Rota Baxter operators of the simple 3-Lie algebra I

BAI Ruipu
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China
email: bairuipu@hbu.edu.cn
\section*{CHENG Rong}
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China
\section*{ZHANG Yinghua}
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Abstract

This paper studies Rota-Baxter operators on the simple 3-Lie algebras over the complex field. It is proved that there does not exist Rota-Baxter operators of weight zero with rank 3 on the simple 3-Lie algebras. And it provides the Rote-Baxter operators of weight zero with rank $1,2,4$, respectively .

Mathematics Subject Classification: 17B05, 17D99.
Keywords: 3-Lie algebra, Rote-Baxter operator, Rote-Baxter 3-Lie algebra.

1 Introduction

We know that 3-Lie algebras [1] have wide applications in many fields of mathematics and mathematical physics[2]. In recent years, kinds of multiple algebras are studied [3-5]. For example, Rota Baxter 3-Lie algebra was introduced in the paper [5], and the structure of Rota Baxter 3-Lie algebras is discussed. Rota-Baxter (associative) algebras, originated from the work of G. Baxter [6] in probability and populated by the work of Cartier and Rota [7] have connections with many areas of mathematics and physics, including combinatorics,
number theory, operads and quantum field theory. In particular Rota-Baxter algebras have played an important role in the Hopf algebra approach of renormalization of perturbative quantum field theory of Connes and Kreimer [7], as well as in the application of the renormalization method in solving divergent problems in number theory [8].

In this paper we investigate the existence of Rota-Baxter operators of the weight zero on the simple 3-Lie algebras over the complex field. First we introduce some basic notions.

A 3-Lie algebra is a vector space A over a field F endowed with a 3-ary multi-linear skew-symmetric operation [, ,] satisfying the 3-Jacobi identity, $\forall x_{1}, x_{2}, x_{3}, y_{2}, y_{3} \in A$,

$$
\begin{equation*}
\left[\left[x_{1}, x_{2}, x_{3}\right], y_{2}, y_{3}\right]=\sum_{i=1}^{3}\left[x_{1}, \cdots,\left[x_{i}, y_{2}, y_{3}\right], \cdots, x_{3}\right], \forall x_{1}, x_{2}, x_{3} \in L \tag{1}
\end{equation*}
$$

Let A be a 3 -Lie algebra, $\lambda \in F$, if a linear mapping $P: A \rightarrow A$ satisfies

$$
\begin{gathered}
{\left[P\left(x_{1}\right), P\left(x_{2}\right), P\left(x_{3}\right)\right]=P\left(\left[P\left(x_{1}\right), P\left(x_{2}\right), x_{3}\right]+\left[P\left(x_{1}\right), x_{2}, P\left(x_{3}\right)\right]\right.} \\
+\left[x_{1}, P\left(x_{2}\right), P\left(x_{3}\right)\right]+\lambda\left[P\left(x_{1}\right), x_{2}, x_{3}\right]+\lambda\left[x_{1}, P\left(x_{2}\right), x_{3}\right] \\
\left.\left.+\lambda\left[x_{1}, x_{2}, P\left(x_{3}\right)\right]+\lambda^{2}\left[x_{1}, x_{2}, x_{3}\right)\right]\right)
\end{gathered}
$$

P is called a Rota-Baxter operator of weight λ, and $(A,[,], P$,$) is called a$ Rota-Baxter 3-Lie algebra. When $\lambda=0$, we have

$$
\begin{align*}
& {\left[P\left(x_{1}\right), P\left(x_{2}\right), P\left(x_{3}\right)\right]} \\
& =P\left(\left[P\left(x_{1}\right), P\left(x_{2}\right), x_{3}\right]+\left[P\left(x_{1}\right), x_{2}, P\left(x_{3}\right)\right]+\left[x_{1}, P\left(x_{2}\right), P\left(x_{3}\right)\right]\right) . \tag{2}
\end{align*}
$$

