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Abstract

We propose new entropy type conditions for the scalar conserva-

tion law with discontinuous flux and prove existence and uniqueness of

appropriate entropy solutions.
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1 Introduction

We consider the following problem:

{

∂tu+ ∂x (H(x)f(u) +H(−x)g(u)) = 0, (x, t) ∈ IR× IR+,

u|t=0 = u0(x) ∈ L∞(IR), x ∈ IR,
(1)

where H is the Heaviside function.
We assume that the functions f and g are non-negative, continuously dif-

ferentiable in the interval [0, 1], and such that f(0) = f(1) = g(0) = g(1) = 0.
For the initial condition u0, we assume that 0 < u0(x) < 1, x ∈ R.

Equations like (1) have received a considerable amount of attention in re-
cent past since they occur in a variety of applications, including flow in porous
media, sedimentation processes, traffic flow, radar shape-from-shading prob-
lems, blood flow, and gas flow in a variable duct.

Assume, for instance, that we want to describe oil flow in a heterogeneous
media (so called two phase flow) or traffic flow on a road on which condi-
tions are not homogeneous. Then, the unknown function u(x, t) represents oil
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saturation (or car concentration) at the moment t and the point x. Roughly
speaking, if u(x, t) = 0 then there is no oil at the point x (or no cars at the
point of the road) while if u(x, t) = 1 the saturation is maximal (or the road
is filled with cars). Therefore, it is standard to assume that the functions g(u)
and f(u) are zero if u /∈ (0, 1) (or some other finite interval since there is no
sense to consider equation for values that u can not possibly reach).

Problem (1) is not interesting only from the viewpoint of applications but
also from purely mathematical reasons. It appeared that the it is rather com-
plex and that it is not possible to directly generalize methods from the theory
of scalar conservation law with smooth flux [10].

In the case of a scalar conservation law with smooth flux, the existence
was proved by the shifting of variables method applied on a sequence of so-
lutions to the corresponding Cauchy problem regularized with the vanishing
viscosity. The method does not give results if the flux is discontinuous. There-
fore, we need to apply more subtle arguments involving singular mapping [15],
compensated compactness [9] or H-measures [2, 14].

Even more difficult is the question of uniqueness of a weak solution to (1).
As well known, considered problem has several weak solutions satisfying the
same initial condition. Therefore, we have to find additional conditions which
should be satisfied by a weak solution in order to single out the proper one
(admissible one).

Many different criterions were proposed in the past. We mention mini-
mal variation criterion [6], Γ condition [5], entropy conditions [8], vanishing
capillary pressure limit [7], admissibility conditions via adapted entropies [3],
geometric type conditions [1]. In every of the mentioned approach, the as-
sumption on existence of traces for an admissible solution plays a crucial role.
Still, the question of existence of traces is very complicated in itself (see e.g.
[11, 13]).

Successful attempt on settling the uniqueness and existence issue for a
special case of (1) without using traces or a non-degeneracy condition was
made in [4]. Their proof is based on the kinetic formulation of conservation
laws [12].

A question posed there is whether it is possible to prove existence and
uniqueness for (1) by using only Kruzhkov’s technique of doubling of variables.
Here, also with no hypothesis of convexity or genuine nonlinearity on g and f ,
we give a positive answer on that question.

2 Uniqueness and Existence of the Admissible

Weak Solution

Before we introduce a definition of admissibility, we will try to motivate it.
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Take the following step function k(x) =

{

kL, x > 0

kR, x ≤ 0
for positive constants

kL and kR, and consider the following special situation of (1) (this is the
equation considered in [4]):

∂tu+ ∂xk(x)g(u) = 0, (2)

where g is taken from (1), and we additionally assume that g is convex on
(0, 1).

Then, assume that kL > kR > 0 and consider (1) as the following Riemann
problem:

kt = 0, ∂tu+ ∂x(kg(u)) = 0,

k|t=0 =

{

kL, x < 0

kR, x > 0,
u|t=0 = u0(x) =

{

uL, x < 0,

uR, x > 0.

