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Abstract

This paper investigates ruin probabilities in a discrete-time risk

model, where the premiums are modelled by a Markov chain, while the

claims and interest rates follow two first-order autoregressive processes.

Recursive and integral equations are given for ruin probabilities in the

risk model. Inequalities for ruin probability are derived by recursive

techniques.
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1 Introduction

Modern insurance businesses allow insurers to invest their wealth into financial
assets. Since a large part of the surplus of insurance businesses comes from
investment income, actuaries have been studying ruin problems under risk
models with interest force. For example, Sundt and Teugels [6, 7] studied the
effects of constant rate on the ruin probability under the compound Poisson
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risk model. Yang [9] established both exponential and non-exponential upper
bounds for ruin probabilities in a risk model with constant interest force and
independent premiums and claims. Cai [1] investigated the ruin probabilities
in two risk models with independent premiums and claims and used a first-
order autoregressive process to model the rates of interest. Cai and Dickson [2]
obtained Lundberg type inequalities for ruin probabilities in two discrete-time
risk processes with a Markov chain interest model and independent premiums
and claims.

In classic risk theory, the surplus process of insurance businesses is assumed
to have independent and stationary increments. However, because of the in-
creasing complexity of insurance and reinsurance products, this assumption
seems more and more unrealistic in insurance practice. Thus, actuaries have
been paying more and more attention to the modelling of dependent risks.
For example, Gerber [3] assumed that the surplus process could be written
as an initial surplus plus the annual gains and used a linear model to model
the annual gains. Yang and Zhang [10] investigated a discrete-time risk model
with constant interest force and adopted first-order autoregressive processes
to model both the premiums and claims.

In this paper, we investigate the ruin probabilities of a discrete-time risk
model. In the model, the premiums are modelled by a Markov chain, while
both the claims and the rates of interest follow two first-order autoregressive
processes. Recursive and integral equations for the finite-time and ultimate
ruin probabilities are established by using renewal recursive technique. Gen-
eralized Lundberg inequalities for ruin probabilities are derived.

Let {Xn, n = 1, 2, . . . } be the amount of premiums collected in each period
and modelled by a Markov chain. Denote the state space of the Markov chain
{Xn, n = 0, 1, . . . } by {x0, x1, . . . }. Suppose that for all n = 0, 1, 2, . . . and all
states xt, xs, xt0 , xt1 , . . . , xtn−1

,

P(Xn+1 = xt | Xn = xs, Xn−1 = xtn−1
, . . . , X1 = xt1 , X0 = xt0)

=P(Xn+1 = xt | Xn = xs) = pst ≥ 0, s, t = 0, 1, 2, . . . , (1)

where
∑∞

t=0 pst = 1 for all s = 0, 1, 2, . . . . Relation (1) is called the Markov
property of {Xn, n = 0, 1, 2, . . .}.

Let {Yn, n = 1, 2, . . . } be the amount of claims in each period and modelled
by a first-order autoregressive process, namely,

Yn = aYn−1 +Wn, n = 1, 2, . . . , (2)

where Y0 = y0 ≥ 0 and 0 ≤ a < 1 are two constants and {Wn, n = 1, 2, . . . }
is a sequence of independent, identically distributed, and nonnegative random
variables. One possible interpretation of model (2) is the following: the pa-
rameter a can be interpreted as the proportion of the old business, which will
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remain in the new portfolios; while Wn denotes the uncertainty to the n-th
period’s claims.

Let {In, n = 1, 2, . . . } be the rates of interest and also modelled by a first-
order autoregressive process, namely,

In = bIn−1 + Zn, n = 1, 2, . . . , (3)

where I0 = i0 ≥ 0 and 0 ≤ b < 1 are two constants and {Zn, n = 1, 2, . . . }
is a sequence of independent, identically distributed and nonnegative random
variables.

Assume the processes {Xn, n = 1, 2, . . . }, {Wn, n = 1, 2, . . . } and {Zn, n =
1, 2, . . . } are mutually independent, and denote G(z) = P(Z1 ≤ z) and F (w) =
P(W1 ≤ w) with F (0) = 0.

