=k^{2}+1+k \sqrt{d} .
$$

and the equation $x^{2}-d y^{2}=-1$ has no positive integer solutions.
Corollary 3.10 Let $d=k^{2}+2$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by

$$
(x, y)=\left(V_{n}\left(2 k^{2}+2,-1\right) / 2, k U_{n}\left(2 k^{2}+2,-1\right)\right)
$$

with $n \geq 1$.
Corollary 3.11 All positive integer solutions of the equation $x^{2}-\left(k^{2}+\right.$ 2) $y^{2}=4$ are given by

$$
(x, y)=\left(V_{n}\left(2 k^{2}+2,-1\right), 2 k U_{n}\left(2 k^{2}+2,-1\right)\right)
$$

with $n \geq 1$ and the equation $x^{2}-\left(k^{2}+2\right) y^{2}=-4$ has no positive integer solution.

ACKNOWLEDGEMENTS. I would like to thank my advisor Professor Refik Keskin for helping my work.

Solutions of the Pell Equations $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}=N$ when $N \in\{ \pm 1, \pm 4\}$

References

[1] Adler, A., Coury, J. E., The Theory of Numbers: A Text and Source Book of Problems, Jones and Bartlett Publishers, Boston, MA, 1995.
[2] Redmond, D., Number Theory: An Introduction, Markel Dekker, Inc, 1996.
[3] Koninck, J., Mercier, A, 1001 Problems in Classical Number Theory, American Mathematical Society, 2007.
[4] Robertson, J. P., Solving the generalized Pell equation $x^{2}-D y^{2}=N$, http://hometown.aol.com/jpr2718/pell.pdf, May 2003. (Description of LMM Algorithm for solving Pell's equation).
[5] Robetson, J. P., On D so that $x^{2}-D y^{2}$ represents m and $-m$ and not -1 , Acta Mathematica Academia Paedogogocae Nyiregyhaziensis, 25 (2009), 155-164.
[6] Jones, J. P., Representation of Solutions of Pell Equations Using Lucas Sequences, Acta Academia Pead. Agr., Sectio Mathematicae 30 (2003), 75-86.
[7] Kalman, D., Mena R., The Fibonacci Numbers exposed, Mathematics Magazine 76(2003), 167-181.
[8] Keskin, R., Solutions of some quadratic Diophantine equations, Computers and Mathematics with Applications, 60 (2010), 2225-2230.
[9] McDaniel, W.L., Diophantine Representation of Lucas Sequences, The Fibonacci Quarterly 33 (1995), 58-63.
[10] Melham, R., Conics Which Characterize Certain Lucas Sequences, The Fibonacci Quarterly 35 (1997), 248-251.
[11] Jacobson, M. J., Williams, H. C., Solving the Pell Equation, Springer, 2006.
[12] Nagell, T., Introduction to Number Theory, Chelsea Publishing Company, New York, 1981.
[13] Ribenboim, P., My Numbers, My Friends, Springer-Verlag New York, Inc., 2000.
[14] Robinowitz, S., Algorithmic Manipulation of Fibonacci Identities, in: Application of Fibonacci Numbers, vol. 6, Kluwer Academic Pub., Dordrect, The Netherlands, 1996, pp. 389-408.
[15] LeVeque, J. W., Topics in Number Theory, Volume 1 and 2, Dover Publications 2002.
[16] Ismail, M. E. H., One Parameter Generalizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly 46-47 (2009), 167-180.
[17] Zhiwei, S., Singlefold Diophantine Representation of the Sequence $u_{0}=$ $0, u_{1}=1$ and $u_{n+2}=m u_{n+1}+u_{n}$, Pure and Applied Logic, Beijing Univ. Press, Beijing, 97-101, 1992.
[18] Keskin, R., Güney, M., Positive Integer Solutions of the Pell Equation $x^{2}-d y^{2}=N, d \in k^{2} \pm 4, k^{2} \pm 1$ and $N \in \pm 1, \pm 4$ (submitted).

Received: August, 2012

