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Abstract

Let a and b be natural number and d = a2b2 + 2b. In this paper, by
using continued fraction expansion of

√
d, we find fundamental solution

of the equations x2 − dy2 = ±1 and we get all positive integer solutions
of the equations x2 − dy2 = ±1 in terms of generalized Fibonacci and
Lucas sequences. Moreover, we find all positive integer solutions of the
equations x2 − dy2 = ±4 in terms of generalized Fibonacci and Lucas
sequences.
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1 Introduction

The quadratic Diophantine equation of the form x2 − dy2 = 1 where d is a
positive square-free integer is called a Pell Equation after the English mathe-
matician John Pell. The equation x2 − dy2 = 1 has infinitely many solutions
(x, y) whereas the negative Pell equation x2 − dy2 = −1 does not always have
a solution. Continued fraction plays an important role in solutions of the Pell
equations x2−dy2 = 1 and x2−dy2 = −1. Whether or not there exists a posi-
tive integer solution to the equation x2−dy2 = −1 depends on the period length
of the continued fraction expansion of

√
d. It can be seen that the equation

x2 − 15y2 = −1 has no positive integer solutions. To find all positive integer
solutions of the equations x2 − dy2 = ±1, one first determines a fundamental
solution. In this paper, after the Pell equations are described briefly, the fun-
damental solution to the Pell equations x2− (a2b2+2b)y2 = ±1 are calculated



630 Merve Güney

by means of the convergent of continued fraction of
√
a2b2 + 2b. Moreover, all

positive integer solutions of x2−(a2b2+2b)y2 = ±4 and x2−(a2b2+2b)y2 = ±1
are given in terms of the generalized Fibonacci and Lucas sequences. Espe-
cially, all positive integer solutions of the equations x2 − (k2 + 2)y2 = ±4 and
x2 − (k2 + 2)y2 = ±1 are discovered.

Now we briefly mention the generalized Fibonacci and Lucas sequences
(Un(k, s)) and (Vn(k, s)). Let k and s be two nonzero integers with k2+4s > 0.
Generalized Fibonacci sequence is defined by

U0(k, s) = 0, U1(k, s) = 1

and
Un+1(k, s) = kUn(k, s) + sUn−1(k, s)

for n ≥ 1 and generalized Lucas sequence is defined by

V0(k, s) = 2, V1(k, s) = k

and
Vn+1(k, s) = kVn(k, s) + sVn−1(k, s)

for n ≥ 1, respectively. It is well known that

Un(k, s) =
αn − βn

α− β
(1)

and
Vn(k, s) = αn + βn (2)

where α = (k +
√
k2 + 4s)/2 and = (k −

√
k2 + 4s)/2. The above identities

are known as Binet’s formula. Clearly, α + β = k, α − β =
√
k2 + 4s, and

αβ = −s.
For more information about generalized Fibonacci and Lucas sequences,

one can consult [14],[7],[13],[9] and [10].

2 Preliminary Notes

Let d be a positive integer which is not a perfect square and N be any nonzero
fixed integer. Then the equation x2 − dy2 = N is known as Pell equation.
For N = ±1, the equations x2 − dy2 = 1 and x2 − dy2 = −1 are known as
classical Pell equation. If a2 − db2 = N , we say that (a, b) is a solution to
the Pell equation x2 − dy2 = N. We use the notations (a, b) and a + b

√
d

interchangeably to denote solutions of the equation x2 − dy2 = N. Also, if
a and b are both positive, we say that a + b

√
d is a positive solution to the

equation x2 − dy2 = N. Among these there is a least solution a1 + b1
√
d, in



Solutions of the Pell Equations x2 − (a2b2 + 2b)y2 = N when N ∈ {±1,±4} 631

which a1 and b1 have their least positive values. Then the number a1 + b1
√
d

is called the fundamental solution of the equation x2 − dy2 = N. Recall that
if a + b

√
d and r + s

√
d are two solutions to the equation x2 − dy2 = N, then

a = r if and only if b = s, and a + b
√
d < r + s

√
d if and only if a < r and

b < s.
Continued fraction plays an important role in solutions of the Pell equations

x2 − dy2 = 1 and x2 − dy2 = −1. Let d be a positive integer that is not a
perfect square. Then there is a continued fraction expansion of

√
d such that√

d = [a0, a1, a2, ..., al−1, 2a0] where l is the period length and the aj ’s are given
by the recursion formulas;

α0 =
√
d, ak = ⌊αk⌋

and

αk+1 =
1

αk − ak
, k = 0, 1, 2, 3, ...

