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Abstract 

 
The propagation of SH-wave (a type of seismic wave) in a non-

homogeneous intermediate layer on half-space has been investigated. The 

rigidity and density of the intermediate layer are assumed as (1 )ze  and 

(1 )ze  i.e. vary exponentially as function of depth. The dispersion 

equation is obtained for the generated point source. The effect of 

nonhomogeneity on the generated SH-wave is also shown graphically for 

the various values of material parameters chosen for earth. The amplitude of 

the SH-wave falls off very sharply as the wave number increases slowly. In 

the absence of non-homogeneity factor , the dispersion equation reduces to 

the classical equation.  
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1  Introduction 
 

Seismic waves are energy waves which are the cause of a volcano 

earthquake, or explosion. The wave propagation in elastic medium having 

different boundaries is important for seismologists or geophysicists to 

predict the seismic behavior of earth. The propagation velocity of these 

waves depends on rigidity, density and elasticity of the earth. On the other, 

seismology is the study of earthquake and seismic wave that tells us about 

the structure of Earth and physics of earthquake. A geophysicist studies 

earthquakes and seismic waves. The infrastructure of the Earth’s interior can 

be understood with the help of seismic wave phenomena.  

The propagation of seismic waves in a heterogeneous elastic media is of 

great importance in earth-quake engineering and seismology on account of 

occurrence of heterogeneity in the earth crust, as the earth is made up of 

different layers. SH- waves are surface seismic waves that cause horizontal 

shifting of earth during the earthquake. The particle motion of SH- waves 

forms a horizontal line perpendicular to direction of propagation. As a 

result, the theory of seismic waves has been developed by Stoneley [1], 

Bullen [2], Ewing et al. [3], Hunters [4] and Jeffreys [5]. Jeffreys solved the 

Love-wave problem for a model earth, neglecting curvature, the layers 

represented by a single equivalent homogeneous layer of depth, rigidity and 

density. Rommel [8] presented a note for the propagation of shear waves 

with point source under the influence of heterogeneity and it was presented 

by Chattopadhyay et al. [9].  Kakar and Kakar [15] discussed Love waves 

in a non-homogeneous elastic media, Kakar and Gupta [16] purposed Love 

waves in a non-homogeneous orthotropic layer under ‘P’ overlying semi-

infinite non-homogeneous medium. Roy [17] studied wave propagation in a 

thin two-layered. Datta [18] discussed surface waves in an elastic solid 

medium with the gravity field. Goda [19]
 
studied the effect of non-

homogeneity and anisotropy on Stoneley waves.  

The Dirac delta function or δ function known as the unit impulse function is 

a function on the real number line i.e. 0 (zero) everywhere except at 0 

(zero), with an integral of one over the whole real line [6]. It is a 

mathematical abstraction which is used to approximate some physical 

phenomenon. The δ function can be considered of as a rectangular pulse that 

increases narrower and narrower while simultaneously increasing larger and 

larger. The Dirac delta function is a defined by 
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such that, for any function  f x  that possesses a Taylor series at 0x x , 
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Another way to write Eq. (b) is 
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Some analytic representations of δ function are 
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which are simply distributions with vanishing width. An idealized point 

source of wave can be described using the delta function. [7].  

Further, Green’s function method is very useful to solve heterogeneous 

differential equations subject to certain boundary conditions. That is why; 

we take Green’s function technique to solve the problem of wave 

propagation. Also, it is a strong mathematical tool to work out asymptotic 

approximations of solutions of differential equations. There are many papers 

on Green’s function techniques available in the literatures, a few are Vaclav 
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and Kiyoshi [10], Kazumi and Robert [11, 12], Popov [13] and George and 

Christos [14].  

Here we discuss the influence of point source on the propagation of SH-

waves in non-homogeneous elastic layer. The δ function is taken as the 

point source. The rigidity and density of the intermediate layer are assumed 

to vary exponentially as function of depth. Green's function technique and 

Fourier transform are used to obtain dispersion equation for the intermediate 

layer. The equation of transmitted wave in the lower medium is also 

calculated. Various curves are plotted for dispersion equation to show the 

effects of inhomogeneity on SH-wave in the intermediate layer.  
 

2  Formulation of the problem 
 

The medium to be considered is contained between parallel plane surfaces, 

infinite in extent. The upper plane surface is supposed free from stress, and 

the lower surface rigidly fixed. We shall assume that the seismic wave is 

travelling along x-axis and z-axis is taken vertically downwards. P is point 

source of disturbance and is taken at the line of intersection of the interface 

and z- axis (Fig. 1). Let 1 1,   be the rigidity and density of the first half-

space layer. Let 3 3,   be the rigidity and density of the lower half-space 

layer.  

