Right distributive QI-algebras with pseudo-valuations

Magdalena Wojciechowska-Rysiawa

Institute of Mathematics and Physics
Siedlee University of Natural Sciences and Humanities
3 maja 54, 08-110 Siedlee, Poland
e-mail: magdawojciechowska6@wp.pl

Abstract

Using the Buşneag's model, the notion of a (pseudo-)valuation on a right distributive QI-algebra and a (pseudo-)metric induced by a (pseudo-)valuation is given. It is shown, that a binary operation in right distributive QI-algebra is uniformly continuous.

Mathematics Subject Classification: 03G25, 06F05, 20N02

Keywords: (right distributive) QI-algebra, (pseudo-) valuation, (pseudo-) metric space

1 Introduction

Buşneag [2] defined a pseudo-valuation on a Hilbert algebra, and proved that every pseudo-valuation induces a pseudo-metric on a Hilbert algebra. The notion of QI-algebras were introduced by Bandaru in [1].

In this paper, using the Buşneag's model, we introduce the notion of pseudo-valuations (valuations) on right distributive QI-algebras and we give a notion of a pseudo-metric by using a pseudo-valuation on a right distributive QI-algebra. We show that teh binary operation * in right distributive QI-algebras such that, if x*y=y*x=0, then x=y, is uniformly continuous.

2 Preliminaries

Definition 2.1 ([1]) A QI-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying axioms:

$$(QI1) x * x = 0,$$

(QI2)
$$x * 0 = x$$
,

$$(QI3) \ x * (y * (x * y)) = x * y,$$

for all $x, y \in X$.

In [1], there was defined a binary relation \leq on X by

$$x \le y \Leftrightarrow x * y = 0,$$

for all $x, y \in X$.

Example 2.2 ([1]) Let $X = \{0, a, b, c\}$ be a set and let us define an operation * on X by the table below:

*	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	b
c	c	0	a	0

Then (X, *, 0) is a QI-algebra.

Definition 2.3 ([1]) Let X be a QI-algebra. A set $I \subseteq X$ is called an ideal, if it satisfies the following conditions for all $x, y \in X$:

- (I1) $0 \in I$;
- (I2) If $x * y \in I$ and $y \in I$, then $x \in I$.

Definition 2.4 ([1]) A QI-algebra X is said to be right distributive if

$$(QI4) (x*y)*z = (x*z)*(y*z).$$

Example 2.5 ([1]) A QI-algebra from Example 2.2 is a right distributive QI-algebra.

Proposition 2.6 ([1]) Let (X, *, 0) be a right distributive QI-algebra. Then

- (i) if $x \leq 0$, then x = 0;
- (ii) $(x*y)*y) \le x;$
- $(iii) \ (x*y)*(x*z) \le z*y;$
- (iv) $(x*z)*(y*z) \le x*y$.

Definition 2.7 Let X be a right distributive QI-algebra and $S \subseteq X$. A set S is called a subalgebra of X if S is a right distributive QI-algebra with the same operation as X.

Proposition 2.8 Let X be a right distributive QI-algebra and $S \subseteq X$. A set S is a subalgebra of X if and only if S satisfies the following conditions for all $x, y \in X$

 $(SQ1) \ 0 \in S;$

(SQ2) if $x, y \in S$, then $x * y \in S$.

3 Pseudo-valuations on a right distributive QIalgebras

Definition 3.1 A real-valued function φ on a right distributive QI-algebra X is called a weak pseudo-valuation on X if it satisfies the following condition for all $x, y \in X$:

$$\varphi(x * y) \le \varphi(x) + \varphi(y).$$

Example 3.2 Let $X = \{0, a, b, c\}$ be a right distributive QI-algebra from Example 2.2. Let φ be a real-valued function on X defined by

$$\varphi = \left(\begin{array}{cccc} 0 & a & b & c \\ 0 & 3 & 1 & 2 \end{array}\right).$$

Then φ is a weak pseudo-valuation on X.

Proposition 3.3 For a weak pseudo-valuation φ on a right distributive QI-algebra X, we have

$$\varphi(x) \ge 0$$

for any $x \in X$.

Proof. Since for any $x \in X$, we have $\varphi(0) = \varphi(0 * x) \leq \varphi(0) + \varphi(x)$, then $\varphi(x) \geq 0$.

Let S be a subalgebra of a right distributive QI-algebra X and let $a, b \in \mathbb{R}^+$ with a < b. Let us define a real-valued function φ_S as follows:

$$\varphi_S(x) = \left\{ \begin{array}{l} a \text{ if } x \in S \\ b \text{ if } x \notin S \end{array} \right..$$

Theorem 3.4 A function φ_S is a weak pseudo-valuation on a right distributive QI-algebra X.