2 Main results

In this section we study the Rota-Baxter operators on the simple 3-Lie algebras over the complex field F. From paper [9], there exists only one simple 3-Lie algebra, that is, 4-dimensional 3-Lie algebra A in the following multiplication

$$
\left\{\begin{array}{l}
{\left[e_{1}, e_{2}, e_{3}\right]=e_{4},} \tag{3}\\
{\left[e_{1}, e_{2}, e_{4}\right]=e_{3},} \\
{\left[e_{1}, e_{3}, e_{4}\right]=e_{2}} \\
{\left[e_{2}, e_{3}, e_{4}\right]=e_{1}}
\end{array}\right.
$$

where $e_{1}, e_{2}, e_{3}, e_{4}$ is a basis of the 3 -Lie algebra A.
Let $P: A \rightarrow A$ be a linear mapping. Set $P\left(e_{i}\right)=\sum_{j=1}^{4} a_{i j} e_{j}, a_{i j} \in F, 1 \leq$ $i, j \leq 4$. Then the matrix form of P in the basis $e_{1}, e_{2}, e_{3}, e_{4}$ is

$$
M(P)=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)
$$

The rank of the matrix $M(P)$ is called the rank of P and is denoted by $R(P)$.
Theorem There does not exist Rota-Baxter operators P with $R(P)=3$ of weight zero on the simple 3-Lie algebra.