(3)

Also, assume that 0 < uL, uR < 1. We look for the weak solution of (3) which
is admissible in the Lax sense. Note that there could be several admissible
weak solutions since the system is not strictly hyperbolic.

We find eigenvalues λ1, λ2 of the Jacobian of the flux F = (0, kg(u)).
Clearly, λ1 = 0, λ2 = kg′(u). Since both characteristics fields are either
linearly degenerate (the first one) or genuinely nonlinear (the second one) on
the set (kR, kL)× (0, 1) the Lax conditions are rather natural demand here. It
is not difficult to see that an admissible weak solution to (3) has the form:

k(x, t) = k(x) =

{

kL, x < 0

kR, x > 0,
u(x, t) =























uL, x < g(uL)
uL−1

t,

1, g(uL)
uL−1

t < x < 0,

0, 0 < x < g(uR)
uR

t,

uR,
g(uR)
uR

t < x,

(4)

where the states (kL, uL) and (kL, 1), as well as (kR, 0) and (kR, uR) are con-
nected by 2-shock waves, while the states (kL, 1) and (kR, 0) are connected by
1-contact discontinuity.

So, one of ’natural’ jumps with discontinuity at the interface x0 = 0 is the
one connecting uL = 1 and uR = 0. Since uL and uR from (3) are arbitrary,
the latter implies that any admissible weak solution should have values close
to uL = 1 in the left neighborhood of x0 = 0 and values close to uR = 0 in the
right neighborhood of x0 = 0 which is obvious shortcoming of our admissibility
concept. On the other hand, it appears that we can apply similar concept for
(1).

Furthermore, if we model e.g. traffic flow problem, solutions such as ours
are possible. For instance, if we are on the road which is divided by a point
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which is completely impermeable (such as a ramp) then we will have exactly
the solution which we propose. Furthermore, in our admissibility setting, it is
easy to prove uniqueness – the paper perfectly fits into the standard Kruzhkov
theory, and also to construct admissible solution to (1).

We stress that, although it is a rather special, the mentioned situation was
not covered in any of the previous works.

First, we need auxiliary notion of admissibility. L1(IR)-closure of the set of
weak solutions to (1) satisfying such admissibility conditions will be set of all
admissible weak solutions.

Definition 1. Let u ∈ L∞(R×R) represents a weak solution to (1). We say
that u is the germ admissible weak solution (g.a.w.s) to (1) if for every c ∈ R

and every non-negative ϕ ∈ C∞

0 ([0, T )×R) there exists a positive constant σ0
such that for every σ < σ0, it holds:

∫ T

0

∫

∞

0

|u(x, t)− c|∂tϕ(x, t)dx (5)

+

∫ T

0

∫

∞

0

sgn(u(x, t)− c)(f(u(x, t))− f(c))∂xϕ(x, t)dxdt

+

∫

∞

0

|u0(x)− c|ϕ(0, x)dx−

∫ T

0

1

σ

∫ σ

0

(f(u(x, t))− f(c))ϕ(x, t)dxdt ≥ 0

and
∫ T

0

∫ 0

−∞

|u(x, t)− c|∂tϕ(x, t)dxdt (6)

+

∫ T

0

∫ 0

−∞

sgn(u(x, t)− c)(g(u(x, t))− g(c))∂xϕ(x, t)dxdt

+

∫ 0

−∞

|u0(x)− c|ϕ(0, x)dx−

∫ T

0

1

σ

∫ 0

−σ

(g(u(x, t))− g(c))ϕ(0, t)dt ≥ 0.

