Mathematica Aeterna, Vol. 7, 2017, no. 4, 455-462

Right distributive QI-algebras with pseudo-valuations

Magdalena Wojciechowska-Rysiawa

Institute of Mathematics and Physics
Siedlce University of Natural Sciences and Humanities
3 maja 54, 08-110 Siedlce, Poland
e-mail: magdawojciechowska6@wp.pl

Abstract

Using the Buşneag's model, the notion of a (pseudo-)valuation on a right distributive QI-algebra and a (pseudo-)metric induced by a (pseudo-) valuation is given. It is shown, that a binary operation in right distributive QI-algebra is uniformly continuous.

Mathematics Subject Classification: 03G25, 06F05, 20N02

Keywords: (right distributive) QI-algebra, (pseudo-) valuation, (pseudo-) metric space

1 Introduction

Buşneag [2] defined a pseudo-valuation on a Hilbert algebra, and proved that every pseudo-valuation induces a pseudo-metric on a Hilbert algebra. The notion of QI-algebras were introduced by Bandaru in [1].

In this paper, using the Buşneag's model, we introduce the notion of pseudo-valuations (valuations) on right distributive QI-algebras and we give a notion of a pseudo-metric by using a pseudo-valuation on a right distributive QI-algebra. We show that teh binary operation $*$ in right distributive QI-algebras such that, if $x * y=y * x=0$, then $x=y$, is uniformly continuous.

2 Preliminaries

Definition 2.1 ([1]) A QI-algebra is a non-empty set X with a constant 0 and a binary operation $*$ satisfying axioms:
(QI1) $x * x=0$,
(QI2) $x * 0=x$,
(QI3) $x *(y *(x * y))=x * y$,
for all $x, y \in X$.
In [1], there was defined a binary relation \leq on X by

$$
x \leq y \Leftrightarrow x * y=0
$$

for all $x, y \in X$.
Example 2.2 ([1]) Let $X=\{0, a, b, c\}$ be a set and let us define an operation * on X by the table below:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	b
c	c	0	a	0

Then $(X, *, 0)$ is a QI-algebra.
Definition 2.3 ([1]) Let X be a QI-algebra. A set $I \subseteq X$ is called an ideal, if it satisfies the following conditions for all $x, y \in X$:
(I1) $0 \in I$;
(I2) If $x * y \in I$ and $y \in I$, then $x \in I$.
Definition 2.4 ([1]) A QI-algebra X is said to be right distributive if
(QI4) $(x * y) * z=(x * z) *(y * z)$.
Example 2.5 ([1]) A QI-algebra from Example 2.2 is a right distributive QIalgebra.

Proposition 2.6 ([1]) Let $(X, *, 0)$ be a right distributive QI-algebra. Then
(i) if $x \leq 0$, then $x=0$;
(ii) $(x * y) * y) \leq x$;
(iii) $(x * y) *(x * z) \leq z * y$;
(iv) $(x * z) *(y * z) \leq x * y$.

Definition 2.7 Let X be a right distributive QI-algebra and $S \subseteq X$. A set S is called a subalgebra of X if S is a right distributive QI-algebra with the same operation as X.

Proposition 2.8 Let X be a right distributive QI-algebra and $S \subseteq X$. A set S is a subalgebra of X if and only if S satisfies the following conditions for all $x, y \in X$
(SQ1) $0 \in S$;
(SQ2) if $x, y \in S$, then $x * y \in S$.

3 Pseudo-valuations on a right distributive QIalgebras

Definition 3.1 A real-valued function φ on a right distributive QI-algebra X is called a weak pseudo-valuation on X if it satisfies the following condition for all $x, y \in X$:

$$
\varphi(x * y) \leq \varphi(x)+\varphi(y)
$$

Example 3.2 Let $X=\{0, a, b, c\}$ be a right distributive QI-algebra from Example 2.2. Let φ be a real-valued function on X defined by

$$
\varphi=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & 3 & 1 & 2
\end{array}\right)
$$

Then φ is a weak pseudo-valuation on X.
Proposition 3.3 For a weak pseudo-valuation φ on a right distributive QIalgebra X, we have

$$
\varphi(x) \geq 0
$$

for any $x \in X$.
Proof. Since for any $x \in X$, we have $\varphi(0)=\varphi(0 * x) \leq \varphi(0)+\varphi(x)$, then $\varphi(x) \geq 0$.

Let S be a subalgebra of a right distributive QI-algebra X and let $a, b \in \mathbb{R}^{+}$ with $a<b$. Let us define a real-valued function φ_{S} as follows:

$$
\varphi_{S}(x)=\left\{\begin{array}{l}
a \text { if } x \in S \\
b \text { if } x \notin S
\end{array}\right.
$$

Theorem 3.4 A function φ_{S} is a weak pseudo-valuation on a right distributive QI-algebra X.
Proof. Straightforward.

