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Significant age-related alterations in the blood
plasma metabolome of noncognitively impaired
healthy elderly subjects
Xiaobei Pana, Peter Passmoreb, Stewart F. Grahamc, Stephen Toddd, Bernadette McGuinnessb, Brian D. Greena,*

Background: Age is a major risk factor for most common neurodegenerative diseases. Although an increased research focus on
diseases of aging, there is little information regarding the metabolite changes in the aging blood in healthy older adults. Such
information could help us to understand neurocognitive changes associated with aging and also further improve the validity and
reproducibility of future metabolite biomarkers for neurodegenerative diseases.
Materials andMethods: The purpose of this study was to assess how the metabolomic profiles of noncognitively impaired elderly
participants changes with aging. Using a targeted liquid chromatography-mass spectrometry/MS metabolomics approach, this
study examined 17 noncognitively impaired elderly participants (T0; 78.10± 6.30 y; mini-mental state exam= 29.29±0.85) and the
same 17 subjects were followed-up ∼5 years later (T5; 83.29±6.13 y; mini-mental state exam=27.47 ±1.62).
Results: The concentrations of 187 plasma metabolites determined were used to build a partial least squares-discriminant model
which found that metabolomic profiles taken 5 years (T5) from baseline (T0) were distinctly different (R2= 0.95; Q2=0.90). When
metabolites levels at T5 were compared with T0, 68 of the 73 phosphatidylcholines, 25 of the 40 acylcarnitines, and 2 of the 14
lysophosphatidylcholines were increased, whereas 3 of the 14 lysophosphatidylcholines and 2 of the 14 sphingomyelins were
decreased. Moreover, 20 of the 42 amino acids concentrations were significantly different between the 2 time points. Fourteen amino
acids were increased at T5, whereas 6 amino acids were decreased.
Conclusions: The plasma metabolome changes with age in elderly, noncognitively impaired subjects, and this could aid in
developing valid and sensitive metabolite biomarkers for human disease.
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Aging is a natural biological process that is progressive, time-
dependent, deleterious in nature and is the greatest known risk
factor for many diseases, especially neurodegenerative and vas-
cular disease[1]. Neurodegenerative diseases represent neurolo-
gical disorders characterized by the gradual progression and
selective loss of anatomically or physiologically related neuronal

systems[2]. Impairment of memory is often one of the first
symptoms of the majority of neurodegenerative disease.
Alzheimer disease (AD), Parkinson disease, amyotrophic lateral
sclerosis and Huntington disease are common examples of neu-
rodegenerative disease[3]. Biomarker discovery for neurodegen-
erative disease is currently one of the hottest research topics
within this field. Biomarkers are defined as characteristics eval-
uated as indicators of biological or pathogenic processes, or
pharmacological response(s) to a therapeutic intervention[4]. For
neurodegenerative diseases, biomarkers should be able to dis-
tinguish underlying the pathology; detect presymptomatic
pathologic changes; and/or monitor cognition decline and
response to treatment[5]. An ideal biomarker is reproducible,
stable over time, widely available and reflects directly the relevant
disease process. Blood is a commonly used biofluid for biomarker
discovery as it contains thousands of hydrophilic and hydro-
phobic metabolites that could reflect many complex biological
processes across the body[6]. In addition, collection of blood
samples is a minimally invasive procedure as compared with
collection of other tissue samples. Although several biomarkers
panels for neurodegenerative diseases, like AD, have been
reported and showed good sensitivity and selectivity, unfortu-
nately, these biomarkers lack reproducibility for independent
patient cohorts. The reason for poor reproducibility may relate to
the classical epidemiological issues. Thus, the investigation of
aging on the plasma metabolome, particularly in elderly subjects
will help to improve the validity and reproducibility of future
metabolite biomarkers.
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Several studies have shown that the levels of some blood
metabolites can correlate to human phenotypes (eg, age, sex,
region, diet, and blood pressure)[7–13]. Ishikawa and colleagues
evaluated sex-associated and age-associated differences in blood
metabolites and many sphingomyelin species were significantly
higher in females than in males. They also observed that the age-
associated differences were more prominent in females than in
males[8]. Furthermore, Yu and colleagues applied targeted
metabolomics techniques to measure 163 metabolites from par-
ticipants in Germany and UK aged between 32 and 81 years old
and discovered that 71 and 34 metabolites were significantly
associated with age in women and men, respectively. This led to
the identification of 7 metabolites (C0, C10:1, C12:1, C18:1, SM
C16:1, SM C18:1, and PC aa C28:1) which increased with age in
both cohorts and 1 metabolite, histidine, which decreased[11].
Similarly, Lawton and colleagues measured more than 300 meta-
bolites using gas chromatography-mass spectrometry and liquid
chromatography-mass spectrometry in 269 individuals. Among
these metabolites more than 100 metabolites were associated with
age. Changes in protein, energy, and lipid metabolism including
fatty acids, carnitine, β-hydroxybutyrate and cholesterol, as well
as oxidative stress markers (eg, oxoproline, hippurate), were
observedwith increasing age. By contrast, relative concentration of
dehydroepiandrosterone-sulfate was the lowest in the oldest age
group[12]. Menni and colleagues identified a panel of 22 indepen-
dent metabolites associated with age. The altered metabolites
include 9 lipids, 7 amino acids, 2 intermediates in the energy
pathway, 2 xenobiotics, 1 carbohydrate, and 1 nucleotide[13].

