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Abstract

A separation theorem by h−convex stochastic processes is presented

and a Hyers-Ulam type stability result is obtained as a corollary.
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1 Introduction.

In 1974, B. Nagy [14] considered additive stochastic processes and in 1980
K. Nikodem [16] introduced the notion of convexity on stochastic processes.
This line of investigation had been followed by many authors, several types
of convexity had been studied and inequalities, as Hermite-Hadamard, Jensen
and others, had been proved [2, 9, 10, 12, 15, 16, 23].

Among the problems concerning stochastic processes, separation theorems
were considered. A separation theorem is a theorem that gives conditions
under which two functions can be separated by other with special character-
istiques. These theorems are important in mathematics and have interesting
applications. Results of this type can be readed in [1, 3, 4, 6, 13, 15, 17, 18,
19, 20, 21, 22, 25].

A characterization of pairs of stochastic processes that can be separated by
a quasiconvex one was given by D. Kotrys and K. Nikodem in [15] and analo-
gous separation theorems by convex and strongly convex stochastic processes
were proved by L. González, D. Kotrys and K. Nikodem in [7] (subbmited for
publication).

The aim of this paper is to prove a separation theorem by h−convex
stochastic processes. The h−convexity was introduced, first for functions by S.
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Varosanec in [24] where generalized convex, s−convex, Godunova-Levin func-
tions and P−functions, then, the notion for stochastic processes were defined
and studied by D. Barráez, L. González, N. Merentes and A. Moros in [2].

Let (Ω,A,P) be a probability space. A function X : Ω → R is a random
variable if it is A−measurable. A function X : I × Ω → R, where I ⊆ R is
an interval, is a stochastic process if for every t ∈ I the function X(t, ·) is a
random variable.

If h : (0, 1) → R is a non-negative function, h 6≡ 0, we say that a stochastic
process X : I×Ω → R is an h−convex stochastic process if, for every t1, t2 ∈ I,
λ ∈ (0, 1), the following inequality is satisfied

X(λt1 + (1− λ)t2, ·) ≤ h(λ)X(t1, ·) + h(1− λ)X(t2, ·) (a.e)

When the inequality holds for h equal to the identity, the stochastic pro-
cesses is convex.

Many properties of h−convex and convex stochastic processes can be found
in [2, 11, 16, 23].

Now, we would like to recall the definition of the essential infimum of
a family of functions. We will use this notion in the proof of the separation
theorem. Let (Ω,F , µ) be a measure space and F be a collection of measurable
functions f : Ω → R,considering on R the Borel σ–algebra. If F is a countable
set, then we may define the pointwise infimum of the functions from F , which
is measurable itself. If F is uncountable, then the pointwise infimum need
not be measurable and in this case, the essential infimum can be used. The
essential infimum of F , written as ess inf F , if it exists, is a measurable
function f : Ω → R satisfying the following two axioms:

• f 6 g almost everywhere, for any g ∈ F ,

• if h : Ω → R is measurable and h 6 g almost everywhere for every g ∈ F ,
then h 6 f almost everywhere.

It can be shown that for a σ–finite measure µ, the essential infimum of F do
exists, whenever F is a family of measurable functions jointly bounded from
below. For more details we refer the reader to [5].

2 Separation by h−convex processes.

In this section we present the main result. First, we recall that a function
h : [0, 1] → R is said to be multiplicative if h(xy) = h(x)h(y) for all x, y ∈ [0, 1]

Note that if h is non-negative, multiplicative, h 6≡ 0, for every t ∈ [0, 1], we
have

h(1) = h

(

t
1

t

)

= h(t)h

(

1

t

)
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So, h
(

1
t

)

= h(1)
h(t)

and considering t = 1, we obtain h(1) = 1.
We resume this property in the following

Remark 1. If h is multiplicative then it is non-negative and either h ≡ 0 or
h(1) = 1.

Our main result is the following sandwich theorem type, wich allows us
separate stochastic processes by an h−convex one.

