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Abstract

In this paper, we mainly study the blow-up of classical solutions to
one-dimensional compressible Euler equations with source term. We
discussed separately the cases of source term with Riemann invariants
and Riemann invariants function. The method we adopted here is to
reduce the system to a diagonal form system by introducing the Rie-
mann invariant. Then, we proved the solution blow-up in a finite time
when the initial data satisfy certain conditions.
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1 Introduction

We are interested in the blow-up of classical solutions to the Cauchy prob-
lem of one-dimensional compressible Euler equations

ρt + (ρu)x = 0,

ut + uux +
1

ρ
px = 0,

ρ|t=0 = ρ0(x), u|t=0 = u0(x),

(1.1)
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where x is the spatial variable, t ∈ R+ = [0,∞) is the time. u stands for the
velocity of the gas in the x direction. ρ, p denote the density and pressure,
respectively. Besides, p = Kργ (constants K > 0, γ > 1), ρ0(x) > ρ > 0 (ρ is
a positive constant), ρ0(x) ∈ C1(R), u0(x) ∈ C1(R). We study the singularity
formation of compressible Euler equations (1.1) with the source term of both
Riemann invariants and Riemann invariants function.

Before proceeding, we briefly review some previous results of singularity
formation for compressible Euler equations (1.1). In the case of one dimension,
the relativistic methods have been treated extensively. [5, 6, 13] obtained that
no matter how small and smooth the initial value is, the solution of (1.1) will
blow-up in finite time. The blow-up for compressible Euler equations under
Lagrangian coordinates has studied by [1]. For more information about this
model, we can refer to the review [3, 4]. In the case of more than one space
dimension, the earlier study was [12], in this paper, author used the method
via certain averaged quantities to prove the formation of singularities in three-
dimensional compressible Euler equations. Besides, [8,10,14] and [2,11] used a
similar approach to obtain other formation of singularity theorem for classical
fluids and relativistic fluids, respectively. [9] studied the blow-up of smooth
solutions for the relativistic Euler equations. But none of above studied the
singularity formation of compressible Euler equations with the source term like
our paper does.

2 Main Results

To our end, we first introduce the system of compressible Euler equations
with the source term of Riemann invariants

ρt + (ρu)x = 0,

ut + uux +
1

ρ
px = u− 2c

γ − 1
,

ρ|t=0 = ρ0(x), u|t=0 = u0(x),

(2.1)

where ρ, u, p denote the same thing as above, define c2 =
dp

dρ
. We introduce

the Riemann invariant w = u− 2c

γ − 1
, z = u+

2c

γ − 1
, w|t=0 = w0, z|t=0 = z0.

Remark 2.1 When the system (1.1) has the source term of Riemann in-

variants, we only study the case where the source term is w = u − 2c

γ − 1
. In

the case of z = u +
2c

γ − 1
, the research method is the same, we won’t go into

details here.
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The first main result of this paper is given below.

Theorem 2.2 Suppose that at least one of the equations w0 and z0 is not
a monotonic increasing function, then the solution of system (2.1) will form
singularity in finite time.

Then we introduce a more general system of compressible Euler equations
with the source term of Riemann invariants function

ρt + (ρu)x = 0,

ut + uux +
1

ρ
px = f(u− 2c

γ − 1
) +M,

ρ|t=0 = ρ0(x), u|t=0 = u0(x),

(2.2)

where f(u− 2c

γ − 1
) ∈ C1(R) and bounded, M is a constant.

Remark 2.3 Similarly, we only study the case where the source term is

f(u − 2c

γ − 1
) + M , for the source term f(u +

2c

γ − 1
) + N (N is a constant),

the research method is the same, we won’t repeat it here.

The second main theorem of this paper is the following.

Theorem 2.4 Suppose that at least one of the equations w0 and z0 is not
a monotonic increasing function, f(w)

(
f(z)

)
∈ C1(R) and bounded, then the

solution of system (2.2) will form singularity in finite time.

3 Proof of Theorem 2.2

Define

U =

[
ρ
u

]
, A =

[
u ρ
c2

ρ
u

]
,

then the first two equation of (2.1) can be rewrite as

∂tU + A∂x(U) =

[
0

u− 2c
γ−1

]
.

The eigenvalue of A are

λ = u− c, µ = u+ c.

The corresponding left eigenvectors are

ξ1 = (c,−ρ), ξ2 = (c, ρ), (3.1)
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right eigenvectors are

ζ1 = (ρ,−c)T , ζ2 = (ρ, c)T . (3.2)

Recall the Riemann invariants

w = u−
∫

c

ρ
dρ = u− 2c

γ − 1
,

z = u+

∫
c

ρ
dρ = u+

2c

γ − 1
,

(3.3)

thus the first two equations of (2.1) can be rewrite as{
∂tw + λ(w, z)∂xw = w,
∂tz + µ(w, z)∂xz = w,

(3.4)

where 
λ(w, z) = u− c =

γ + 1

4
w +

3− γ
4

z,

µ(w, z) = u+ c =
3− γ

4
w +

γ + 1

4
z.

(3.5)

Define
′ = ∂t + λ∂x 8 = ∂t + µ∂x.

Firstly, we consider w, take the derivative of both sides of the equation (3.4)1
with respect to x, we have

wtx + λwxx + λww
2
x + λzwxzx = wx. (3.6)

Besides, from
w = zt + µzx = z8,

zt + λzx = z′, (3.7)

we have

zx =
z′ − w
λ− µ

. (3.8)

Then, combining (3.6) and (3.8), we have

wtx + λwxx + λww
2
x + λzwx

z′ − w
λ− µ

= wx. (3.9)

Define α = wx, we obtain

α′+ λwα
2 + α( z′−w

λ−µ λz − 1) = 0. (3.10)

Define h is a function of w, z and satisfy

−hw = hz =
λz

λ− µ
, (3.11)
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that is h(w, z) =
γ − 3

2(γ − 1)
ln(z − w).