Recall that al = 2a0 and al+k = ak for k ≥ 1. The nth convergent of
√
d for

n ≥ 0 is given by

pn
qn

= [a0, a1, ..., an] = a0 +
1

a1 +
1

a2+
1

... 1

a
n−1+

1
an

.

By means of the kth convergent of
√
d, we can give the fundamental solution

of the equations x2 − dy2 = 1 and x2 − dy2 = −1.
If we know fundamental solution of the equations x2 − dy2 = ±1 and

x2−dy2 = ±4, then we can give all positive integer solutions to these equations.
For more information about Pell equation, one can consult [12] and [15].

Now we give the fundamental solution of the equations x2 − dy2 = ±1 by
means of the period length of the continued fraction expansion of

√
d.

Lemma 2.1 Let l be the period length of continued fraction expansion of√
d. If l is even, then the fundamental solution to the equation x2 − dy2 = 1

is given by

x1 + y1
√
d = pl−1 + ql−1

√
d

and the equation x2 − dy2 = −1 has no integer solutions. If l is odd, then the

fundamental solution to the equation x2 − dy2 = 1 is given by

x1 + y1
√
d = p2l−1 + q2l−1

√
d

and the fundamental solution to the equation x2 − dy2 = −1 is given by

x1 + y1
√
d = pl−1 + ql−1

√
d.
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Theorem 2.2 Let x1 + y1
√
d be the fundamental solution to the equation

x2 − dy2 = 1. Then all positive integer solutions of the equation x2 − dy2 = 1
are given by

xn + yn
√
d = (x1 + y1

√
d)n

with n ≥ 1.

Theorem 2.3 Let x1 + y1
√
d be the fundamental solution to the equation

x2−dy2 = −1. Then all positive integer solutions of the equation x2−dy2 = −1
are given by

xn + yn
√
d = (x1 + y1

√
d)2n−1

with n ≥ 1.

Now we give the following two theorems from [15]. See also [4].

Theorem 2.4 Let x1 + y1
√
d be the fundamental solution to the equation

x2 − dy2 = 4. Then all positive integer solutions of the equation x2 − dy2 = 4
are given by

xn + yn
√
d =

(x1 + y1
√
d)n

2n−1

with n ≥ 1.

Theorem 2.5 Let x1 + y1
√
d be the fundamental solution to the equation

x2−dy2 = −4. Then all positive integer solutions of the equation x2−dy2 = −4
are given by

xn + yn
√
d =

(x1 + y1
√
d)2n−1

4n−1

with n ≥ 1.

From now on, we will assume that k, a, b are positive integers. We give
continued fraction expansion of

√
d for d = a2b2 + 2b and d = a2b2 + b. The

proofs of the following two theorems are easy and they can be found many
text books on number theory as an exercise.

Theorem 2.6 Let d = a2b2 + 2b. Then

√
d = [ab, a, 2ab].

Theorem 2.7 Let d = a2b2 + b. If b 6= 1 then

√
d = [ab, 2a, 2ab]

and if b = 1 then √
d = [a, 2a].
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Corollary 2.8 Let d = a2b2 + 2b. Then the fundamental solution to the

equation x2 − dy2 = 1 is

x1 + y1
√
d = a2b+ 1 + a

√
d,

and the equation x2 − dy2 = −1 has no positive integer solutions.