In the present study, we performed targeted metabolomics
analysis to measure the concentrations of 187 plasmametabolites
to obtain fundamental information on the age-associated differ-
ence in plasma metabolites levels.

Materials and methods

Ethics statement

Appropriate research ethical approval at Queen’s University
Belfast was sought and obtained. Written informed consent was
obtained from all participants.

Study design and participants

Noncognitively impaired elderly participants [mini-mental state
exam (MMSE)≥ 28] were recruited from 3 population groups:
patients attending a geriatric day hospital, patients attending the
Elderly Rehabilitation Unit for orthogeriatric rehabilitation, and
volunteers attending a variety of older people’s clubs. On
recruitment, all participants were interviewed by a trained phy-
sician, experienced in the assessment and diagnosis of AD.

Nonfasting venous blood was collected into 4.5 mL Vacutainer
Plasma Separator Tubes containing K2EDTA for plasma
separation (Becton Dickinson). After ∼5 years (5.24 ± 0.20 y)
those participants with no cognitive complaints (either subjective
or objective) and who were also physically and mentally healthy
(n=17) were followed-up and resampled. The mean follow-up
MMSE score was ≥26. Although the MMSE performance for
participants reduced, it would not indicate cognitive impairment/
dementia and would be within accepted decline in performance
over the 5-year interval between testing. All the followed-up
participants were diagnosed as cognitively normal on clinical
assessment. Samples were stored long-term at − 20°C until use.
Details of participant characteristics can be found in (Table 1).
The particular advantage of our study is the longitudinal design.
There were 194 cognitively intact participants recruited at T0. At
T5, 93 participants consented to reassessment, 53 were deceased,
38 refused consent to participate again, and 10 were uncontact-
able. Of the 93 participants who were reassessed at T5, 10 had
evidence of cognitive impairment or dementia. From 83 partici-
pants with no cognitive impairment at T5, 17 were randomly
selected for metabolomic analysis (Fig. 1). Thus, plasma meta-
bolomic profiles for 17 noncognitively impaired elderly partici-
pants (T0; 78.10 ± 6.30 y; MMSE= 29.29 ± 0.85) were obtained
and the same 17 subjects were followed-up and resampled
∼5 years later (T5; 83.29 ± 6.13 y; MMSE=27.47 ± 1.62).

Targeted metabolomics

A mass spectrometry-based quantitative targeted metabolomics
assay was performed using the Biocrates AbsoluteIDQ p180
(BIOCRATES, Life Science AG, Innsbruck, Austria), as pre-
viously described[14] which provides simultaneous quantification
of 187 metabolites including amino acids, acylcarnitines, phos-
pholipids and sphingolipids, hexose (glucose), and biogenic
amines. The samples were processed as per the instructions of the
manufacturer included with the kit and analyzed by using a
tandem mass spectrometry (MS/MS) method on a triple-quad-
rupole mass spectrometer (Xevo TQ-MS, Waters Corporation).
Briefly, centrifuged human plasma (10 μL) was applied to a

Table 1
Participant demographics and clinical characteristics.

Initial Follow-up

Age (y) 78.10± 6.30 83.29± 6.13
MMSE score 29.29± 0.85 27.47± 1.62
Sex F:M 11:6
Education (y) 13± 4

F indicates female; M, male; MMSE, mini-mental state exam.

