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Abstract

In this paper, we investigate the properties of right and left closure
on a generalized residuated lattice. In particular, we study the relations
between right (left) closure (interior) operators and residuated , Galois
connetions with isotone and antitone maps.
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1 Introduction

Galois connections and closure operators on fuzzy sets introduced by Bělohlávek
[1,2] are important mathematical tools [1-6]. Recently, Bělohlávek [1-3] inves-
tigate the properties of fuzzy relations and similarities on a residual lattice
which supports part of foundation of theoretic computer science. Georgescu
and Popescue [4.5] introduced non-commutative fuzzy Galois connection in a
generalized residuated lattice which is induced by two implications.

In this paper, we investigate the properties of right and left closure on a
generalized residuated lattice. In particular, we study the relations between
right (left) closure (interior) operators and residuated , Galois connetions with
isotone and antitone maps.
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2 Preliminaries

Definition 2.1 [4,5] A structure (L,∨,∧,⊙,→,⇒, 0, 1) is called a gener-

alized residuated lattice if it satisfies the following conditions:
(GR1) (L,∨,∧, 1, 0) is a bounded where 1 is the universal upper bound

and 0 denotes the universal lower bound;
(GR2) (L,⊙, 1) is a monoid;
(GR3) it satisfies a residuation , i.e.

a⊙ b ≤ c iff a ≤ b → c iff b ≤ a ⇒ c.

We call that a generalized residuated lattice has the law of double negation
if a = (a∗)0 = (a0)∗ where a0 = a → 0 and a∗ = a ⇒ 0.

Remark 2.2 [4-8] (1) A generalized residuated lattice is a residuated lattice
(→=⇒) iff ⊙ is commutative.

(2) A left-continuous t-norm ([0, 1],≤,⊙) defined by a → b =
∨

{c | a⊙ c ≤
b} is a residuated lattice

(3) Let (L,≤,⊙) be a quantale. For each x, y ∈ L, we define

x → y =
∨

{z ∈ L | z ⊙ x ≤ y}, x ⇒ y =
∨

{z ∈ L | x⊙ z ≤ y}.

Then it satisfies Galois correspondence, that is,
(x⊙ y) ≤ z iff x ≤ (y → z) iff y ≤ (x ⇒ z). Hence (L,∨,∧,⊙,→,⇒, 0, 1)

is a generalized residuated lattice.
(4) A pseudo MV-algebra is a generalized residuated lattice with the law

of double negation.

In this paper, we assume (L,∧,∨,⊙,→,⇒, 0, 1) is a generalized residuated
lattice with the law of double negation and if the family supremum or infumum
exists, we denote

∨

and
∧

.

Lemma 2.3 [4-8] For each x, y, z, xi, yi ∈ L, we have the following proper-
ties.

(1) If y ≤ z, (x ⊙ y) ≤ (x ⊙ z), x → y ≤ x → z and z → x ≤ y → x for
→∈ {→,⇒}.

(2) x⊙ y ≤ x ∧ y ≤ x ∨ y.

(3) x → (
∧

i∈Γ yi) =
∧

i∈Γ(x → yi) and (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y) for
→∈ {→,⇒}.

(4) x → (
∨

i∈Γ yi) ≥
∨

i∈Γ(x → yi), for →∈ {→,⇒}.
(5) (

∧

i∈Γ xi) → y ≥
∨

i∈Γ(xi → y), for →∈ {→,⇒}.
(6) (x⊙ y) → z = x → (y → z) and (x⊙ y) ⇒ z = y ⇒ (x ⇒ z).
(7) x → (y ⇒ z) = y ⇒ (x → z) and x ⇒ (y → z) = y → (x ⇒ z).
(8) x⊙ (x → y) ≤ y and (x ⇒ y)⊙ x ≤ y.