Definition 3.5 A real-valued function φ on a right distributive QI-algebra X is called a pseudo-valuation on X, if it satisfies two following conditions for all $x, y \in X$:
$(P V 1) \varphi(0)=0 ;$
(PV2) $\varphi(x * y) \geq \varphi(x)-\varphi(y)$.
Definition 3.6 Let φ be a pseudo-valuation on a a right distributive QIalgebra X. A function φ is called a valuation, if it satisfies the following condition for any $x \in X$:
$(V) x \neq 0 \Rightarrow \varphi(x) \neq 0$.
Example 3.7 Let $X=\{0, a, b, c\}$ be a right distributive QI-algebra from Example 2.2. Let φ be a real-valued function on X defined by

$$
\varphi=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & 3 & 1 & 3
\end{array}\right)
$$

Then φ is a pseudo-valuation on X. What is more, it is a valuation on X.
Example 3.8 For any ideal I of a right distributive QI-algebra X we define a real-valued function φ_{I} on X as follows:

$$
\varphi_{I}(x)=\left\{\begin{array}{l}
0 \text { if } x=0 \\
a \text { if } x \in I-\{0\} \\
b \text { if } x \in X-I
\end{array}\right.
$$

for all $x \in X$ where $0<a<b$. A function φ_{I} is a pseudo-valuation on X which is a valuation on X.

Theorem 3.9 In a right distributive QI-algebra, every pseudo-valuation is a weak pseudo-valuation.
Proof. Let X be a right distributive QI-algebra and $x, y \in X$. From Proposition 2.6 (ii), we have $(x * y) * y) * x=0$. Hence for a pseudo-valuation φ, $0=\varphi(0)=\varphi((x * y) * y) * x) \geq \varphi((x * y) * y))-\varphi(x) \geq \varphi(x * y)-\varphi(y)-\varphi(x)$. We get that $\varphi(x * y) \leq \varphi(x)+\varphi(y)$ and therefore φ is a weak pseudo-valuation on X.

Remark 3.10 The converse of Theorem 3.9 is not true, in general. A weak pseudo-valuation from Example 3.2 is not a pseudo-valuation on X since $\varphi(a)-\varphi(c)=3-2=1$ and $\varphi(a * c)=0$.

Proposition 3.11 Let φ be a pseudo-valuation on a right distributive QIalgebra X. Then for all $x, y \in X$:
(i) φ is order preserving;
(ii) $\varphi(x * y)+\varphi(y * x) \geq 0$;
(iii) $\varphi(x * y) \leq \varphi(x * z)+\varphi(z * y)$.

Proof. (i) Let $x, y \in X$ be such that $x \leq y$ and φ be a pseudo-valuation on X. Then we have $\varphi(x) \leq \varphi(x * y)+\varphi(y)$. Since $x \leq y$, then $\varphi(x * y)=\varphi(0)=0$. Finally, we get $\varphi(x) \leq \varphi(y)$.
(ii) For any pseudo-valuation φ we have $\varphi(x * y)+\varphi(y * x) \geq \varphi(x)-\varphi(y)+$ $\varphi(y)-\varphi(x)=0$.
(iii) Let φ be a pseudo-valuation on X. Using Proposition 2.6 and (i) we get $\varphi(z * y) \geq \varphi((x * y) *(x * z)) \geq \varphi(x * y)-\varphi(x * z)$. Hence $\varphi(x * y) \leq$ $\varphi(x * z)+\varphi(z * y)$.

Theorem 3.12 Let φ be a real-valued function on a right distributive QIalgebra X. If φ satisfies (PV1) and for all $x, y, z \in X$
$(P V 5) \varphi(((x * y) * y) * z) \geq \varphi(x * y)-\varphi(z)$,
then φ is a pseudo-valuation on X.
Proof. Taking $y=0$ and using (QI2), we get $\varphi(x * y)=\varphi(((x * 0) * 0) * y) \geq$ $\varphi(x * 0)-\varphi(y)=\varphi(x)-\varphi(y)$.

Theorem 3.13 Let X be a right distributive QI-algebra and let φ be a pseudovaluation on X. Then a set

$$
I=\{x \in X: \varphi(x)=0\}
$$

is an ideal of X.
Proof. Since φ is a pseudo-valuation, then $\varphi(0)=0$. Hence $0 \in I$. Now, let $x * y, y \in I$. Then $\varphi(x * y)=\varphi(y)=0$. Using (PV2) we obtain $0 \geq \varphi(x)-0$.By Theorem 3.9 and Proposition 3.3, we get $\varphi(x)=0$. Hence $x \in I$.