Proof The continued fraction expansion of
√
d = a2b2 + 2b is 2 by Theorem

2.6. Therefore the fundamental solution to the equation x2 − dy2 = 1 is
p1 + q1

√
d by Lemma 2.1. Since

p1
q1

= ab+
1

a
=

a2b+ 1

a
,

the proof follows. Moreover, the period length of continued fraction expansion
of

√
a2b2 + 2b is always even by Theorem 2.6. Thus by Lemma 2.1, it follows

that the equation x2 − dy2 = −1 has no positive integer solutions

Corollary 2.9 Let d = a2b2 + b. Then the fundamental solution to the

equation x2 − dy2 = 1 is

x1 + y1
√
d = 2a2b+ 1 + 2a

√
d.

Moreover, when b 6= 1, the equation x2 − dy2 = −1 has no positive integer

solutions and when b = 1, the fundamental solution to the equation x2−dy2 =
−1 is x1 + y1

√
d = a+

√
d.

Proof When b 6= 1, the period length of the continued fraction expansion
of

√
a2b2 + b is 2 by Theorem 2.7. Therefore the fundamental solution to the

equation x2 − dy2 = 1 is p1 + q1
√
d by Lemma 2.1. Since

p1
q1

= ab+
1

2a
=

2a2b+ 1

2a
,

the proof follows. When b = 1, the period length of the continued fraction
expansion of

√
a2 + 1 is 1 by Theorem 2.7. Therefore the fundamental solution

to the equation x2 − dy2 = 1 is p1 + q1
√
d by Lemma 2.1. Since

p1
q1

= a+
1

2a
=

2a2 + 1

2a
,

the proof follows. Moreover, when b 6= 1, the period length of continued
fraction expansion of

√
a2b2 + b is always even by Theorem 2.7. Thus, by

Lemma 2.1, it follows that the equation x2 − dy2 = −1 has no positive integer
solutions. When b = 1, it can be seen that the fundamental solution to the
equation x2 − dy2 = −1 is a+

√
d by Lemma 2.1 and Theorem 2.7.
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3 Main Results

Theorem 3.1 Let d = a2b2 + 2b. Then all positive integer solutions of the

equation x2 − dy2 = 1 are given by

(x, y) = (Vn(2a
2b+ 2,−1)/2, aUn(2a

2b+ 2,−1))

with n ≥ 1.

Proof By Corollary 2.8 and Theorem 2.2, all positive integer solutions of
the equation x2 − dy2 = 1 are given by

xn + yn
√
d = (a2b+ 1 + a

√
d)n

with n ≥ 1. Let α = a2b+1+a
√
d and β = a2b+1−a

√
d. Then α+β = 2a2b+2,

α− β = 2a
√
d and αβ = 1. Therefore

xn + yn
√
d = αn

and
xn − yn

√
d = βn.

Thus it follows that

xn =
αn + βn

2
=

Vn(2a
2b+ 2,−1)

2

and

yn =
αn − βn

2
√
d

= a
αn − βn

2a
√
d

= a
αn − βn

α− β
= aUn(2a

2b+ 2,−1)

by (1) and (2). Then the proof follows. Now we give all positive integer
solutions of the equations x2 − (a2b2 + 2b)y2 = ±4. Before giving all solutions
of the equations x2 − dy2 = ±4, we give the following theorems from [5].

Theorem 3.2 Let d ≡ 2(mod4) or d ≡ 3(mod4). Then the equation x2 −
dy2 = −4 has positive integer solution if and only if the equation x2−dy2 = −1
has positive integer solutions.

Theorem 3.3 Let d ≡ 0(mod4). If fundamental solution to the equation

x2 − (d/4)y2 = 1 is x1 + y1
√

d/4, then fundamental solution to the equation

x2 − dy2 = 4 is (2x1, y1).

Theorem 3.4 Let d ≡ 1(mod4) or d ≡ 2(mod4) or d ≡ 3(mod4)4. If fun-

damental solution to the equation x2−dy2 = 1 is x1+y1
√
d, then fundamental

solution to the equation x2 − dy2 = 4 is (2x1, 2y1).
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Theorem 3.5 Let d = a2b2 + 2b. Then the fundamental solution to the

equation x2 − dy2 = 4 is

x1 + y1
√
d = 2(a2b+ 1) + 2a

√
d.