From w′ = w, we have

h′ = hww′+ hzz′ = −
λz

λ− µ
w +

λz
λ− µ

z′ = z′ − w
λ− µ

λz. (3.12)

Thus, combining (3.10) and (3.12), we obtain

α′+ λwα
2 + α(h′ − 1) = 0. (3.13)

Multiply both sides of equation (3.13) by eh−t, we have

α′eh−t + α(h′ − 1)eh−t + λwα
2eh−t = 0, (3.14)

that is

(αeh−t)′+ λwe
−h+t(αeh−t)2 = 0, (3.15)

where we have used

(h− t)′ = h′ − 1. (3.16)

Define

α̃ = αeh−t,

thus

α̃′ = −aα̃2, (3.17)

where

a = λwe
−h+t =

γ + 1

4
(z − w)

3−γ
2(γ−1) et > 0. (3.18)

From the definition of α, we can get it’s initial value α0 satisfy

α̃(x0, 0) = eh(w0(x),z0(x))α0(x). (3.19)

Suppose x = x(x0, t) is the first characteristic curve that starts at any point
(x0, 0), then integrate the equation (3.17) along it to obtain

1

α̃(x(t), t)
=

1

α̃(x0, 0)
+

∫ t

0

a(x(v), v)dv. (3.20)

Suppose that at least one of the equations w0 and z0 is not a monotonic
increasing function, from (3.20), we can obtain the Cauchy problem (2.1) will
blow-up in a finite time. Thus we have deduce Theorem 2.2.
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4 Proof of Theorem 2.4

Similar with the prove of Theorem 2.2, firstly, we define

V =

[
ρ
u

]
, Λ =

[
u ρ
c2

ρ
u

]
,

then the first two equations of (2.2) can be rewrite as

∂tV + Λ∂x(V ) =

[
0

f(u− 2c
γ−1) +M

]
. (4.1)

Similarly, the eigenvalue of Λ are

λ = u− c, µ = u+ c, (4.2)

left eigenvectors are

ξ1 = (c,−ρ), ξ2 = (c, ρ), (4.3)

right eigenvectors are

ζ1 = (ρ,−c)T , ζ2 = (ρ, c)T . (4.4)

Using the Riemann invariants, the first two equations of (2.2) also can be
rewrite as {

∂tw + λ(w, z)∂xw = f(w) +M,
∂tz + µ(w, z)∂xz = f(w) +M,

(4.5)

where 
λ(w, z) = u− c =

γ + 1

4
w +

3− γ
4

z,

µ(w, z) = u+ c =
3− γ

4
w +

γ + 1

4
z.

(4.6)

Firstly, we consider w, take the derivative of both sides of the equation (4.5)1
with respect to x, we have

wtx + λwxx + λww
2
x + λzwxzx = fw(w)wx. (4.7)

From (4.5), we have

f(w) +M = zt + µzx = z8,
zt + λzx = z′, (4.8)

thus

zx =
z′ − (f(w) +M)

λ− µ
. (4.9)
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Combing (4.7) and (4.9), we have

wtx + λwxx + λww
2
x + λzwx

z′ − (f(w) +M)

λ− µ
= fw(w)wx, (4.10)

from α = wx, we have

α′+ λwα
2 + α(

z′ − (f(w) +M)

λ− µ
λz − fw(w)) = 0. (4.11)

Define h is a function of w, z and satisfy

−hw = hz =
λz

λ− µ
, (4.12)

thus we have h(w, z) =
γ − 3

2(γ − 1)
ln(z − w).

Besides, from w′ = f(w) +M , we have

h′ = hww′+ hzz′ = −
λz

λ− µ
(f(w) +M) +

λz
λ− µ

z′ = z′ − (f(w) +M)

λ− µ
λz.

(4.13)
Combing (4.11) and (4.13), we obtain

α′+ λwα
2 + α(h′ − fw(w)) = 0. (4.14)

Multiply both sides of equation (4.14) by eh−ln(f(w)+M), we have

α′eh−ln(f(w)+M) + α(h′ − fw(w))eh−ln(f(w)+M) + λwα
2eh−ln(f(w)+M) = 0,

(4.15)
then we have

(αeh−ln(f(w)+M))′+ λwe
−h+ln(f(w)+M)(αeh−ln(f(w)+M))2 = 0, (4.16)

where we have used

(h− ln(f(w) +M))′ = h′ − (f(w))′
f(w) +M

= h′ − fw(w)w′
f(w) +M

= h′ − fw(w).

(4.17)
Define

α̃ = αeh−ln(f(w)+M), (4.18)

thus
α̃′ = −a1α̃2, (4.19)

where

a1 = λwe
−h+ln(f(w)+M) =

γ + 1

4
(z − w)

3−γ
2(γ−1) (f(w) +M), (4.20)
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because there exist a constant M satisfy f(w) +M > 0, thus we have a1 > 0.
From the definition of α, we can get it’s initial value α0 satisfy

α̃(x0, 0) = eh(w0(x),z0(x))+ln(f(w0(x))+M)α0(x). (4.21)

Suppose x = x(x0, t) is the first characteristic curve that starts at any point
(x0, 0), then integrate the equation (3.17) along it to obtain

1

α̃(x(t), t)
=

1

α̃(x0, 0)
+

∫ t

0

a1(x(v), v)dv. (4.22)

Suppose that at least one of the equations w0 and z0 is not a monotonic
increasing function, from (4.22), we can obtain the Cauchy problem (2.2) will
blow-up in a finite time. Theorem 2.4 is proved.
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