Right and left closure operators 371

(9) (x ⇒ y)⊙ (y ⇒ z) ≤ x ⇒ z and (y → z)⊙ (x → y) ≤ x → z.
(10) (x ⇒ z) ≤ (y ⊙ x) ⇒ (y ⊙ z) and (x → z) ≤ (x⊙ y) → (z ⊙ y).
(11) (x ⇒ y) ≤ (y ⇒ z) → (x ⇒ z) and (y ⇒ z) ≤ (x ⇒ y) ⇒ (x ⇒ z)
(12) xi → yi ≤ (

∧

i∈Γ xi) → (
∧

i∈Γ yi) for →∈ {→,⇒}.
(13) xi → yi ≤ (

∨

i∈Γ xi) → (
∨

i∈Γ yi) for →∈ {→,⇒}.
(14) x → y = 1 iff x ≤ y.
(15) x → y = y0 ⇒ x0 and x ⇒ y = y∗ → x∗.
(16)

∧

i∈Γ x
∗
i = (

∨

i∈Γ xi)
∗ and

∨

i∈Γ x
∗
i = (

∧

i∈Γ xi)
∗.

(17)
∧

i∈Γ x
0

i = (
∨

i∈Γ xi)
0 and

∨

i∈Γ x
0

i = (
∧

i∈Γ xi)
0.

Definition 2.4 Let X be a set. A function eX : X ×X → L is called:
(E1) eX(x, x) = 1 for all x ∈ X ,
(R) eX(x, y)⊙ eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X .
Then eX is called a right preorder. If eX satisfies (E1) and
(L) eX(y, z)⊙ eX(x, y) ≤ eX(x, z), for all x, y, z ∈ X .
Then eX is called a left preorder.
The pair (X, eX) is a right preorder (resp. left-preorder) set.

Example 2.5 (1) We define two functions e⇑L, e
↑
L : L×L → L as e⇑L(x, y) =

x ⇒ y and e
↑
L(x, y) = x → y. Then e

⇑
L is a right preorder and e

↑
L is a left

preorder.
(2) We define two functions e⇑

LX , e
↑

LX : LX × LX → L as

e
⇑

LX (A,B) =
∧

x∈X

(A(x) ⇒ B(x)), e↑
LX (A,B) =

∧

x∈X

(A(x) → B(x)).

Then e
⇑

LX is a right preorder and e
↑

LX is a left preorder.

Definition 2.6 [1-4] Let X and Y be two sets. Let F,H : LX → LY and
G,K : LY → LX be operators.

(1) The pair (F,G) is called a residuated connection between X and Y if
for A ∈ LX and B ∈ LY , F (A) ≤ B iff A ≤ G(B).

(2) The pair (H,K) is called a Galois connection between X and Y if for
A ∈ LX and B ∈ LY , B ≤ H(A) iff A ≤ K(B).

3 Right and left closure operators

Definition 3.1 (1) A map G : LX → LY is a right isotone map if for all
A,B ∈ LX , e⇑

LX (A,B) ≤ e
⇑

LY (G(A), G(B)).
(2) A map G : LX → LY is a left isotone map if for all A,B ∈ LX ,

e
↑

LX (A,B) ≤ e
↑

LY (G(A), G(B)).
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(3) A map G : LX → LY is a right antitone map if for all A,B ∈ LX ,
e
↑

LX (A,B) ≤ e
⇑

LY (G(B), G(A)).
(4) A map G : LX → LY is a left antitone map if for all A,B ∈ LX ,

e
⇑

LX (A,B) ≤ e
↑

LY (G(B), G(A)).

Theorem 3.2 (1) A map G : LX → LY is a left isotone map iff α⊙G(A) ≤
G(α ⊙ A) and G(A) ≤ G(B) for A ≤ B iff G(α ⇒ A) ≤ α ⇒ G(A) and

G(A) ≤ G(B) for A ≤ B.

(2) A map G : LX → LY is a right isotone map iff G(A)⊙ α ≤ G(A⊙ α)
and G(A) ≤ G(B) for A ≤ B iff G(α → A) ≤ α → G(A) and G(A) ≤ G(B)
for A ≤ B.

(3) A map G : LX → LY is a right antitone map iff G(α⊙A) ≤ α → G(A)
and G(B) ≤ G(A) for A ≤ B iff G(A) ⊙ α ≤ G(α ⇒ A) and G(B) ≤ G(A)
for A ≤ B.