Cognitively intact  
participants

194

Reassessed 
participants 

93

Cognitive 
impairment or 

dementia
10

Nocognitive  
impairment

83

Random selection of closely
age-matched subjects for

metabolomic profiling
17

Baseline
Year 5

Follow up

Figure 1. Information of the participant groups. The figure shows the number of participants available for longitudinal metabolomics study.
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96-well filter plate, which contains isotopic internal standards.
Amino acids and biogenic amines were derivatized using pheny-
lisothiocyanate and all metabolites were extracted with 5mmol/L
ammonium acetate in methanol. Amino acids and biogenic
amines were analyzed by ultra performance liquid chromato-
graphy-mass spectrometry in the multiple reaction monitoring
mode. All other metabolites were quantified on the same mass
spectrometer but with a flow injection analysis and multiple
reaction monitoring methodology. The chromatographic and the
mass spectrometry conditions are detailed in Tables 2–4. The
concentration of metabolites are expressed as µmol/L.

Statistical analysis

Metabolite concentrations were exported to Simca 13 (Umetrics,
Umea, Sweden) formultivariate analysis. Dataweremean centered,
pareto scaled, and grouped into initial time point (T0) and 5 years
follow-up (T5), and subsequently analyzed using Partial least
squares-discriminant analysis (PLS-DA). The performance of the
models was evaluated by calculating R2 (cumulative) and Q2
(cumulative). R2 (cumulative) indicates the variation described by
all components in themodel andQ2 is ameasure of how accurately
the model can predict class membership. The permutation testing
(MetaboAnalyst 3.0[15]) was used to validate the obtained PLS-DA
classification models, confirming the results. Univariate analysis of
the concentrations for amino acids and acylcarnitines were per-
formed by Wilcoxon matched-pairs signed rank test using
Graphpad Prism 5. Heat maps were created using PermutMatrix
version 1.9.3.0[16].

Results

Multivariate statistical analysis

Multivariate statistical analysis was used to provide an initial
assessment of plasma metabolite changes between baseline (T0)

and follow-up (T5). PLS-DA scores plot (Fig. 2) found that meta-
bolomic profiles between baseline and follow-up were easily dis-
criminated by the statistical model (R2=0.97; Q2=0.90). The
P-value measuring the statistical significance of diagnostic statistics
between real and 2000 randomly permuted class labels for the PLS-
DA model is <0.0005. The loadings plots (Fig. 2) of the PLS-DA
indicated that the majority of metabolites were significantly dif-
ferent and were widespread from all metabolite classes.

Lipid alterations

The significant alteration of 101 phospholipids including 14
lysophosphatidylcholine (LysoPCs), 73 phosphatidylcholine
(PtdChos), and 14 sphingomyelines (SMs) were quantified for
plasma samples collected at both time points (T0 and T5).
Three SMs [SM (OH) C24:1, SM C26:0, and SM C26:1] were
not measurable in these human plasma samples. Metabolites
in the heat map shown in red are upregulated and those in
green are downregulated (Fig. 3). There were considerable
increases in the levels of PtdChos species, and altered levels of
LysoPCs and SMs in the plasma at follow-up. Of the 73
PtdChos measured, only 5 PtdChos were not significantly
altered. All of the other 68 PtdChos were significantly
increased (P< 0.05) in plasma at follow-up. Contrastingly for
LysoPCs, the observed alterations in their concentrations were
ranged. Two LysoPCs (C14:0 and C28:1) were higher
(P< 0.05) at follow-up but 3 other LysoPCs (C17:0, C18:0,
and C18:1) were significantly lower. Two SMs (C20:2 and
C24:1) were significantly lower at follow-up.

Polyamine and arginine metabolism alterations

The concentrations of 20 amino acids/biogenic amines were
significantly different (P<0.05) at follow-up. Putrescine, sper-
midine, and spermine in the polyamine pathway were all
significantly decreased due to aging, even though no disturbance
has been found for ornithine. Plasma glutamine levels were found
to be elevated while glutamate concentrations decreased sig-
nificantly. Moreover, asparagine and aspartate concentrations
displayed a similar pattern (Fig. 4).

Other metabolites alterations

Apart from metabolites illustrated in the pathway, many other
key metabolites including amino acid, biogenic amines, and

Table 2
Instrument parameters for the targeted metabolic assay—UPLC
pump settings.

Time Flow A% B% Curve

Initial 0.9 100 0 Initial
0.25 0.9 100 0 6
3.75 0.9 40 60 6
3.95 0.9 40 60 6
4.25 0.9 100 0 10
4.35 0.9 100 0 10

Column: Waters ACQUITY UPLC BEH C18 1.7 μm 2.1× 50 mm.
Precolumn: Waters ACQUITY BEH C18 1.7 μm VANGUARD.

Table 3
Instrument parameters for the targeted metabolic assay—flow
injection analysis pump settings.

Time (min) Flow (μL/min) % A % B

Initial 30 0 100
1.6 30 0 100
2.4 200 0 100
2.8 200 0 100
3.0 30 0 100

Table 4
Instrument parameters for the targeted metabolic assay—other
system settings.