Theorem 2. Let h : (0, 1) → R be a positive multiplicative function and
X, Y : I × Ω → R be positive stochastic processes. There exists an h−convex
stochastic process Z : I × Ω → R such that

X(t, ·) 6 Z(t, ·) 6 Y (t, ·) (a.e)

for all t ∈ I, if and only if

X
(

n
∑

i=1

λiti, ·
)

6

n
∑

i=1

h(λi)Y (ti, ·) (a.e) (1)

for all n ∈ N, t1, . . . , tn ∈ I and λ1, . . . , λn ∈ I with λ1 + · · ·+ λn = 1.

Proof. Fix n ∈ N, t1, ..., tn ∈ I, λ1, ..., λn ∈ [0, 1] with λ1+ ...+λn = 1. By the
Jensen inequality for h−convex stochastic processes ([2]), we have

X
(

n
∑

i=1

λiti, ·
)

6 Z
(

n
∑

i=1

λiti, ·
)

≤

n
∑

i=1

h(λi)Z(ti, ·) ≤
n

∑

i=1

h(λi)Y (ti, ·) (a.e)

Reciprocally, for every t ∈ I we define the stochastic process Z : I×Ω → R

by

Z(t, ·) = ess inf
{

n
∑

i=1

h(λi)Y (ti, ·) : n ∈ N, t1, . . . , tn ∈ I, λ1, . . . , λn ∈ [0, 1]

such that λ1 + · · ·+ λn = 1 and t = λ1t1 + · · ·+ λntn

}

.

Using the hypothesis and definition of essential infimum we have

X(t, ·) ≤ Z(t, ·) (a.e), t ∈ I

Considering n = 1, λ1 = 1, t1 = t, also the following inequality holds

Z(t, ·) ≤ Y (t, ·) (a.e), t ∈ I

Now, we will prove that Z is an h−convex stochastic process. For every
t1, t2 ∈ I and λ ∈ [0, 1] consider u1, ..., un ∈ I, v1, ..., vm ∈ I, α1, ..., αn ∈ [0, 1],
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β1, ..., βm ∈ [0, 1] such that α1+...+αn = 1, β1+...+βm = 1 and t1 =
∑

n

i=1 αiui,
t2 =

∑

m

i=1 βivi.
Then,

λt1 + (1− λ)t2 =
n

∑

i=1

λαiui +
m
∑

i=1

(1− λ)βivi =
n+m
∑

i=1

γiwi

where,

γi =







λαi if i = 1, ..., n

(1− λ)βi−n if i = n + 1, ..., n+m

wi =







ui if i = 1, ..., n

vi−n if i = n+ 1, ..., n+m

Note that for every i, γi ∈ [0, 1] and
∑

n+m

i=1 γi = 1, hence, λt1 + (1− λ)t2 is
a convex combination of u1, ..., un; v1, ..., vm.

Because of the definition of Z, the multiplicity and non-negativity of h,
the following inequality holds almost everywhere for every n ∈ N, u1, ..., un ∈

I, λ1, ..., λn ∈ [0, 1] such that λ1+ ...+λn = 1, t1 = λ1u1+ ...+λnun and m ∈ N,
β1, ..., βn ∈ [0, 1] such that β1 + ... + βn = 1, t2 = β1v1 + ...+ βnvn,

Z(λt1 + (1− λ)t2, ·) ≤ h(λ)
n

∑

i=1

h(αi)Y (ui, ·) + h(1− λ)
m
∑

i=1

h(βi)Y (vi, ·) (2)

Therefore, taking the essential infimum in the first term of the right hand
side of (2), for all m we have

Z(λt1 + (1− λ)t2, ·) ≤ h(λ)Z(t1, ·) + h(1− λ)
m
∑

i=1

h(βi)Y (vi, ·) (a.e.)