Proof. Straightforward. \blacksquare

Definition 3.5 A real-valued function φ on a right distributive QI-algebra X is called a pseudo-valuation on X, if it satisfies two following conditions for all $x, y \in X$:

(PV1)
$$\varphi(0) = 0;$$

$$(PV2) \varphi(x * y) \ge \varphi(x) - \varphi(y).$$

Definition 3.6 Let φ be a pseudo-valuation on a a right distributive QI-algebra X. A function φ is called a valuation, if it satisfies the following condition for any $x \in X$:

(V)
$$x \neq 0 \Rightarrow \varphi(x) \neq 0$$
.

Example 3.7 Let $X = \{0, a, b, c\}$ be a right distributive QI-algebra from Example 2.2. Let φ be a real-valued function on X defined by

$$\varphi = \left(\begin{array}{ccc} 0 & a & b & c \\ 0 & 3 & 1 & 3 \end{array}\right).$$

Then φ is a pseudo-valuation on X. What is more, it is a valuation on X.

Example 3.8 For any ideal I of a right distributive QI-algebra X we define a real-valued function φ_I on X as follows:

$$\varphi_I(x) = \left\{ \begin{array}{l} 0 \ \ if \ x = 0 \\ a \ \ if \ x \in I - \{0\} \\ b \ \ if \ x \in X - I \end{array} \right. ,$$

for all $x \in X$ where 0 < a < b. A function φ_I is a pseudo-valuation on X which is a valuation on X.

Theorem 3.9 In a right distributive QI-algebra, every pseudo-valuation is a weak pseudo-valuation.

Proof. Let X be a right distributive QI-algebra and $x, y \in X$. From Proposition 2.6 (ii), we have (x*y)*y)*x = 0. Hence for a pseudo-valuation φ , $0 = \varphi(0) = \varphi((x*y)*y)*x) \ge \varphi((x*y)*y)) - \varphi(x) \ge \varphi(x*y) - \varphi(y) - \varphi(x)$. We get that $\varphi(x*y) \le \varphi(x) + \varphi(y)$ and therefore φ is a weak pseudo-valuation on X. \blacksquare

Remark 3.10 The converse of Theorem 3.9 is not true, in general. A weak pseudo-valuation from Example 3.2 is not a pseudo-valuation on X since $\varphi(a) - \varphi(c) = 3 - 2 = 1$ and $\varphi(a * c) = 0$.

Proposition 3.11 Let φ be a pseudo-valuation on a right distributive QI-algebra X. Then for all $x, y \in X$:

- (i) φ is order preserving;
- (ii) $\varphi(x*y) + \varphi(y*x) \ge 0$;
- (iii) $\varphi(x*y) \le \varphi(x*z) + \varphi(z*y)$.
- **Proof.** (i) Let $x, y \in X$ be such that $x \leq y$ and φ be a pseudo-valuation on X. Then we have $\varphi(x) \leq \varphi(x * y) + \varphi(y)$. Since $x \leq y$, then $\varphi(x * y) = \varphi(0) = 0$. Finally, we get $\varphi(x) \leq \varphi(y)$.
- (ii) For any pseudo-valuation φ we have $\varphi(x*y) + \varphi(y*x) \ge \varphi(x) \varphi(y) + \varphi(y) \varphi(x) = 0$.
- (iii) Let φ be a pseudo-valuation on X. Using Proposition 2.6 and (i) we get $\varphi(z*y) \geq \varphi((x*y)*(x*z)) \geq \varphi(x*y) \varphi(x*z)$. Hence $\varphi(x*y) \leq \varphi(x*z) + \varphi(z*y)$.

Theorem 3.12 Let φ be a real-valued function on a right distributive QI-algebra X. If φ satisfies (PV1) and for all $x, y, z \in X$

$$(PV5) \varphi(((x*y)*y)*z) \ge \varphi(x*y) - \varphi(z),$$

then φ is a pseudo-valuation on X.

Proof. Taking y = 0 and using (QI2), we get $\varphi(x * y) = \varphi(((x * 0) * 0) * y) \ge \varphi(x * 0) - \varphi(y) = \varphi(x) - \varphi(y)$.

Theorem 3.13 Let X be a right distributive QI-algebra and let φ be a pseudo-valuation on X. Then a set

$$I = \{x \in X : \varphi(x) = 0\}$$

is an ideal of X.