Proof By Eq.(2) and (3), for $1 \leq l<m<n \leq 4$, we have

$$
\begin{aligned}
& {\left[P\left(e_{l}\right), P\left(e_{m}\right), P\left(e_{n}\right)\right]} \\
& =\left[\sum_{j=1}^{4} a_{l j} e_{j}, \sum_{j=1}^{4} a_{m j} e_{j}, \sum_{j=1}^{4} a_{n j} e_{j}\right] \\
& =\left(a_{l 1} a_{m 2} a_{n 3}-a_{l 1} a_{m 3} a_{n 2}\right) e_{4}+\left(a_{l 1} a_{m 2} a_{n 4}-a_{l 1} a_{m 4} a_{n 2}\right) e_{3}+\left(a_{l 1} a_{m 3} a_{n 4}-a_{l 1} a_{m 4} a_{n 3}\right) e_{2} \\
& +\left(a_{l 2} a_{m 3} a_{n 4}-a_{l 2} a_{m 4} a_{n 3}\right) e_{1}+\left(a_{l 2} a_{m 4} a_{n 1}-a_{l 2} a_{m 1} a_{n 4}\right) e_{3}+\left(a_{l 2} a_{m 3} a_{n 1}-a_{l 2} a_{m 1} a_{n 3}\right) e_{4} \\
& +\left(a_{l 3} a_{m 4} a_{n 2}-a_{l 3} a_{m 2} a_{n 4}\right) e_{1}+\left(a_{l 3} a_{m 4} a_{n 1}-a_{l 3} a_{m 1} a_{n 4}\right) e_{2}+\left(-a_{l 3} a_{m 2} a_{n 1}+a_{l 3} a_{m 1} a_{n 2}\right) e_{4} \\
& +\left(a_{l 4} a_{m 2} a_{n 3}-a_{l 4} a_{m 3} a_{n 2}\right) e_{1}+\left(a_{l 4} a_{m 1} a_{n 3}-a_{l 4} a_{m 3} a_{n 1}\right) e_{2}+\left(-a_{l 4} a_{m 2} a_{n 1}+a_{l 4} a_{m 1} a_{n 2}\right) e_{3} \\
& =\left[a_{l 2}\left(a_{m 3} a_{n 4}-a_{m 4} a_{n 3}\right)+a_{l 3}\left(a_{m 4} a_{n 2}-a_{m 2} a_{n 4}\right)+a_{l 4}\left(a_{m 2} a_{n 3}-a_{m 3} a_{n 2}\right)\right] e_{1} \\
& +\left[a_{l 1}\left(a_{m 3} a_{n 4}-a_{m 4} a_{n 3}\right)+a_{l 3}\left(a_{m 4} a_{n 1}-a_{m 1} a_{n 4}\right)+a_{l 4}\left(a_{m 1} a_{n 3}-a_{m 3} a_{n 1}\right)\right] e_{2} \\
& +\left[a_{l 1}\left(a_{m 2} a_{n 4}-a_{m 4} a_{n 2}\right)+a_{l 2}\left(a_{m 4} a_{n 1}-a_{m 1} a_{n 4}\right)+a_{l 4}\left(a_{m 1} a_{n 2}-a_{m 2} a_{n 1}\right)\right] e_{3} \\
& +\left[a_{l 1}\left(a_{m 2} a_{n 3}-a_{m 3} a_{n 2}\right)+a_{l 2}\left(a_{m 3} a_{n 1}-a_{m 1} a_{n 3}\right)+a_{l 3}\left(a_{m 1} a_{n 2}-a_{m 2} a_{n 1}\right)\right] e_{4} . \\
& P\left(\left[P\left(e_{l}\right), P\left(e_{m}\right), e_{n}\right]+\left[P\left(e_{l}\right), e_{m}, P\left(e_{n}\right)\right]+\left[e_{l}, P\left(e_{m}\right), P\left(e_{n}\right)\right]\right) \\
& =P\left(\left[\sum_{j=1}^{4} a_{l j} e_{j}, \sum_{j=1}^{4} a_{m j} e_{j}, e_{n}\right]+\left[\sum_{j=1}^{4} a_{l j} e_{j}, e_{m}, \sum_{j=1}^{4} a_{n j} e_{j}\right]\right) \\
& +P\left(\left[e_{l}, \sum_{j=1}^{4} a_{m j} e_{j}, \sum_{j=1}^{4} a_{n j} e_{j}\right]\right) \\
& =P\left(\left(a_{l 4} a_{m 2}-a_{l 2} a_{m 4}-a_{l 3} a_{n 4}+a_{l 4} a_{n 3}\right) e_{1}+\left(a_{l 4} a_{m 1}-a_{l 1} a_{m 4}+a_{m 3} a_{n 4}-a_{m 4} a_{n 3}\right) e_{2}\right. \\
& +\left(a_{l 1} a_{n 4}-a_{l 4} a_{n 1}+a_{m 2} a_{n 4}-a_{m 4} a_{n 2}\right) e_{3}+\left(a_{l 1} a_{m 2}-a_{l 2} a_{m 1}+a_{l 1} a_{m 3}\right. \\
& \left.\left.-a_{l 3} a_{n 1}+a_{m 2} a_{n 3} e_{4}-a_{m 3} a_{n 2}\right) e_{4}\right) \\
& =\left(a_{l 4} a_{m 2}-a_{l 2} a_{m 4}-a_{l 3} a_{n 4}+a_{l 4} a_{n 3}\right) \sum_{j=1}^{4} a_{1 j} e_{j}+\left(a_{l 4} a_{m 1}-a_{l 1} a_{n 4}+a_{m 3} a_{n 4}\right. \\
& \left.-a_{m 4} a_{n 3}\right) \sum_{j=1}^{4} a_{2 j} e_{j}+\left(a_{l 1} a_{n 4}-a_{l 4} a_{n 1}+a_{m 2} a_{n 4}-a_{m 4} a_{n 2}\right) \sum_{j=1}^{4} a_{3 j} e_{j} \\
& +\left(a_{l 1} a_{m 2}-a_{l 2} a_{m 1}+a_{l 1} a_{n 3}-a_{l 3} a_{n 1}+a_{m 2} a_{n 3} e_{4}-a_{m 3} a_{n 2}\right) \sum_{j=1}^{4} a_{4 j} e_{j} .
\end{aligned}
$$