(4) A map G : LX → LY is a left antitone map iff G(A⊙ α) ≤ α ⇒ G(A)
and G(B) ≤ G(A) for A ≤ B iff α ⊙ G(A) ≤ G(α → A) and G(B) ≤ G(A)
for A ≤ B.

(5) If G : LX → LY is a left isotone map, then G0 : LX → LY is a right

antitone map.

(6) If G : LX → LY is a right isotone map, then G∗ : LX → LY is a left

antitone map.

(7) If G : LX → LY is a right antitone map, then G∗ : LX → LY is a left

isotone map.

(8) If G : LX → LY is a left antitone map, then G0 : LX → LY is a right

isotone map.

Proof (1) First, we show that G : LX → LY is a left isotone map iff
α ⊙G(A) ≤ G(α⊙ A) and G(A) ≤ G(B) for A ≤ B. Let G : LX → LY be a
left isotone map. Then e

↑

LX (A,B) ≤ e
↑

LY (G(A), G(B)). Put B = α⊙A. Then

α ≤ e
↑

LX (A, α⊙ A) ≤ e
↑

LY (G(A), G(α⊙A)).

Hence α⊙G(A) ≤ G(α⊙ A).
Conversely, put α = e

↑

LX (A,B).

e
↑

LX (A,B)⊙G(A) ≤ G(e↑
LX (A,B)⊙ A) ≤ G(B).

Hence e
↑

LX (A,B) ≤ e
↑

LY (G(A), G(B)).
Second, we show that α⊙G(A) ≤ G(α⊙A) and G(A) ≤ G(B) for A ≤ B

iff G(α ⇒ A) ≤ α ⇒ G(A) and G(A) ≤ G(B) for A ≤ B.
Since α ⊙ G(α ⇒ A) ≤ G(α ⊙ (α ⇒ A)) ≤ G(A), then G(α ⇒ A) ≤ α ⇒

G(A).
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Conversely, since G(α ⇒ α⊙A) ≤ α ⇒ G(α⊙A) iff α⊙G(α ⇒ α⊙A) ≤
G(α⊙ A), we have

α⊙G(A) ≤ α⊙G(α ⇒ α⊙A) ≤ G(α⊙ A).

(2) First, we show that G : LX → LY is a right isotone map iff G(A)⊙α ≤
G(A⊙ α) and G(A) ≤ G(B) for A ≤ B. Let G : LX → LY be a right isotone
map. Then e

⇑

LX (A,B) ≤ e
⇑

LY (G(A), G(B)). Put B = A⊙ α. Then

α ≤ e
⇑

LX (A,A⊙ α) ≤ e
⇑

LY (G(A), G(A⊙ α)).

Hence G(A)⊙ α ≤ G(A⊙ α).
Conversely, put α = e

⇑

LX (A,B).

G(A)⊙ e
⇑

LX (A,B) ≤ G(A⊙ e
⇑

LX (A,B)) ≤ G(B).

Hence e
⇑

LX (A,B) ≤ e
⇑

LY (G(A), G(B)).
Second, we show that G(A)⊙α ≤ G(A⊙α) and G(A) ≤ G(B) for A ≤ B

iff G(α → A) ≤ α → G(A) and G(A) ≤ G(B) for A ≤ B.
Since G(α → A)⊙ α ≤ G((α → A)⊙ α) ≤ G(A), then G(α → A) ≤ α →

G(A).
Conversely, since G(α → A⊙α) ≤ α → G(A⊙α) iff G(α → A⊙α)⊙α ≤

G(A⊙ α), we have

G(A)⊙ α ≤ G(α → A⊙ α)⊙ α ≤ G(A⊙ α).

(3) Let G : LX → LY be a right antitone map. Then e
↑

LX (A,B) ≤

e
⇑

LY (G(B), G(A)). Put B = α ⊙ A. Then α ≤ e
↑

LX (A, α ⊙ A) ≤ e
⇑

LY (G(α ⊙
A), G(A)). Then G(α⊙ A) ≤ α → G(A).