Suppose the claims are paid at the end of each period and the premiums are
collected at the beginning of each period. Then, the surplus process {Un, n =
1, 2, . . . } with initial surplus u ≥ 0 can be written as

Un = (Un−1 +Xn)(1 + In)− Yn, (4)

which can be rearranged as

Un = u

n∏

k=1

(1 + Ik) +
n∑

k=1

(
(Xk(1 + Ik)− Yk)

n∏

j=k+1

(1 + Ij)

)
, (5)

where
∏t

j=s(1 + Ij) = 1 if s > t.
Denote finite-time ruin probability and ultimate ruin probability of model

(5) with models (1)-(3) and initial surplus u ≥ 0, respectively, by

Ψn(u, xs, y0, i0) = P

(
n⋃

j=1

{Uj < 0}

)
, Ψ(u, xs, y0, i0) = P

(
∞⋃

j=1

{Uj < 0}

)
.

It is clear that

lim
n→∞

Ψn(u, xs, y0, i0) = Ψ(u, xs, y0, i0).

2 Recursive and integral equations for ruin

probabilities

Throughout this paper, denote the tail of any distribution function B by
B(x) = 1 − B(x). In this section, we give the recursive equation for Ψn

and the integral equation for Ψ by using the renewal recursive technique.
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Theorem 2.1. For n = 1, 2, . . . , we have

Ψn+1(u, xs, y0, i0)

=

∞∑

t=0

pst

∫ ∞

0

(
F (~t,z) +

∫
~t,z

0

Ψn(~t,z − w, xt, y, i)dF (w)

)
dG(z),

and

Ψ(u, x(1), z(1), y0, w0, is)

=

∞∑

t=0

pst

∫ ∞

0

(
F (~t,z) +

∫
~t,z

0

Ψ(~t,z − w, xt, y, i)dF (w)

)
dG(z)

with

~t,z = (u+ xt)(1 + i)− ay0, y = ay0 + w, i = bi0 + z. (6)

Proof. Given X1 = xt, W1 = w and Z1 = z, by (5),

U1 = (u+X1)(1 + I1)− Y1

= (u+ xt)(1 + bi0 + z)− ay0 − w := ~t,z − w.

Thus, if w > ~t,z, then,

P(U1 < 0 | X1 = xt,W1 = w,Z1 = z) = 1.

Hence, P
(⋃n+1

k=1{Uk < 0} | X1 = xt,W1 = w,Z1 = z
)
= 1.

Let {X̃n, n = 0, 1, 2, . . . }, {W̃n, n = 1, 2, . . . } and {Z̃n, n = 1, 2, . . . } be
independent copies of {Xn, n = 0, 1, 2, . . . }, {Wn, n = 1, 2, . . . } and {Zn, n =

1, 2, . . . }, respectively. Given W1 = w, consider a process {Ỹn, n = 1, 2, . . . }
described as

Ỹn = aỸn−1 + W̃n,

where Ỹ0 = ay0 + w = y. Clearly, {Ỹn, n = 1, 2, . . . } has a similar structure
to that of {Yn, n = 1, 2, . . . }, but with different initial values. Given Z1 = w,

consider a process {Ĩn, n = 1, 2, . . . } defined as

Ĩn = bĨn−1 + Z̃n,

where Ĩ0 = bi0 + z = i. Trivially, {Ĩn, n = 1, 2, . . . } has a similar structure to
that of {In, n = 1, 2, . . . } but with different initial values. Thus, if 0 ≤ w ≤
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~t,z, from (5) we have

P

(
n+1⋃

k=1

{Uk < 0}
∣∣∣X1 = xt,W1 = w,Z1 = z

)

= P

(
n+1⋃

k=2

{Uk < 0}
∣∣∣X1 = xt,W1 = w,Z1 = z

)

= P

(
n+1⋃

k=2

{
(~t,z − w)

k∏

j=2

(1 + Ij)

+
k∑

j=2

(Xj(1 + Ij)− Yj)
k∏

t=j+1

(1 + It) < 0

} ∣∣∣X1 = xt

)

= P

(
n⋃

k=1

{
(~t,z − w)

k∏

j=1

(1 + Ĩj)

+

k∑

j=1

(X̃j(1 + Ĩj)− Ỹj)

k∏

t=j+1

(1 + Ĩt) < 0

} ∣∣∣ X̃0 = xt

)

= Ψn(~t,z − w, xt, y, i),

where in the second step we used the Markov property of {Xn, n = 0, 1, 2, . . .}
and the independence among {Xn, n = 0, 1, 2, . . .}, {Wn, n = 1, 2, . . . }, and
{In, n = 1, 2, . . . }.