Since $R(P)=3$, without loss of generality, we may suppose $P\left(e_{1}\right), P\left(e_{2}\right)$, $P\left(e_{3}\right)$ are linearly independent. Then vectors

$$
\alpha_{1}=\left(a_{11}, a_{12}, a_{13}, a_{14}\right), \alpha_{2}=\left(a_{21}, a_{22}, a_{23}, a_{24}\right), \alpha_{3}=\left(a_{31}, a_{32}, a_{33}, a_{34}\right),
$$

are linearly independent.
If $P\left(e_{4}\right)=0$.
Then $\left[P\left(e_{1}\right), P\left(e_{2}\right), P\left(e_{4}\right)\right]=P\left(\left[P\left(e_{1}\right), P\left(e_{2}\right), e_{4}\right]\right)=0$, we obtain

$$
P\left(\left[P\left(e_{1}\right), P\left(e_{2}\right), e_{4}\right]\right)=P\left(\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| e_{3}+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right| e_{2}+\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| e_{1}\right)=0 .
$$

From $\left[P\left(e_{1}\right), P\left(e_{3}\right), P\left(e_{4}\right)\right]=\left[P\left(e_{2}\right), P\left(e_{3}\right), P\left(e_{4}\right)\right]=0$, we get

$$
\begin{aligned}
& P\left(\left[P\left(e_{1}\right), P\left(e_{3}\right), e_{4}\right]\right)=P\left(\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| e_{3}+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right| e_{2}+\left|\begin{array}{cc}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right| e_{1}\right)=0, \\
& P\left(\left[P\left(e_{1}\right), P\left(e_{2}\right), e_{4}\right]\right)=P\left(\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| e_{3}+\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| e_{2}+\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| e_{1}\right)=0 .
\end{aligned}
$$

Since $P\left(e_{1}\right), P\left(e_{2}\right), P\left(e_{3}\right)$ are linearly independent, we get

$$
\begin{aligned}
& \left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=0,\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|=0,\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|=0, \\
& \left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|=0,\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|=0,\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|=0, \\
& \left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|=0,\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|=0,\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|=0 .
\end{aligned}
$$

Therefore, vectors $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are linearly dependent. Contradiction.
Therefore, $P\left(e_{4}\right) \neq 0$. So we might assume that

$$
P\left(e_{4}\right)=P\left(e_{1}\right)+\lambda P\left(e_{2}\right)+\mu P\left(e_{3}\right), \lambda, \mu \in F .
$$

Denotes $e_{4}^{\prime}=e_{4}-e_{1}-\lambda e_{2}-\mu e_{3}$ then $P\left(e_{4}^{\prime}\right)=0$. Then by Eq.(2),

$$
\begin{aligned}
& {\left[P\left(e_{1}\right), P\left(e_{2}\right), P\left(e_{4}\right)\right]=\mu\left[P\left(e_{1}\right), P\left(e_{2}\right), P\left(e_{3}\right)\right]} \\
& =P\left(\left[P\left(e_{1}\right), P\left(e_{2}\right), e_{4}\right]+\lambda\left[P\left(e_{1}\right), e_{2}, P\left(e_{2}\right)\right]+\mu\left[P\left(e_{1}\right), e_{2}, P\left(e_{3}\right)\right]\right. \\
& \left.+\left[e_{1}, P\left(e_{2}\right), P\left(e_{1}\right)\right]+\mu\left[e_{1}, P\left(e_{2}\right), P\left(e_{3}\right)\right]\right) .
\end{aligned}
$$

We obtain $P\left(\left[P\left(e_{1}\right), P\left(e_{2}\right), e_{4}^{\prime}\right]\right)=0$. It follows

$$
\left[P\left(e_{1}\right), P\left(e_{2}\right), e_{4}^{\prime}\right]=\kappa_{1} e_{4}^{\prime}, \kappa_{1} \in F
$$

