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Results from range Theory have myriad applications in 
arithmetic yet as in sensible applications as well as security, 
memory management, authentication, cryptography theory, etc. 
we'll solely examine (in breadth) a couple of here. 
• Hash Functions 
• Pseudorandom Numbers 
• Fast Arithmetic Operations 
• Linear congruences, C.R.T., Cryptography 

Hash Functions I 

Some notation: Zm = outline a hash operate h : Z → Zm as h(k) 
= k mod m that's, h maps all integers into a set of size m by 
computing the rest of k/m. 

Hash Functions II 

• In general, a hash operate ought to have the subsequent 
properties 
• It should be simply calculable. 
• It ought to distribute things as equally as attainable among all 
values addresses. 
• To this finish, m is sometimes chosen to be a primary range. 
• It is additionally common apply to outline a hash operate 
that's passionate about every little bit of a key 
• It should be AN onto operate (surjective). 
• Hashing is thus helpful that several languages have support 
for hashing (perl, Lisp, Python) 

Pseudorandom Numbers 

Many applications, like randomised algorithms, need that we've 
access to a random supply of knowledge (random numbers). 
However, there's not really random supply living, solely weak 
random sources: sources that seem random, except for that we 
have a tendency to don't understand the likelihood distribution 
of events. Pseudorandom numbers ar numbers that ar generated 
from weak random sources such their distribution is “random 
enough”. 

Pseudorandom Numbers I 

One methodology for generating pseudorandom numbers is 
that the linear congruential methodology. 

Choose four integers: 
m, the modulus, 
a, the number, 
c the increment and 
x0 the seed. 
Such that the subsequent hold: 
2 ≤ a < m 
0 ≤ c < m 
0 ≤ xo < m 

Pseudorandom Numbers II 

Our goal are to come up with a sequence of pseudorandom 
numbers, 
∞ n=1 
with zero zero xn ≤ m by victimization the harmoniousness 
xn+1 = (axn + c) mod m 
For certain decisions of m, a, c, x0, the sequence becomes 
periodic. That is, once a definite purpose, the sequence begins to 
repeat. Low periods cause poor generators. 
Furthermore, some decisions ar higher than others; a generator 
that makes a sequence zero, 5, 0, 5, 0, 5, . . . is clear bad—its not 
uniformly distributed. 
Linear congruences : 
We’ve already seen AN application of linear congruences 
(pseudorandom range generators). However, systems of linear 
congruences even have several applications (as we'll see). A system 
of linear congruences is solely a group of equivalences over one 
variable. 

x ≡ 5(mod 2) 
x ≡ 1(mod 5) 
x ≡ 6(mod 9) 

Linear harmoniousness Method: 
Let m = 17, a = 5, c = 2, x0 = 3. Then the sequence is as follows. 
xn+1 = (axn + c) mod m 
x1 = (5 • x0 + 2) mod seventeen = zero 
Let m = 17, a = 5, c = 2, x0 = 3. Then the sequence is as follows. 
xn+1 = (axn + c) mod m 
x1 = (5 • x0 + 2) mod seventeen = zero 
x2 = (5 • x1 + a pair of) mod seventeen = 2                      
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