For a real-valued function on a right distributive QI-algebra X, define a mapping $d_{\varphi}: X \times X \rightarrow \mathbb{R}$ by $d_{\varphi}(x, y)=\varphi(x * y)+\varphi(y * x)$ for all $x, y \in X$.

Definition 3.14 A positive function $d: X \times X \rightarrow \mathbb{R}$ is called a pseudo-metric on X, if it satisfies the following conditions for all $x, y \in X$:
(PM1) $d(x, x)=0$;
(PM2) $d(x, y)=d(y, x)$;
(PM3) $d(x, z) \leq d(x, y)+d(y, z)$.

Theorem 3.15 Let X be a right distributive QI-algebra and let φ be a pseudovaluation on X. Then d_{φ} is a pseudo-metric on X and so $\left(X, d_{\varphi}\right)$ is a pseudometric space.
Proof. It is obvious that $d_{\varphi}(x, y) \geq 0$. Since $x * x=0$, then $d_{\varphi}(x, x)=$ $\varphi(x, x)+\varphi(x, x)=0+0=0$. Obviously $d_{\varphi}(x, y)=d_{\varphi}(y, x)$. We need to show, that $d_{\varphi}(x, z) \leq d_{\varphi}(x, y)+d_{\varphi}(y, z)$. By Proposition 3.11, we have

$$
\begin{aligned}
d_{\varphi}(x, y)+d_{\varphi}(y, z) & =(\varphi(x * y)+\varphi(y * x))+(\varphi(y * z)+\varphi(z * y))= \\
& =(\varphi(x * y)+\varphi(y * z))+(\varphi(z * y)+\varphi(y, x)) \geq \\
& \geq \varphi(x * z)+\varphi(z * x)=d_{\varphi}(x, z)
\end{aligned}
$$

Therefore $\left(X, d_{\varphi}\right)$ is a pseudo-metric space.
We say d_{φ} is a pseudo-metric induced by a pseudo-valuation φ.
Proposition 3.16 Let X be a right distributive QI-algebra. Then for every pseudo-metric d_{φ} induced by a pseudo-valuation φ we have:
(i) $d_{\varphi}(x, y) \geq d_{\varphi}(x * a, y * a)$;
(ii) $d_{\varphi}(x, y) \geq d_{\varphi}(a * x, a * y)$;
(iii) $d_{\varphi}(x * y, a * b) \leq d_{\varphi}(x * y, a * y)+d_{\varphi}(a * y, a * b)$, for all $x, y, a, b \in X$.

Proof. (i) Using Proposition 2.6 (iv) and Proposition 3.11 (i) we get $\varphi((x *$ $a) *(y * a)) \leq \varphi(x * y)$ and $\varphi((y * a) *(x * a)) \leq \varphi(y * x)$ for all $x, y, a \in X$. Hence

$$
\begin{aligned}
d_{\varphi}(x, y) & =\varphi(x * y)+\varphi(y * x) \geq \\
& \geq \varphi((x * a) *(y * a))+\varphi((y * a) *(x * a))= \\
& =d_{\varphi}(x * a, y * a)
\end{aligned}
$$

(ii) Similarly to (i).
(iii) Using Proposition 3.11 (iii)

$$
\varphi((x * y) *(a * b)) \leq \varphi((x * y) *(a * y))+\varphi((a * y) *(a * b))
$$

and

$$
\varphi((a * b) *(x * y)) \leq \varphi((a * b) *(a * y))+\varphi((a * y) *(x * y))
$$

for all $x, y, a, b \in X$. Hence

$$
\begin{aligned}
d_{\varphi}(x * y, a * b) & =\varphi((x * y) *(a * b))+\varphi((a * b) *(x * y)) \leq \\
& \leq \varphi((x * y) *(a * y))+\varphi((a * y) *(a * b))+ \\
& +\varphi((a * b) *(a * y))+\varphi((a * y) *(x * y))= \\
& =[\varphi(((x * y) *(a * y))+\varphi((a * y) *(x * y))]+ \\
& +[\varphi((a * y) *(a * b))+\varphi((a * b) *(a * y))]= \\
& =d_{\varphi}(x * y, a * y)+d_{\varphi}(a * y, a * b)
\end{aligned}
$$

for all $x, y, a, b \in X$.