Hence, for all m

Z(λt1 + (1− λ)t2, ·)− h(λ)Z(t1, ·) ≤ h(1− λ)

m
∑

i=1

h(βi)Y (vi, ·) (a.e.)

Using the second axiom of the definition of essential infimum,
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Z(λt1 + (1− λ)t2, ·)− h(λ)Z(t1, ·) ≤ h(1− λ)Z(t2, ·) (a.e)

wich implies that

Z(λt1 + (1− λ)t2, ·) ≤ h(λ)Z(t1, ·) + h(1− λ)Z(t2, ·) (a.e)

As a corollary of the above separation theorem, the following Hyers-Ulam-
type stability result for h−convex stochastic process. The classical Hyers-Ulam
theorem can be readed in [8].

Let be ǫ > 0. We say that the stochastic process X : I × Ω → R is
ǫ− h−convex if

X
(

n
∑

i=1

λiti, ·
)

6

n
∑

i=1

h(λi)X(ti, ·) + ǫ (a.e)

for every n ∈ N, t1, ..., tn ∈ I, λ1, ..., λn ≥ 0 with λ1 + ...+ λn = 1.

Corollary 3. Let h : (0, 1) → R be a positive function and ǫ > 0. If a
stochastic process X : I × Ω → R is ǫ − h−convex, then exists an h−convex
stochastic process Z such that X(t, ·)− ǫ ≤ Z(t, ·) ≤ X(t, ·) (a.e) for all t ∈ I.

Proof. Let us define the stochastic process Y (t, ·) = X(t, ·)− ǫ, t ∈ I.
By the ǫ − h−convexity of X , for all n ∈ N, t1, ..., tn ∈ I, λ1, ..., λn ∈ [0, 1]

such that λ1 + ... + λn = 1, we have

X(

n
∑

i=1

λiti, ·) ≤

n
∑

i=1

h(λi)X(ti, ·) + ǫ (a.e.)

that is,

Y (

n
∑

i=1

λiti, ·) ≤

n
∑

i=1

h(λi)X(ti, ·) (a.e.)

Using the theorem (2), exists an h−convex stochastic process Z : I×Ω → R

such that for every t ∈ I,

Y (t, ·) ≤ Z(t, ·) ≤ X(t, ·) (a.e.)
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[7] L. González, D. Kotrys, K. Nikodem, Separation by convex and strongly
convex stochastic processes, (subbmit for publication).

[8] D. H. Hyers, S. M. Ulam, Approximately convex functions, Proc. Amer.
Math. Soc. 3, 821–828 (1952).

[9] D. Kotrys, Remarks on strongly convex stochastic processes, Aequat.
Math. 86, 91–98 (2012).

[10] D. Kotrys, Some characterizations of strongly convex stochastic processes,
Mathematica Aeterna Vol. 4, no. 8, 855–861 (2014).

[11] D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes,
Aequat. Math. 83, 143–151 (2012).

[12] Kotrys, D.: Remarks on Jensen, Hermite-Hadamard and Fejér inequali-
ties for strongly convex stochastic processes, Mathematica Aeterna Vol. 5,
no. 1, 95–104 (2015).

[13] N. Merentes, K. Nikodem,Strong convexity and separation theorems, Ae-
quat. Math.(2015), DOI 10.1007/s00010-015-0360-4.

[14] B. Nagy, On a generalizaton of the Cauchy equation, Aequationes Math.
10, 165–171 (1974).

[15] D. Kotrys, K. Nikodem, Quasiconvex stochastic processes and a separation
theorem, Aequat. Math. 89 (2015), 41-48.



Separation by h−convex stochastic processes 17

[16] K. Nikodem, On convex stochastic processes, Aequat. Math. 20 (1980),
184–197.
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[22] Zs. Páles and V. Zeiden, Separation via quadratic functions, Aequat.
Math. 51 (1996), 209–229.

[23] M. Shaked, J. G. Shanthikumar, Stochastic convexity and its applications,
Adv. in Appl.Prob. 20, 427–446 (1988).
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