Method

Instrument Parameter UPLC FIA

Autosampler Injection volume 5 10
Column oven Temperature 50 No column
MS Capillary voltage (kV) 3.2 3.9

Cone voltage (V) 27 22
Source temp 150 150
Desolvation temp 600 350
Cone gas flow (L/h) 250 0
Decolvation gas flow (L/h) 100 650
Collision gas flow (mL/min) 0.15 0.15

FIA indicates flow injection analysis.
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acylcarnitines were found to be affected due to aging. Histidine,
phenylalanine, tyrosine, asymmetric dimethylarginine, kynur-
enine, symmetric dimethylarginine, and threonine increased sig-
nificantly at follow-up, while lysine and serine were lower at
follow-up (Fig. 5A). Furthermore, there was a general elevation in
plasma acylcarnitine moieties (Fig. 5A). Of the 40 acylcarnitines

measured, 24were significantly higher (P<0.05) at follow-up, and
only 1 (C12:1) was significantly reduced and the effect was modest
(16.5 ±5.7%; P<0.05; Fig. 5A). Eleven acylcarnitines were
increased by more than 100% in plasma at follow-up. In order of
magnitude these were: C2>C3>C18>C18:2>C4>C6(C4:1-
DC)>C7-DC>C5-DC(C6-OH)>C18:1>C16>C10.

Figure 2.Multivariate statistical analysis clearly differentiates the bloodmetabolomes of noncognitively impaired subjects at baseline and at 5-year follow-up. A, The
scores plot shown the partial least squares-discriminant analysis of 187 blood metabolite concentrations (T0=green; T5=blue). The explained variance (R2) was
97% and predictive ability (Q2) was 90%. B, The loading plot shown the majority of metabolites with significant differences.

Figure 3.Heatmap analysis showing changes in plasma lipids. Each row represents an individual sample and each column an individual lipidmoiety. Metabolites shown
in red are upregulated and those in green are downregulated. The concentrations of 14 lysophosphatidylcholines (LysoPCs), 76 phosphatidylcholines, and 11
sphingomyelins were significantly different between baseline (T0=upper panel) and follow-up (T5= lower panel). Heat map analysis was performed using PermutMatrix
software with Z-score normalization and Pearson dissimilarity used as a distance measure. PCs indicates phosphatidylcholines; SPHs, sphingomyelins.
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Discussion
As far as the authors are aware this is the first study to long-
itudinally investigate metabolic disturbances in human plasma
from noncognitively impaired elderly participants using high
throughput targeted metabolomics. This study provides impor-
tant information concerning the validity and reproducibility of
potential plasma metabolite biomarkers in ongoing research.
First, the time points (T0 and T5) were clearly separated as is
evident from the PLS-DA scores plot (Fig. 2) (R2=0.97 and
Q2=0.90). This indicated that the concentrations of metabolites
are strongly associated to advancing age in these specimens. The
statistically significant differences were found <0.0005 between
the values obtained using real and permuted class labels for the
PLS-DA models, thus evidencing that the evaluated sample clas-
sification was feasible. The loadings plot showed amino acids and
phospholipids were the key metabolite classes which were
responsible for distinguishing between T0 and T5. On the basis of
these findings, we examined the changes in the concentrations of
the phospholipids across the 2 time points using a heat map
analysis (Fig. 3). The heat map clearly illustrates that PtdCho
concentrations are significantly elevated at T5. PtdCho and
phosphatidylethanolamine are the most abundant glyceropho-
spholipids in the cell membrane. Together with the neutral lipids,
they form the characteristic bilayer structure of cellular mem-
branes and regulatemembrane integrity.Membrane lipidsmainly
PtdCho, containing polyunsaturated fatty acids are pre-
dominantly susceptible to peroxidation which is a degenerative
process that affects unsaturated membrane lipids under condi-
tions of oxidative stress[17]. Lipid peroxidation causes some
significant modifications to the fatty acids, including the rear-
rangement or loss of double bonds and, in some cases, the
reductive degradation of lipid acyl side chains[18]. As a result,
lipid peroxidation is believed to contribute significantly to human
aging and disease by disrupting the structural conformation, the
packing of lipid components and ultimately, the function of
biological membranes[19]. For the other 2 types of phospholipids
measured in this study (LysoPCs and SMs), a small number
showed significant disturbances in their concentration between
T0 and T5, but without a definite pattern. LysoPCs are the pro-
ducts of partial hydrolysis of PtdChos, where one of the fatty acid

groups is removed. SMs are precursors of ceramides. As most of
LysoPCs and SMs were not significantly correlated to aging in
our study, this suggests that these 2 metabolites classes are
potentially better, more stable biomarkers in elderly subjects.