Proof Assume that b is even. Then d ≡ 0(mod4). Let b = 2k for some
k ∈ Z. Then d/4 = a2k2 + k. Thus, by Corollary 2.9, it follows that the
fundamental solution to the fundamental solution to the equation x2− (a2k2+
k)y2 = 1 is (2a2k + 1, 2a). Then, by Theorem 3.3, the fundamental solution
to the equation x2 − dy2 = 4 is (4a2k + 2, 2a). Since b = 2k, the fundamental
solution to the equation x2 − dy2 = 4 is 2a2b + 2 + 2a

√
d. Assume that b is

odd. If a is odd, then d ≡ 3(mod4) and if a is even, then d ≡ 2(mod4). Thus,
by Theorem 3.4 and Corollary 2.8, it follows that the fundamental solution to
the equation x2 − dy2 = −4 is (2(a2b+ 1), 2a). Then the proof follows.

Theorem 3.6 Let d = a2b2 + 2b. Then the equation x2 − dy2 = −4 has no

positive integer solutions.

Proof Assume that b is odd. If a is odd, then d ≡ 3(mod4) and if a is
even, then d ≡ 2(mod4). Thus, by Theorem 3.2 and Corollary 2.8, it follows
that the equation x2 − dy2 = −4 has no positive integer solutions. Assume
that b is even and m2 − dn2 = −4 for some positive integer m and n. Then d
is even and therefore m is even. Let b = 2k. Then

m2 − (4a2k2 + 4k)n2 = −4

and this implies that

(m/2)2 − (a2k2 + k)n2 = −1.

This is impossible by Corollary 2.9. Then the proof follows.

Theorem 3.7 All positive integer solutions of the equation x2 − (a2b2 +
2b)y2 = 4 are given by

(x, y) = (Vn(2a
2b+ 2,−1), 2abUn(2a

2b+ 2,−1))

with n ≥ 1.

Proof By Theorem 3.5, the fundamental solution to the equation x2 −
(a2b2 + 2b)y2 = 4 is 2a2b + 2 + 2a

√
a2b2 + 2b. Therefore, by Theorem 2.4, all

positive integer solutions of the equation x2 − dy2 = 4 are given by

xn + yn
√
d =

(2a2b+ 2 + 2a
√
a2b2 + 2b)n

2n−1
= 2((2a2b+ 2 + 2a

√
a2b2 + 2b)/2)n.
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Let α = (2a2b + 2 + 2a
√
a2b2 + 2b)/2 and β = (2a2b + 2 − 2a

√
a2b2 + 2b)/2.

Then α + β = 2a2b+ 2, α− β = 2a
√
d and αβ = 1. Thus it is seen that

xn + yn
√
d = 2αn

and
xn − yn

√
d = 2βn.

Therefore we get
xn = αn + βn = Vn(2a

2b+ 2,−1)

and

yn =
αn − βn

√
d

= 2a
αn − βn

2a
√
d

= 2a
αn − βn

α− β
= 2aUn(2a

2b+ 2,−1)

by (1) and (2). Then the proof follows.
Let a = k and b = 1. Then d = a2b2 + 2b = k2 + 2. Thus we can give the

following corollaries.

Corollary 3.8 Let d = k2 + 2. Then

√
k2 + 2 = [k, k, 2k].

Corollary 3.9 Let d = k2 +2. Then the fundamental solution to the equa-

tion x2 − dy2 = 1 is

x1 + y1
√
d = k2 + 1 + k

√
d.

and the equation x2 − dy2 = −1 has no positive integer solutions.

Corollary 3.10 Let d = k2 + 2. Then all positive integer solutions of the

equation x2 − dy2 = 1 are given by

(x, y) = (Vn(2k
2 + 2,−1)/2, kUn(2k

2 + 2,−1))

with n ≥ 1.

Corollary 3.11 All positive integer solutions of the equation x2 − (k2 +
2)y2 = 4 are given by

(x, y) = (Vn(2k
2 + 2,−1), 2kUn(2k

2 + 2,−1))

with n ≥ 1 and the equation x2 − (k2 + 2)y2 = −4 has no positive integer

solution.
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