Conversely, sinceG(e↑
LX (A,B)⊙A) ≤ e

↑

LX (A,B) → G(A) andG(e↑
LX (A,B)⊙

A) ≥ G(B) for e↑
LX (A,B)⊙A ≤ B, we have

e
↑

LX (A,B) ≤ G(e↑
LX (A,B)⊙ A) ⇒ G(A) ≤ G(B) ⇒ G(A)

Second, we show that G(α⊙A) ≤ α → G(A) and G(B) ≤ G(A) for A ≤ B

iff G(A)⊙ α ≤ G(α ⇒ A) and G(B) ≤ G(A) for A ≤ B.
Let G(α ⊙ A) ≤ α → G(A) and G(B) ≤ G(A) for A ≤ B. Then G(α ⊙

A)⊙ α ≤ G(A). Thus

G(A)⊙ α ≤ G(α⊙ (α ⇒ A))⊙ α ≤ G(α ⇒ A).

Let G(A) ⊙ α ≤ G(α ⇒ A) and G(B) ≤ G(A) for A ≤ B. Then G(A) ≤
α → G(α ⇒ A). Put A = α ⊙ B. G(α ⊙ B) ≤ α → G(α ⇒ α ⊙ B) ≤ α →
G(B).
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(4) It is proved a similar method as in (3).
(5) Let G : LX → LY be a left isotone map. By Lemma 2.3 (15),

e
↑

LX (A,B) ≤ e
↑

LY (G(A), G(B)) = e
⇑

LY (G0(B), G0(A)).. Hence G0 : LX → LY is
a right antitone map.

(6) Let G : LX → LY be a right isotone map. By Lemma 2.3 (15),
e
⇑

LX (A,B) ≤ e
⇑

LY (G(A), G(B)) = e
↑

LY (G∗(B), G∗(A)).. Hence G∗ : LX → LY is
a left antitone map.

(4), (7) and (8) are proved similar methods as in (3), (5) and (6), respec-
tively.

Definition 3.3 A map C : LX → LX is called a right (resp. left) closure
operator if it satisfies the following conditions:

(C1) A ≤ C(A), for all A ∈ LX .
(C2) C(C(A)) = C(A), for all A ∈ LX .
(C3) C is a right (resp. left) isotone map.
A map I : LX → LX is called a right (resp. left) interior operator if it

satisfies the following conditions:
(I1) I(A) ≤ A, for all A ∈ LX .
(I2) I(I(A)) = I(A), for all A ∈ LX .
(I3) I is a right (resp. left) isotone map.

Theorem 3.4 (1) Let C : LX → LX be a right closure operator. Define a

map I : LX → LX as I(A) = C(A0)∗. Then I is a left interior operator.

(2) Let C : LX → LX be a left closure operator. Define a map I : LX → LX

as I(A) = C(A∗)0. Then I is a right interior operator.

Proof. (1)

e
↑

LX (A,B) = e
⇑

LX (B
0, A0) ≤ e

⇑

LX (C(B0), C(A0))

= e
↑

LX (C(A0)∗, C(B0)∗) = e
↑

LX (I(A), I(B)).

(2) It is proved by a similar method as in (1).

Theorem 3.5 Let G : LX → LY and H : LY → LX be two maps.

(1) A pair (G,H) is a residuated connection with two right isotone maps

G and H iff for all A ∈ LX and B ∈ LY , e
⇑

LY (G(A), B) = e
⇑

LX (A,H(B)).
(2) A pair (G,H) is a residuated connection with two left isotone maps G

and H iff for all A ∈ LX and B ∈ LY , e
↑

LY (G(A), B) = e
↑

LX (A,H(B)).
(3) A pair (G,H) is a Galois connection with right antitone map G and

left antitone map H iff for all A ∈ LX and B ∈ LY , e
↑

LX (A,H(B)) =

e
⇑

LY (B,G(A)).
(4) A pair (G,H) is a Galois connection with left antitone map G and

right antitone map H iff for all A ∈ LX and B ∈ LY , e
⇑

LX (A,H(B)) =

e
↑

LY (B,G(A)).
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Proof. (1) Let (G,H) be a residuated connection. Then G(A) ≤ G(A) iff
A ≤ H(G(A)) and H(B) ≤ H(B) iff G(H(B)) ≤ B. Hence e

⇑

LY (G(A), B) =

e
⇑

LX (A,H(B)) from

e
⇑

LY (G(A), B) ≤ e
⇑

LX (H(G(A)), H(B)) ≤ e
⇑

LX (A,H(B))

e
⇑

LX (A,H(B)) ≤ e
⇑

LY (G(A), G(H(B))) ≤ e
⇑

LY (G(A), B).