 

The variations of inhomogeneous parameters in the intermediate layer are 

 

2 2(1 ), (1 ).z ze e                (1) 

 

where ' '  is small positive real constant and having dimensions m
-1

. 

 

The equation of motion for line source can be written as  

 

, ,ij j i iF u            (2) 

 

where 
ij are the stress components,  is the density of the medium and 

iF are body forces. 

 

For shear wave propagation along the x-axis, we have 

 

0, 0, ( , , ),u w v v x z t     (3)  

 



 

 

 

 

Seismic Wave in Non-homogeneous Intermediate Layer  353 

Therefore, the equation of motion for upper homogeneous isotropic medium 

is ( , , 0)x y z     
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Taking 1 1( , , ) ( , ) i tv x z t v x z e   in Eq. (5)  
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Fig. 1 Geometry of the problem 
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where, 2 21
1

1

k




  

 

Similarly, the equation of motion for lower homogeneous isotropic medium 

is ( , ,0 )x y z     
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The equation of motion for intermediate inhomogeneous isotropic medium 

is ( , ,0 )x y z H     
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( )r is the disturbances produced by the impulsive force at P. In terms of 

Dirac-delta function, these disturbances can be written as 

 

( ) ( ) ( ),r x z H        (11) 

 

Inserting Eq. (11) in Eq. (10), Hence equation of motion for the 

inhomogeneous layer in terms of point source is given by 
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Put 2 2( , , ) ( , ) i tv x z t v x z e   in Eq. (12) 
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From Eq. (1) and Eq. (13), we get 
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Dividing Eq. (14) throughout by and rearranging, we get 
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3  Boundary conditions 
 

The geometry of the problem leads to the following conditions 
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3. Stability conditions: 
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4. Stability conditions: 
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4  Solution of the problem 
 

To solve Eq. (7), Eq. (9) and Eq. (15), the following transforms are used. 
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The inverse Fourier transform is given as 
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In terms of Fourier transforms, Eq. (15) can be written as 
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Eqs (18-20) are solved by Green’s Function technique under the prescribed 

boundary conditions in Eqs (16a), (16b), (16c) and (16d). First of all take 

the middle layer and it is solved with the help of Green’s function 2 0( )G z z , 

Stakgold [20]. The Eq. (20) will satisfy 2 0( )G z z as 
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The homogeneous boundary conditions are: 

 

2 0( )
0.

dG z z

dz
   at z=0, H  (22) 

 

where 0z is arbitrary line in the medium 2. Multiplying Eq. (20b) 

by 2 0( )G z z , Eq. (21) by 2 ( , )V z , subtracting and integrating with respect to 

z from z=0 to z=H, we get 
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Similarly, if 1 0( )G z z and 3 0( )G z z are Green’s functions corresponding to 
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Multiplying Eq. (19) by 3 0( )G z z , Eq. (25) by 3( , )V z , subtracting and 

integrating, we get 
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Replacing z by 0z and using symmetry of Green’s function, Eq. (23), Eq. 

(26) and Eq. (27) become 
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Using boundary condition (16a) in Eq. (28), we get 
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Similarly, using boundary condition (16b) in Eq. (28), we get 
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Using Eq. (31) and Eq. (32) in Eq. (28), substituting the value of 2 0( )z and 

using the property of delta function, we get 
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where, 3 3 2( / ) , ( / ) ( / 0).C G H H A D G H H G H   

 

2 ( )V z can be found from Eq. (33) which is an integral equation . Also the 

value of 2 ( )V z can be obtained by using successive approximations and this 

will give the displacement in the intermediate inhomogeneous layer. First of 

all we neglect the terms having , we get 
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Now put Eq. (34) back in the right hand side of Eq. (33), we get 
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where, 
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We see that Eq. (35) completely represents the elastic displacements which 

are due to a unit impulsive force in space and time. Here in Eq. (35); G1, G2 

and G3 are unknown. We adopt the following method to find the unknown 

Green’s function so that the value of 2 ( )V z  can be determined from Eq. 

(35). 

 

We have considered 1 0( / )G z z  as a solution of Eq. (18). 