Similarly, by the direct computation from $\left[P\left(e_{1}\right), P\left(e_{3}\right), P\left(e_{4}\right)\right]$ and $\left[P\left(e_{2}\right)\right.$, $\left.P\left(e_{3}\right), P\left(e_{4}\right)\right]$, we get

$$
\left[P\left(e_{1}\right), P\left(e_{3}\right), e_{4}^{\prime}\right]=\kappa_{2} e_{4}^{\prime},\left[P\left(e_{2}\right), P\left(e_{3}\right), e_{4}^{\prime}\right]=\kappa_{3} e_{4}^{\prime}, \kappa_{2}, \kappa_{3} \in F .
$$

Summarizing above discussion, we get that the dimension of the subalgebra generated by the vectors $\left\{P\left(e_{1}\right), P\left(e_{2}\right), P\left(e_{3}\right), e_{4}^{\prime}\right\}$ is less than 3 . Therefore, vectors $e_{4}^{\prime}, P\left(e_{1}\right), P\left(e_{2}\right), P\left(e_{3}\right)$ are linearly dependent then

$$
e_{4}^{\prime}=\lambda_{1} P\left(e_{1}\right)+\lambda_{2} P\left(e_{2}\right)+\lambda_{3} P\left(e_{3}\right) .
$$

So e_{4}^{\prime} is contained in the image of P. From $P\left(e_{4}^{\prime}\right)=0, e_{4}^{\prime} \in \operatorname{Ker} P$. It contradicts to $e_{4}^{\prime} \neq 0$.

Therefore, $R(P) \neq 3$. The result follows.

Remark There exist Rota-Baxter operators P of weight zero with $R(P)=$ $1,2,3$ on the simple 3 -Lie algebra, respectively. For example. Define P_{1}, P_{2}, P_{3} : $A \rightarrow A$ by

$$
\begin{aligned}
& P_{1}\left(e_{1}\right)=e_{1}+e_{2}+e_{3}+e_{4}, P_{1}\left(e_{2}\right)=P_{1}\left(e_{3}\right)=P_{1}\left(e_{4}\right)=0 . \\
& P_{2}\left(e_{1}\right)=e_{1}+e_{2}, P_{2}\left(e_{2}\right)=e_{3}+e_{4}, P_{2}\left(e_{3}\right)=P_{2}\left(e_{4}\right)=0 . \\
& P_{3}\left(e_{1}\right)=e_{2}, P_{3}\left(e_{2}\right)=-e_{1}, P_{3}\left(e_{3}\right)=e_{4}, P_{3}\left(e_{4}\right)=e_{3} .
\end{aligned}
$$

By the direct computation, P_{1}, P_{2}, P_{3} are Rota-Baxter operators, with $R\left(P_{1}\right)=1, R\left(P_{2}\right)=2, R\left(P_{3}\right)=4$, respectively.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

[1] V. FILIPPOV, n-Lie algebras, Sib. Mat. Zh., 1985, 26 (6), 126-140.
[2] J. BAGGER and N. LAMBERT, Modeling multiple M2s, Phys. Rev. D75(2007) 045020 [hep-th/0611108]; Gauge symmetry and supersymmetry of multipleM2-branes, Phys. Rev. D77 (2008) 065008 [arXiv:0711.0955]; Comments on multiple M2-branes, JHEP 02(2008) 105 [arXiv:0712.3738].
[3] R. BAI, W. WANG, H. ZHOU, Hom-structure of a class of infinite dimensional 3-Lie algebras, Journal of natural science of Heilongjiang university,2014, 31(1):26-31.
[4] R. BAI, Q. Li, R. Cheng, 3-Lie Algebras and Cubic Matrices, Mathematica Aeterna, 2014, 4(1): 169 C 174.
[5] R. BAI, L. GUO, J. LI, and Y. WU, Rota-Baxter 3-Lie algebras J. Math. Phys 2013, 54, 063504.
[6] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 1960, 10: 731C742.
[7] L. Guo and W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 2008, 212: 522-540.
[8] C. Bai, L. Guo and X. Ni, Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, Comm. Math. Phys. 2010, 297: 553-596.

Received: October, 2014