Theorem 2. For every T > 0 and every non-negative ϕ ∈ C∞

0 ([0, T )×R), the
g.a.w.s. solutions u and v to (1) with the initial conditions u0 and v0 satisfy
for almost every t ∈ [0, T ):

∫

R

|u(x, t)− v(x, t)|dx ≤

∫

R

|u0(x)− v0(x)|dx. (7)

Proof: We use standard doubling of variables technique. Denote by
ΦL(u, v) = sgn(u− v)(g(u)− g(v)) and ΦR(u, v) = sgn(u− v)(f(u)− f(v)).

Instead of c in (5) we put c = v(x̄, t̄). Instead of φ from (5) we put
ϕ = ϕ(x, t, x̄, t̄) = ψ(x+x̄

ν
, t+t̄

ν
) 1
ν2
ρ( t−t̄

2ν
)ρ(x−x̄

2ν
).
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We get after integrating (5) over (x̄, t̄) ∈ (0,∞)× [0, T ):

∫ T

0

∫

∞

0

∫ T

0

∫

∞

0

|u(x, t)− v(x̄, t̄)|∂tϕ + ΦR(u(x, t), v(x̄, t̄)∂xϕdxdtdx̄dt̄ (8)

−

∫ T

0

∫

∞

0

∫ T

0

1

σ

∫ σ

0

(f(u(x, t))− f(v(x̄, t̄)))ϕ(x, t, x̄, t̄)dxdtdx̄dt̄

+

∫ T

0

∫

∞

0

∫

∞

0

|u0(x)− v0(x̄, t̄)|ϕ(x, 0, x̄, t̄)dxdx̄dt̄ ≥ 0.

Then, we change places to u and v and sum such obtained inequality with (8).
We get:

∫ T

0

∫

∞

0

∫ T

0

∫

∞

0

|u(x, t)−v(x̄, t̄)|∂tψ(
x+x̄

2
,
t+ t̄

2
)× (9)

×
1

ν2
ρ(
t− t̄

2ν
)ρ(

x−x̄

2ν
)dxdtdx̄dt̄

+

∫ T

0

∫

∞

0

∫ T

0

∫

∞

0

ΦR(u(x, t), v(x̄, t̄)∂xψ(
x+x̄

2
,
t+ t̄

2
)×

×
1

ν2
ρ(
t− t̄

2ν
)ρ(

x−x̄

2ν
)dxdtdx̄dt̄

−

∫ T

0

∫

∞

0

∫ T

0

1

σ

∫ σ

0

(f(u(x, t))−f(v(x̄, t̄)))ψ(
x+x̄

2
,
t+ t̄

2
)×

×
1

ν2
ρ(
t− t̄

2ν
)ρ(

x−x̄

2ν
)dxdtdx̄dt̄

−

∫ T

0

∫

∞

0

∫ T

0

1

σ

∫ σ

0

(f(v(x, t))−f(u(x̄, t̄)))ψ(
x+x̄

2
,
t+ t̄

2
)×

×
1

ν2
ρ(
t− t̄

2ν
)ρ(

x−x̄

2ν
)dxdtdx̄dt̄

+

∫ T

0

∫

∞

0

∫

∞

0

|u0(x)− v(x̄, t̄)|ψ(
x+ x̄

2
,
t̄

2
)
1

ν2
ρ(
−t̄

2ν
)ρ(

x− x̄

2ν
)dxdx̄dt̄

+

∫ T

0

∫

∞

0

∫

∞

0

|u(x̄, t̄)− v0(x)|ψ(
x+ x̄

2
,
t̄

2
)
1

ν2
ρ(
−t̄

2ν
)ρ(

x− x̄

2ν
)dxdx̄dt̄ ≥ 0.
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We apply the same procedure on inequality (6) and get

∫ T

0

∫ 0

−∞

∫ T

0

∫ 0

−∞

|u(x, t)− v(x̄, t̄)|∂tψ(
x+ x̄

2
,
t+ t̄

2
)× (10)