Proof. Since φ is a pseudo-valuation, then $\varphi(0) = 0$. Hence $0 \in I$. Now, let $x * y, y \in I$. Then $\varphi(x * y) = \varphi(y) = 0$. Using (PV2) we obtain $0 \ge \varphi(x) - 0$. By Theorem 3.9 and Proposition 3.3, we get $\varphi(x) = 0$. Hence $x \in I$.

For a real-valued function on a right distributive QI-algebra X, define a mapping $d_{\varphi}: X \times X \to \mathbb{R}$ by $d_{\varphi}(x,y) = \varphi(x * y) + \varphi(y * x)$ for all $x, y \in X$.

Definition 3.14 A positive function $d: X \times X \to \mathbb{R}$ is called a pseudo-metric on X, if it satisfies the following conditions for all $x, y \in X$:

$$(PM1) \ d(x,x) = 0;$$

$$(PM2) \ d(x,y) = d(y,x);$$

$$(PM3) \ d(x,z) \le d(x,y) + d(y,z).$$

Theorem 3.15 Let X be a right distributive QI-algebra and let φ be a pseudo-valuation on X. Then d_{φ} is a pseudo-metric on X and so (X, d_{φ}) is a pseudo-metric space.

Proof. It is obvious that $d_{\varphi}(x,y) \geq 0$. Since x * x = 0, then $d_{\varphi}(x,x) = \varphi(x,x) + \varphi(x,x) = 0 + 0 = 0$. Obviously $d_{\varphi}(x,y) = d_{\varphi}(y,x)$. We need to show, that $d_{\varphi}(x,z) \leq d_{\varphi}(x,y) + d_{\varphi}(y,z)$. By Proposition 3.11, we have

$$d_{\varphi}(x,y) + d_{\varphi}(y,z) = (\varphi(x*y) + \varphi(y*x)) + (\varphi(y*z) + \varphi(z*y)) =$$

$$= (\varphi(x*y) + \varphi(y*z)) + (\varphi(z*y) + \varphi(y,x)) \geq$$

$$\geq \varphi(x*z) + \varphi(z*x) = d_{\varphi}(x,z).$$

Therefore (X, d_{ω}) is a pseudo-metric space.

We say d_{φ} is a pseudo-metric induced by a pseudo-valuation φ .

Proposition 3.16 Let X be a right distributive QI-algebra. Then for every pseudo-metric d_{ω} induced by a pseudo-valuation φ we have:

- (i) $d_{\varphi}(x,y) \ge d_{\varphi}(x*a,y*a);$
- (ii) $d_{\varphi}(x,y) \ge d_{\varphi}(a*x,a*y);$
- (iii) $d_{\varphi}(x * y, a * b) \leq d_{\varphi}(x * y, a * y) + d_{\varphi}(a * y, a * b),$ for all $x, y, a, b \in X$.

Proof. (i) Using Proposition 2.6 (iv) and Proposition 3.11 (i) we get $\varphi((x*a)*(y*a)) \leq \varphi(x*y)$ and $\varphi((y*a)*(x*a)) \leq \varphi(y*x)$ for all $x, y, a \in X$. Hence

$$d_{\varphi}(x,y) = \varphi(x*y) + \varphi(y*x) \ge$$

$$\ge \varphi((x*a)*(y*a)) + \varphi((y*a)*(x*a)) =$$

$$= d_{\varphi}(x*a,y*a).$$

- (ii) Similarly to (i).
- (iii) Using Proposition 3.11 (iii)

$$\varphi((x*y)*(a*b)) \le \varphi((x*y)*(a*y)) + \varphi((a*y)*(a*b))$$

and

$$\varphi((a*b)*(x*y)) \le \varphi((a*b)*(a*y)) + \varphi((a*y)*(x*y))$$

for all $x, y, a, b \in X$. Hence

$$d_{\varphi}(x * y, a * b) = \varphi((x * y) * (a * b)) + \varphi((a * b) * (x * y)) \le$$

$$\leq \varphi((x * y) * (a * y)) + \varphi((a * y) * (a * b)) +$$

$$+\varphi((a * b) * (a * y)) + \varphi((a * y) * (x * y)) =$$

$$= [\varphi((x * y) * (a * y)) + \varphi((a * y) * (x * y))] +$$

$$+[\varphi((a * y) * (a * b)) + \varphi((a * b) * (a * y))] =$$

$$= d_{\varphi}(x * y, a * y) + d_{\varphi}(a * y, a * b)$$

for all $x, y, a, b \in X$.