 

A solution of Eq. (18) can also be found as 

 
2

2

2
0

d L
L

dz
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The two independent solutions of Eq. (36) will vanish at z    and 

z   are 

 

1 2( ) ( )z zL z e and L z e     (37) 

 

Hence, the solution of Eq. (36) for an infinite medium is 

1 2 0
0

1 0 2
0

( ) ( )
,

( ) ( )
.
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M

L z L z
for z z

M
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

   (38) 

 

where, / /

1 2 2 1( ) ( ) ( ) ( ) 2M L z L z L z L z     . 

 

Hence, we can write the solution of Eq. (18) as 

 
0

.
2
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
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     (39) 

 

Since 1 0( )G z z  is to satisfy the condition (Eq. (24) 
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Therefore, we assume that 
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The conditions as mentioned in Eq. (40) give 
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Similarly 
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Green’s function 2 0( )G z z  for the intermediate inhomogeneous layer can be 

obtained in the similar manner as above by using the boundary conditions 

Eq. (16a) and Eq. (16b). 

 

0 0 0 0

0

( ) ( ) ( ) ( )

2 0

1
( ) .

2

z H H z H z H z
z z z z

H H H H

e e e e
G z z e e e

e e e e

   
  

   

      
  

 

     
       

     

  (44) 

 

Substitute the value of Eq. (42), Eq. (43) and Eq. (44) in Eq. (35), 

simplifying and neglecting square and higher powers of , we get 
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Taking inverse Fourier transform of Eq. (45), the displacement in the 

intermediate inhomogeneous layer is 
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Eq. (46) is obtained by performing contour integration. The dispersion 

equation of surface waves in non-homogeneous elastic media subjected to 

point source will be obtained by equating the denominator of the above 

integral with zero.  

 

Replacing   by ik  , the dispersion relation will become 
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    (47) 

 

Special Case 
 

In the absence of non-homogeneity i.e.  =0, the relation reduces to 
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The Eq. (48) is the dispersion relation for love waves in homogeneous 

media given by Ewing et al. [3]. 

 

5  Transmitted waves 
 

The equation for the transmitted surface waves can be obtained from Eq. 

(46). We note that the poles of the integral are roots P 2, n (n=1, 2, 3...) of 
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Simplifying, we get 
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2,2, 2,

2,, .
nn n

np p
k k

 
 

 
 

 
 

Eq. (49) is the expression for surface waves travelling in the x-axis. 

 

6  Numerical analysis 
 

The effects of non-homogeneity in the intermediate layer are studied 

numerically by taking parameters in following table Gubbins, [21]. In fig. 2, 

the various curves are plotted between kH  v/s   at various values of 

non-homogeneity parameter
 

/

2 24 k





  by taking values of 

/ = 0.1 to 

0.4. In fig. 3, we have shown the effect of another non-homogeneity 

factor
 

/ /

2 24

H

k





  by taking 

/ / = 0.0 to 0.4.   Here, the various curves 

are plotted between kH v/s . The amplitude of the scattered waves falls 

off very rapidly as the kH increases slowly. The amplitude of the reflected 

SH-wave decreases rapidly with the kH and ultimately becomes saturated 

which shows that the reflected SH-wave take a very long time to dissipate 

making these the most destructive waves during the earthquake. It is clear 

from graphs that the phase velocity of SH-waves is affected by non-

homogeneity parameters. 

 

Table Material Parameters 

Layer Rigidity Density 

I 10 2

1 6.54 10 /N m    3

1 3409 /Kg m   

II 10 211.77 10 /N m    34148 /Kg m   

III 10 2

3 8.84 10 /N m    
3

3 3944 /Kg m   
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Fig. 2 Dispersion of SH-wave for 
/  

  

 

 
 

Fig. 3 Dispersion of SH-wave for 
/ /  
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7  Conclusions 
 

In this problem we assume the upper layer and lower layer to be 

homogeneous, isotropic and semi infinite, whereas the intermediate layer is 

taken non-homogeneous isotropic with exponential variation in rigidity and 

density. We have employed Green’s function method to find the frequency 

equation due to a line source. Displacement in the intermediate layer is 

derived in closed form and the dispersion curves are drawn for various 

values of inhomogeneity parameters. Eq. (47) gives the dispersion of surface 

waves in non-homogeneous elastic media subjected to point source. We 

observe that 

 

1. Dimensionless wave number kH  and the inhomogeneity 

parameters (
/  and

/ / ) affect the phase velocity of surface waves. 

In general, phase velocity decreases with increase in wave number 

kH  but at a particular value of kH , phase velocity increases with 

increase in 
/  and 

/ / . 

 

2. Effects of inhomogeneity parameters (
/  and

/ / ) on phase velocity 

are negligible after certain range of dimensionless wave number kH . 
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