Short Communication on Sequences and Series

Hymad M*
Department of Mathematics, University of Malaysia, Malaysia

Introduction

Although abundant of the arithmetic we've tried this course deals with pure mathematics and graphing, many mathematicians would say that generally arithmetic deals with patterns, whether or not they're visual patterns or numerical patterns. For instance, exponential growth could be a growth pattern that's shared by populations; bank accounts etc, Sequences and Series manage numerical patterns. We'll begin with what a sequence is.

Sequences

We've all stumble upon the plain English definition of a sequence. for instance, after you notice the
DNA sequence of a mouse, it's AN ordered list of DNA proteins. Similarly, in arithmetic, a
sequence is AN ordered list of numbers following some pattern, for instance, $1,4,7,10, \ldots$.
In this sequence, the pattern is that I started with a one, and add three to induce consequent term (the name for
the elements of the sequence), and so on. Once you recognize the pattern you'll be able to fathom additional
terms (or even continue forever deciding terms, for instance consequent few terms ar
$1,4,7,10,13,16,19, \ldots$.

Notation and Formulas for Sequences:

Now that you've got the intuitive plan of what a sequence is, let's investigate some notation and
terminology.
The ingredients of a sequence ar referred to as terms (this is to tell apart them from the weather of a collection -
a set has no specific order however a sequence does). If we'd like to use variables for the names of the
terms, we have a tendency to use subscripts to mention that term we're talking concerning. for instance, if i take advantage
of the letter a for the name of the sequence higher than, we've got that $\mathrm{a} 1=1, \mathrm{a} 2=4, \mathrm{a} 3=7, \ldots$.
Now I will use this notation to administer the sequence as a formula instead of an inventory. for instance, the
formula generally for the higher than sequence is an $=1+(n-1) 3$
Where n is any number, $1,2,3$, etc. The advantage of giving the formula instead of an inventory is that you simply can get any term you wish while not obtaining all the remainder. for instance, the twentieth term of our sequence above is

$$
\mathrm{a} 20=1+(19) 3=1+57=58
$$

Solution: rather than an inventory of the primary few terms, we have a tendency to've been given the formula obtaining any term we like. The method you browse this notation is that this. The left facet uses set notation, since a sequence is simply a special style of set wherever the weather ar ordered It provides the name of the series as u, therefore the terms ar referred to as $\mu 1, \mu 2, \mu 3$ and then on. The rule for obtaining the weather (or terms, as we have a tendency to decision them) is given on the correct facet. therefore the higher than formula says that to induce any specific term (the "nth" term) we have a tendency to sq. n and add a pair of. therefore the initial few terms ar (just setting $\mathrm{n}=1,2,3,4$) are:
$\mu 1=(1) 2+$ a pair of $=$ three,
$\mu 2=(2) 2+$ a pair of $=$ six,
$\mu 3=(3) 2+$ a pair of $=$ eleven, $\mu 4=(4) 2+$ a pair of $=$ eighteen

If you've noticed some similarity between operate notation and sequence notation (for example, the name is on the left of the $=$, and therefore the rule is on the right), it's not a coincidence. In fact, in formal terms a sequence is simply a operate wherever the domain is that the integers.

[^0]Received: February 2, 2021; Accepted: February 18, 2021; Published: February 27, 2021
Citation: Hymad (2021) Short Communication on Sequences and Series. Mathematica Eterna. 11:119.10.35248/1314-3344.21.11.119.
Copyright: ©2021 Hymad M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

[^0]: *Corresponding author: Hymad M, Associate Professor, University of Malaysia, Malaysia. E-mail: Hymad62@gmail.com