Therefore, by conditioning on X1, W1 and Z1, we can get

Ψn+1(u, xs, y0, i0) = P

(
n+1⋃

k=1

{Uk < 0}

)

=
∞∑

t=0

pst

∫ ∞

0

∫ ∞

0

P

(
n+1⋃

k=1

{Uk < 0}
∣∣∣X1 = xt,W1 = w,Z1 = z

)
dF (w)dG(z)

=
∞∑

t=0

pst

∫ ∞

0

(∫ ∞

~t,z

dF (w) +

∫
~t,z

0

Ψn(~t,z − w, xt, y, i)dF (w)

)
dG(z)

=
∞∑

t=0

pst

∫ ∞

0

(
F (~t,z) +

∫
~t,z

0

Ψn(~t,z − w, xt, y, i)dF (w)

)
dG(z).

The integral equation for Ψ in Theorem 2.1 follows immediately by letting
n → ∞ in the equation above and dominated convergence theorem.
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3 Inequality for ruin probability

Using the recursive equation for Ψn in Section 2, we can derive a Lundberg-
type upper bound for ultimate ruin probability Ψ. To this end, we need the
following proposition.

Proposition 3.1. For all s = 0, 1, 2, . . . , assume that E[(1+a)W1+ay0] <
E(X1 | X0 = xs) and there exists some constant τs > 0 such that

E[eτs [(1+a)W1−X1+ay0] | X0 = xs] = 1, (7)

then, with γ = min0≤s<∞{τs},

E[eγ[(1+a)W1−X1+ay0] | X0 = xs] ≤ 1, s = 0, 1, 2, . . . . (8)

Proof. For all s = 0, 1, 2, . . . , consider the following function

fs(r) = E[er[(1+a)W1−X1+ay0] | X0 = xs]− 1.

Clearly,

f
′′

s (r) = E{[(1 + a)W1 −X1 + ay0]
2er[(1+a)W1−X1+ay0] | X0 = xs} ≥ 0,

which implies that fs(r) is a convex function. Notice that fs(0) = 0 and

f
′

s(0) = E [(1 + a)W1 −X1 + ay0 | X0 = xs] < 0.

Thus, τs is the unique positive root of the equation fs(r) = 0 on (0,∞).
Furthermore, if 0 < τ < τs, then fs(τ) ≤ 0. Therefore, for all s = 0, 1, 2, . . . ,
γ = min0≤t<∞{τt} ≤ τs, which implies that fs(γ) ≤ 0, i.e. (8) holds.

We now derive a probability inequality for Ψ by an inductive approach.

Theorem 3.2. Under the conditions of Proposition 3.1, for all s = 0, 1, 2, . . .
and u ≥ 0,

Ψ(u, xs, y0, i0) ≤ βEeγ(1+a)W1E[e−γ[(u+X1)(1+I1)−ay0] | X0 = xs] (9)

with

β−1 = inf
t≥0

∫∞

t
eγ(1+a)wdF (w)

eγ(1+a)tF (t)
.

Proof. For the case t ≥ 0, it is trivial that

F (t) =

(∫∞

t
eγ(1+a)wdF (w)

eγ(1+a)tF (t)

)−1

e−γ(1+a)t

∫ ∞

t

eγ(1+a)wdF (w)

≤ βe−γt

∫ ∞

t

eγ(1+a)wdF (w) ≤ βe−γt
Eeγ(1+a)W1 . (10)
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For the case t < 0, since

(
Eeγ(1+a)W1

)−1
=

1∫∞

0
eγ(1+a)wdF (w)

≤ sup
t≥0

eγ(1+a)tF (t)∫∞

t
eγ(1+a)wdF (w)