×
1

ν2
ρ(
t− t̄

2ν
)ρ(

x− x̄

2ν
)dxdtdx̄dt̄

+

∫ T

0

∫ 0

−∞

∫ T

0

∫ 0

−∞

ΦL(u(x, t), v(x̄, t̄))∂xψ(
x+ x̄

2
,
t+ t̄

2
)×

×
1

ν2
ρ(
t− t̄

2ν
)ρ(

x− x̄

2ν
)dxdtdx̄dt̄

−

∫ T

0

∫ 0

−∞

∫ T

0

1

σ

∫ 0

−σ

(g(u(x, t))−g(v(x̄, t̄)))ψ(
x+x̄

2
,
t+ t̄

2
)×

×
1

ν2
ρ(
t− t̄

2ν
)ρ(

x−x̄

2ν
)dxdtdx̄dt̄

−

∫ T

0

∫ 0

−∞

∫ T

0

1

σ

∫ 0

−σ

(g(v(x, t))−g(u(x̄, t̄)))ψ(
x+x̄

2
,
t+ t̄

2
)×

×
1

ν2
ρ(
t− t̄

2ν
)ρ(

x−x̄

2ν
)dxdtdx̄dt̄

+

∫ T

0

∫ 0

−∞

∫ 0

−∞

|u0(x)− v(x̄, t̄)|ψ(
x+ x̄

2
,
t̄

2
)
1

ν2
ρ(
−t̄

2ν
)ρ(

x− x̄

2ν
)dxdx̄dt̄

+

∫ T

0

∫ 0

−∞

∫ 0

−∞

|u(x̄, t̄)− v0(x)|ψ(
x+ x̄

2
,
t̄

2
)
1

ν2
ρ(
−t̄

2ν
)ρ(

x− x̄

2ν
)dxdx̄dt̄ ≥ 0.

Then, we add (9) and (10) and let ν → 0. We get:

∫ T

0

∫

R

|u(x, t)− v(x, t)|∂tψ(x, t)dx (11)

+

∫ T

0

∫

R

(ΦL(u(x, t), v(x, t)) + ΦR(u(x, t), v(x, t))) ∂xψ(x, t)dxdt

+

∫

R

|u0(x)− v0(x)|ψ(0, x)dx ≥ 0.

Estimate (7) follows from (11) by standard choice of the test function (see
[10]).

2

Notice that the shock wave (more precisely, the contact discontinuity):

u(t, x) =

{

1, x < 0

0, x ≥ 0
, t ∈ IR+,
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is a g.a.w.s. to the conservation law from (1) with appropriate initial condi-
tions. Also, notice that any g.a.w.s. to (1) must satisfy the Kruzhkov entropy
admissible conditions for test functions supported out of the interface x0 = 0.

Using this observation, we can prove:

Theorem 3. For every function u0 ∈ L1(IRd), 0 ≤ u0 ≤ 1, such that there
exists ε > 0 satisfying

u0(x) =

{

1, −ε ≤ x < 0

0, 0 ≤ x < ε
(12)

there exists g.a.w.s. to (1).

Proof: First, denote by

uL0 (x) =

{

u0(x), x ≤ −ε

1, x > −ε.

Then, denote by uL ∈ L1 ∩ L∞(IR × IR+) the Kruzhkov entropy admissible
solution to the following Cauchy problem:

∂tu
L + ∂xg(u

L) = 0

u|t=0 = uL0 .

Clearly, it holds:
uL(x, t) ≡ 1, t ∈ IR+, x ≤ −ε,

and, according to the maximum principle, 0 ≤ uL ≤ 1.
Indeed, notice that if the left state of a weak solution u to (1) is equal to

one then only admissible simple wave corresponding to such left state is either
(see Figure 1)

• the shock wave moving toward −∞ since it moves with the velocity
c = g(1)−g(U)

1−U
≤ 0 (since 0 ≤ U ≤ 1), and the germ entropy admissibility

conditions coincides with the standard Kruzhkov entropy admissibility
conditions for x ≤ −ε; or

• the rarefaction wave whose points moves along the characteristics. Since
g′(1) ≤ 0, a point corresponding to the state u = 1 must move away from
the interface x0 = 0.