Theorem 3.17 Let φ be a pseudo-valuation on a right distributive QI-algebra. Then $\left(X \times X, d_{\varphi}^{*}\right)$, where

$$
d_{\varphi}^{*}((x, y),(a, b))=\max \left(d_{\varphi}(x, a), d_{\varphi}(y, b)\right),
$$

for all $(x, y),(a, b) \in X \times X$, is a pseudo-metric space.
Proof. Let φ be a pseudo-valuation on X. Then

$$
d_{\varphi}^{*}((x, y),(x, y))=\max \left(d_{\varphi}(x, x), d_{\varphi}(y, y)\right)=0
$$

It is obvious that $d_{\varphi}^{*}((x, y),(a, b))=d_{\varphi}^{*}((a, b),(x, y))$. Now, let $(x, y),(a, b),(c, d) \in$ $X \times X$. We get that

$$
\begin{aligned}
d_{\varphi}^{*}((x, y),(c, d))+d_{\varphi}^{*}((c, d),(a, b)) & =\max \left(d_{\varphi}(x, c), d_{\varphi}(y, d)\right)+ \\
& +\max \left(d_{\varphi}(c, a), d_{\varphi}(d, b)\right) \geq \\
& \geq \max \left(d_{\varphi}(x, c)+d_{\varphi}(c, a), d_{\varphi}(y, d)+d_{\varphi}(d, b)\right) \\
& \geq \max \left(d_{\varphi}(x, a), d_{\varphi}(y, b)\right) \\
& =d_{\varphi}^{*}((x, y),(a, b)) .
\end{aligned}
$$

Therefore $\left(X \times X, d_{\varphi}^{*}\right)$ is a pseudo-metric space.
Example 3.18 Taking a valuation from Example 3.7 we obtain
$d_{\varphi}=\left(\begin{array}{cccccccccc}(0,0) & (0, a) & (0, b) & (0, c) & (a, a) & (a, b) & (a, c) & (b, b) & (b, c) & (c, c) \\ 0 & 3 & 1 & 3 & 0 & 3 & 0 & 0 & 3 & 0\end{array}\right)$.
Where $\left(X, d_{\varphi}\right)$ is a pseudo-metric space.

Remark $3.19 d_{\varphi}$ is not a metric, in general. Let us consider a pseudo-metric from Example 3.18. Then we have $d_{\varphi}(a, c)=0$ and obviously $a \neq c$.

Theorem 3.20 Let X be a right-distributive QI-algebra such that

$$
\begin{equation*}
(\forall x, y \in X)((x * y=0 \wedge y * x=0) \Rightarrow x=y) \tag{1}
\end{equation*}
$$

and let φ be a valuation on X. Then $\left(X, d_{\varphi}\right)$ is a metric space.
Proof. Let φ be a valuation on X.Then by Theorem $3.15 d_{\varphi}$ is a pseudometric. We need to show, that if $d_{\varphi}(x, y)=0$, then $x=y$. Let $x, y \in X$ be such that $d_{\varphi}(x, y)=0$. Then $\varphi(x * y)+\varphi(y * x)=0$. Using Proposition 3.3 and condition (1), we get that $\varphi(x * y)=0$ and $\varphi(y * x)=0$. Hence $x * y=0$ and $y * x=0$ and so $x=y$. Therefore d_{φ} is a metric.

Theorem 3.21 Let φ be a valuation on a right distributive QI-algebra X satisfying a condition (1). Then $\left(X \times X, d_{\varphi}^{*}\right)$ is a metric space.
Proof. Let φ be a valuation on X. Then by Theorem $3.17\left(X \times X, d_{\varphi}^{*}\right)$ is a pseudo-metric space. Now, suppose $(x, y),(a, b) \in X \times X$ are such that $d_{\varphi}^{*}((x, y),(a, b))=0$. Hence $\max \left(d_{\varphi}(x, a), d_{\varphi}(y, b)\right)=0$. By Definition of d_{φ}^{*} and Proposition 3.3, $d_{\varphi}(x, a)=d_{\varphi}(y, b)=0$. Therefore $x=a$ and $y=b$. Hence $(x, y)=(a, b)$ and so $\left(X \times X, d_{\varphi}^{*}\right)$ is a metric space.

Theorem 3.22 Let φ be a valuation on a right distributive QI-algebra satisfying a condition (1). The operation $*$ is uniformly continuous.
Proof. Let $\varepsilon>0$ and suppose that $d_{\varphi}^{*}((x, y),(a, b))<\frac{\varepsilon}{2}$. Then $d_{\varphi}(x, a)<\frac{\varepsilon}{2}$ and $d_{\varphi}(y, b)<\frac{\varepsilon}{2}$. Using Proposition 3.16, we obtain

$$
d_{\varphi}(x * y, a * b) \leq d_{\varphi}(x * y, a * y)+d_{\varphi}(a * y, a * b) \leq d_{\varphi}(x, a)+d_{\varphi}(y, b)<\varepsilon
$$

Therefore $*: X \times X \rightarrow X$ is uniformly continuous.

References

[1] R. K. Bandaru, On QI-algebras, Discussiones Mathematicae General Algebra and Applications 37 (2017), 137-145.
[2] D.Buşneag, Hilbert algebras with valuations, Math. Jap 44 (1996), 285-289.
Received: December 29, 2017