At the 5-year follow-up, we observed significant increases in
the 3 main polyamine pathway metabolites (spermine, putres-
cine, and spermidine). Polyamines are polycations which can
interact with negatively charged phosphates in nucleic acids to
exert regulatory effects on cellular processes such as cell growth,
survival, and proliferation[20]. Polyamines are synthesized from
ornithine and methionine in many tissues. Although ornithine
levels were unchanged, methionine concentrations significantly
increased between T0 and T5 specimens. Polyamine levels are
affected with aging, but the change may vary considerably among
tissues and age groups. Several factors can contribute to this
variability; polyamines are absorbed quickly in the intestinal
lumen to increase polyamine concentrations in blood and then
distributed to almost all organs and tissues in the body, and gut
microbiota are also a potential source of polyamines[21,22].

We also found the concentrations of the ornithine precursor
arginine to decrease with age. Arginine serves as a precursors of
glutamate, urea, proline, creatine, and nitric oxide, which play
critical roles in memory formation[23]. The increase of nitric oxide
(released from a postsynaptic source) leads to an increase in the
release of glutamate and, as a result, a stable increase in synaptic
transmission, which also linked to memory function[24]. Here, we
observed the ratio of glutamate to glutamine (Glu/Gln) and the
ratio of aspartate to asparagine (Asp/Asn) both are significantly
lower at T5. Glutamine is exclusively synthesized in glial cells
mostly from synaptic-born glutamate, and then shuttled back to
replenish glutamate neurotransmitter pools in neurons. Thus Gln/
Glumay reflect glutamate-glutamine cycle activity between neurons
and glial cells[25], of which the glutamate-glutamine cycle flux was
found to be ∼30% lower in healthy elderly humans as compared
with younger adults[26]. Furthermore, the enzyme L-asparaginase is
responsible for catalyzing the deamidation of asparagine and glu-
tamine to aspartate and glutamate, respectively, releasing ammonia
in the process[27]. A decrease in this enzyme’s activity may also
result in the decrease of Glu/Gln and Asp/Asn.

Figure 4. Changes in polyamine, aspartate/asparagine and glutamate/glutamine metabolism. Statistical significance was determined by Wilcoxon matched-pairs
signed rank test.
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Figure 5.Changes in other amino acids/biogenic amines and acylcarnitines. A, Amino acids/biogenic amines with significant differences between baseline (T0) and
follow-up (T5) are shown. The graph shows medians and interquartile ranges. Statistical significance was determined by Wilcoxon matched-pairs signed rank test.
B, Changes in plasma acylcarnitine levels with significant differences between baseline (T0) and follow-up (T5) are shown. Themajority of acylcarnitine species were
increased at follow-up with the exception of C12:1 which was decreased. Statistical significance was determined using the Wilcoxon matched-pairs signed rank
test (*P≤ 0.05, **P≤0.01, ***P≤ 0.001).
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Our findings also reveal the alteration of other amino acids/
biogenic amines and acylcarnitines. The primary function of
carnitine and acylcarnitine in the cell is as an important trans-
porter of long-chain fatty acids into mitochondria for β-oxida-
tion, in which carnitine palmitoyltransferase catalyzes the
transfer of acyl groups from acyl-Coenzyme A to carnitine to
produce acylcarnitines and free coenzyme A. If there is a higher
rate of substrate catabolism than energy demand, accumulating
acyl-Coenzyme A intermediates are converted back to acylcar-
nitines, which can then exit cells and tissues[28]. As observed from
the increase for both membrane phospholipids and acylcarni-
tines, it could be hypothesized that disturbances to the con-
centrations of these 2 metabolite classes are attributable to
changes in carnitine availability and/or enzyme activity.

Of the significantly different amino acids and biogenic amines
due normal aging, many have been suggested to be potential
biomarkers or to be involved in the pathophysiological pathway
studies for many different diseases, such as cancer, dementia, and
diabetes[29–31]. We would like to point out 2 general limitations
with the current study. First, that the samples provided were
nonfasting and which potentially may increase experimental
variability among subjects. Second, that the samples were stored
long-term at − 20°C (rather than − 80°C) which may potentially
affect metabolite stability. Nonetheless our results demonstrate
the possibility that levels of amino acids, PtdChos, and acylcar-
nitines are significantly changed by advancing age. In conclusion,
these age-associated influences should be taken into considera-
tion in age-matched participant selection and also when selecting
blood metabolites as biomarkers in longitudinal studies.
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