Similarly, let uR ∈ L1 ∩ L∞(IR × IR+) the Kruzhkov entropy admissible
solution to the following Cauchy problem:

∂tu
R + ∂xg(u

R) = 0

uR|t=0 =

{

u0(x), x ≥ ε

0, x < ε.
.
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As for the function uL, it holds:

uR(x, t) ≡ 1, t ∈ IR+, x ≥ ε,

and 0 ≤ uR ≤ 1.

The germ weak admissible weak solution to (1) where u0 is given by (12)
is given by:

u(x, t) =



















uL(x, t), x ≤ −ε

1, −ε ≤ x < 0

0, 0 ≤ x < ε

uR(x, t), x ≥ ε,

since in a neighborhood of the interface x0 = 0 we have the germ weak ad-
missible contact discontinuity, while out of the neighborhood the Kruzhkov
admissibility conditions are satisfied.

6

-

�
-

ε−ε

..

..

..

.

.......

1

u0

x

Figure 1: Arrows show directions of propagation of appropriate waves.

2

Now, we introduce definition of thickened admissibility. The term ”thick-
ened” was (indirectly) proposed by J.Vovelle.

Definition 4. We say that the function u ∈ L1 ∩L∞(IR+ × IR) is a thickened
admissible weak solution (t.a.w.s.) to (1) if for every ε > 0 there exists a
g.a.w.s. uε ∈ L1 ∩ L∞(IR) corresponding to the initial conditions u0ε ∈ L1 ∩
L∞(IR) such that ‖u− uε‖L1(IR×[0,T ]) ≤ Tε, T > 0, and ‖u0 − u0ε‖L1(IR) ≤ ε.

Theorem 5. For every u0 ∈ L1 ∩ L∞(IR), there exists a unique t.a.w.s. to
(1).

Moreover, any two a.w.s. u and v to (1) corresponding to the initial data
u0 and v0, respectively, satisfy:

‖u− v‖L1([0,T ]×IR) ≤ T‖u0 − v0‖L1(IR). (13)
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Proof: First, we construct the g.a.w.s. uε such that ‖u− uε‖L1(IR×[0,T ]) ≤
Tε.

We consider the following approximation to (1):

{

∂tu+ ∂x(g(u)H(−x) + f(u)H(x)) = 0,

u|t=0 = u0ε(x) ∈ L1(R) ∩ L∞(R),
(14)

where

u0ε(x) =











1, −ε ≤ x < 0

0, 0 ≤ x < ε

u0(x), else.

According to Theorem 3, there exists g.a.w.s. uε to (14).
Now, for two parameters ε1, ε2 > 0, we have two germ admissible solutions

uε1 and uε2 to (14) with the initial conditions u0ε1 and u0ε2. According to
Theorem 2, it holds

∫

R

|uε1(x, t)− uε2(x, t)|dx ≤

∫

R

|u0ε1(x)− u0ε2(x)|dx,

implying that uε strongly converges in L1
loc(IR× IR+).

Clearly, L1
loc limit of the family (uε) will represent the thickened admissible

weak solution to (1) in the sense of Definition 4.
Now, take two t.a.w.s. u and v to (1) corresponding to the initial data u0

and v0, respectively. It holds for appropriate g.w.a.s. uε and vε according to
Theorem 2:

‖u− v‖L1(IR×[0,T ])

≤ ‖u− uε‖L1(IR×[0,T ]) + ‖uε − vε‖L1(IR×[0,T ]) + ‖v − vε‖L1(IR×[0,T ])

≤ ε+ T‖u0ε − v0ε‖L1(IRd) + ε.

Letting ε→ 0 here, we immediately reach to (13).
2
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