= β,

we can get that

F (t) = 1 ≤
(
Eeγ(1+a)W1

)−1
e−γt

Eeγ(1+a)W1

≤ βe−γt
Eeγ(1+a)W1 = βe−γt

∫ ∞

t

eγ(1+a)wdF (w). (11)

Hence, from inequalities (10)-(11), we can derive that

Ψ1(u, xs, y0, i0) = P(W1 > (u+X1)(1 + I1)− ay0 | X0 = xs)

=

∞∑

t=0

pst

∫ ∞

0

F ((u+ xt)(1 + bi0 + z)− ay0)dG(z)

≤ βEeγ(1+a)W1

∞∑

t=0

pst

∫ ∞

0

e−γ[(u+xt)(1+bi0+z)−ay0]dG(z)

= βEeγ(1+a)W1E[e−γ[(u+X1)(1+I1)−ay0] | X0 = xs].

Assume that for all u, y0, i0 ≥ 0 and min0≤s<∞{xs} ≥ 0,

Ψn(u, xs, y0, i0) ≤ βEeγ(1+a)W1E[e−γ[(u+X1)(1+I1)−ay0] | X0 = xs] (12)

≤ βEeγ(1+a)W1E[e−γ[(u+X1)(1+Z1)−ay0] | X0 = xs]. (13)

Recall the definitions of y, i and ~t,z in (6). For 0 ≤ w ≤ ~t,z, from (8), (13),
Z1 ≥ 0 and 0 ≤ a < 1, we can get that

Ψn(~t,z − w, xt, y, i)

≤ βEeγ(1+a)W1E[e−γ[(~t,z−w+X1)(1+Z1)−a(ay0+w)] | X0 = xt]

= βEeγ(1+a)W1E[e−γ[X1(1+Z1)−a2y0]e−γ[(~t,z−w)(1+Z1)−aw] | X0 = xt]

≤ βEeγ(1+a)W1E[e−γ(X1−ay0) | X0 = xt]e
−γ[~t,z−(1+a)w]

≤ βe−γ[~t,z−(1+a)w] = βe−γ[(u+xt)(1+bi0+z)−ay0−(1+a)w]. (14)
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Thus, by Theorem 2.1, (10)-(11) and (14), we obtain

Ψn+1(u, xs, y0, i0)

≤ β

∞∑

t=0

pst

∫ ∞

0

e−γ[(u+xt)(1+bi0+z)−ay0]

∫ ∞

~t,z

eγ(1+a)wdF (w)dG(z)

+ β

∞∑

t=0

pst

∫ ∞

0

e−γ[(u+xt)(1+bi0+z)−ay0]

∫
~t,z

0

eγ(1+a)wdF (w)dG(z)

= β

∞∑

t=0

pst

∫ ∞

0

e−γ[(u+xt)(1+bi0+z)−ay0]

∫ ∞

0

eγ(1+a)wdF (w)dG(z)

= βEeγ(1+a)W1E[e−γ[(u+X1)(1+I1)−ay0] | X0 = xs].

Therefore, we can conclude that inequality (12) holds for all n = 1, 2, . . . . The
inequality (9) follows immediately by letting n → ∞ in (12).

The refinement of the upper bound in Theorem 3.2 can be obtained when
F is new worse than used in convex ordering (NWUC). A lifetime distribution
B is said to be NWUC if for all x ≥ 0, y ≥ 0,

∫ ∞

x+y

B(t)dt ≥ B(x)

∫ ∞

y

B(t)dt.

The class of NWUC distributions is larger than the class of decreasing failure
rate (DFR) distributions. See Shaked and Shanthikumar [5] for properties of
NWUC and other classes of lifetime distributions.

Corollary 3.3. Under the conditions of Theorem 3.2, if F is NWUC, then

for all u ≥ 0,

Ψ(u, xs, y0, i0) ≤ E[e−γ[(u+X1)(1+I1)−ay0] | X0 = xs]. (15)

Proof. From Proposition 6.1.1 of Willmot and Lin [8], we can get that if F
is NWUC, then β−1 = Eeγ(1+a)W1 . Thus, by Theorem 3.2, we conclude the
proof.
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