Theorem 3.17 Let φ be a pseudo-valuation on a right distributive QI-algebra. Then $(X \times X, d_{\varphi}^*)$, where

$$d_{\varphi}^{*}((x,y),(a,b)) = \max(d_{\varphi}(x,a),d_{\varphi}(y,b)),$$

for all (x, y), $(a, b) \in X \times X$, is a pseudo-metric space. **Proof.** Let φ be a pseudo-valuation on X. Then

$$d_{\varphi}^{*}((x,y),(x,y)) = \max(d_{\varphi}(x,x),d_{\varphi}(y,y)) = 0.$$

It is obvious that $d_{\varphi}^*((x,y),(a,b)) = d_{\varphi}^*((a,b),(x,y))$. Now, let $(x,y),(a,b),(c,d) \in X \times X$. We get that

$$d_{\varphi}^{*}((x,y),(c,d)) + d_{\varphi}^{*}((c,d),(a,b)) = \max (d_{\varphi}(x,c),d_{\varphi}(y,d)) + \\ + \max (d_{\varphi}(c,a),d_{\varphi}(d,b)) \ge \\ \ge \max (d_{\varphi}(x,c) + d_{\varphi}(c,a),d_{\varphi}(y,d) + d_{\varphi}(d,b)) \\ \ge \max (d_{\varphi}(x,a),d_{\varphi}(y,b)) \\ = d_{\varphi}^{*}((x,y),(a,b)).$$

Therefore $(X \times X, d_{\varphi}^*)$ is a pseudo-metric space.

Example 3.18 Taking a valuation from Example 3.7 we obtain

$$d_{\varphi} = \left(\begin{array}{cccccccc} (0,0) & (0,a) & (0,b) & (0,c) & (a,a) & (a,b) & (a,c) & (b,b) & (b,c) & (c,c) \\ 0 & 3 & 1 & 3 & 0 & 3 & 0 & 0 & 3 & 0 \end{array} \right).$$

Where (X, d_{φ}) is a pseudo-metric space.

Remark 3.19 d_{φ} is not a metric, in general. Let us consider a pseudo-metric from Example 3.18. Then we have $d_{\varphi}(a,c)=0$ and obviously $a\neq c$.

Theorem 3.20 Let X be a right-distributive QI-algebra such that

$$(\forall x, y \in X) ((x * y = 0 \land y * x = 0) \Rightarrow x = y) \tag{1}$$

and let φ be a valuation on X. Then (X, d_{φ}) is a metric space.

Proof. Let φ be a valuation on X. Then by Theorem 3.15 d_{φ} is a pseudometric. We need to show, that if $d_{\varphi}(x,y) = 0$, then x = y. Let $x,y \in X$ be such that $d_{\varphi}(x,y) = 0$. Then $\varphi(x*y) + \varphi(y*x) = 0$. Using Proposition 3.3 and condition (1), we get that $\varphi(x*y) = 0$ and $\varphi(y*x) = 0$. Hence x*y = 0 and y*x = 0 and so x = y. Therefore d_{φ} is a metric.

Theorem 3.21 Let φ be a valuation on a right distributive QI-algebra X satisfying a condition (1). Then $(X \times X, d_{\omega}^*)$ is a metric space.

Proof. Let φ be a valuation on X. Then by Theorem 3.17 $(X \times X, d_{\varphi}^*)$ is a pseudo-metric space. Now, suppose $(x,y), (a,b) \in X \times X$ are such that $d_{\varphi}^*((x,y),(a,b)) = 0$. Hence $\max(d_{\varphi}(x,a),d_{\varphi}(y,b)) = 0$. By Definition of d_{φ}^* and Proposition 3.3, $d_{\varphi}(x,a) = d_{\varphi}(y,b) = 0$. Therefore x = a and y = b. Hence (x,y) = (a,b) and so $(X \times X, d_{\varphi}^*)$ is a metric space.

Theorem 3.22 Let φ be a valuation on a right distributive QI-algebra satisfying a condition (1). The operation * is uniformly continuous.

Proof. Let $\varepsilon > 0$ and suppose that $d_{\varphi}^*((x,y),(a,b)) < \frac{\varepsilon}{2}$. Then $d_{\varphi}(x,a) < \frac{\varepsilon}{2}$ and $d_{\varphi}(y,b) < \frac{\varepsilon}{2}$. Using Proposition 3.16, we obtain

$$d_{\varphi}(x*y, a*b) \le d_{\varphi}(x*y, a*y) + d_{\varphi}(a*y, a*b) \le d_{\varphi}(x, a) + d_{\varphi}(y, b) < \varepsilon.$$

Therefore $*: X \times X \to X$ is uniformly continuous.

References

- [1] R. K. Bandaru, On QI-algebras, Discussiones Mathematicae General Algebra and Applications 37 (2017), 137–145.
- [2] D.Buşneag, Hilbert algebras with valuations, Math. Jap 44 (1996), 285-289.

Received: December 29, 2017