Conversely, since e
⇑

LY (G(A), B) = e
⇑

LX (A,H(B)) for all A ∈ LX and B ∈ LY ,
A ≤ H(B) iff G(A) ≤ B. Thus, (G,H) is a residuated connection. Put B =
G(A), then ⊤ = e

⇑

LY (G(A), G(A)) = e
⇑

LX (A,H(G(A))). So, A ≤ H(G(A)).
Put A = H(B), we similarly obtain G(H(B)) ≤ B. Thus we obtain two right
isotone maps G and H from:

e
⇑

LY (G(A), G(B)) = e
⇑

LX (A,H(G(B))) ≥ e
⇑

LX (A,B)

e
⇑

LX (H(A), H(B)) = e
⇑

LY (G(H(A)), B) ≥ e
⇑

LY (A,B).

(3) Let (G,H) be a Galois connection. Then G(A) ≤ G(A) iff A ≤
H(G(A)) and H(B) ≤ H(B) iff B ≤ G(H(B)). Moreover, since G is a right
antitone map and H is a left antitone map, we have

e
⇑

LY (B,G(A)) ≤ e
↑

LX (H(G(A)), H(B)) ≤ e
↑

LX (A,H(B))

e
↑

LX (A,H(B)) ≤ e
⇑

LY (G(H(B)), G(A)) ≤ e
⇑

LY (B,G(A)).

Hence e
↑

LX (A,H(B)) = e
⇑

LY (B,G(A)).

Conversely, since e
↑

LX (A,H(B)) = e
⇑

LY (B,G(A)), A ≤ H(B) iff B ≤ G(A).
Moreover,

e
⇑

LY (G(A), G(B)) = e
↑

LX (B,H(G(A))) ≥ e
↑

LX (B,A)

e
↑

LX (H(A), H(B)) = e
⇑

LY (B,G(H(A))) ≥ e
⇑

LY (B,A).

(2) and (4) are similarly proved as (1) and (3), respectively.

Theorem 3.6 Let G : LX → LY and H : LY → LX be right isotone maps

with a residuated connection (G,H). Then the following statements hold:

(1) H ◦G is a right closure operator.

(2) G ◦H is a right interior operator.

Proof. (1) Since A ≤ H(G(A)), H(G(A)) ≤ H(G(H(G(A)))) for all
A ∈ LX . Since B ≥ G(H(B)), G(A) ≥ G(H(G(A))) and H(G(A)) ≥
H(G(H(G(A)))). Thus H(G(A)) = H(G(H(G(A)))). Since G and H are
right isotone maps, e⇑

LX (A,B) ≤ e
⇑

LX (H(G(A)), H(G(B))).
(2) It is similarly proved as in (1).
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Corollary 3.7 Let G : LX → LY and H : LY → LX be left isotone maps

with a residuated connection (G,H). Then the following statements hold:

(1) H ◦G is a left closure operator.

(2) G ◦H is a left interior operator.

Theorem 3.8 Let G : LX → LY be a right antitone map and H : LY → LX

be a left antitone map with a Galois connection (G,H). Then
(1) H ◦G is a left closure operator.

(2) G ◦H is a right closure operator.

Proof. (1) Since A ≤ H(G(A)), then H(G(A)) ≤ H(G(H(G(A)))) for all
A ∈ LX . Since B ≤ G(H(B)), then G(A) ≤ G(H(G(A))) and H(G(A)) ≥
H(G(H(G(A)))) becauseH is a left antitone map. So,H(G(A)) = H(G(H(G(A)))).

Since G is a right antitone map and H is a left antitone map, e↑
LX (A,B) ≤

e
⇑

LX (G(B), G(A)) ≤ e
↑

LX (H(G(A)), H(G(B))).
(2) It is proved by a similar method as in (1).

Corollary 3.9 Let G : LX → LY be a left antitone map and H : LY → LX

be a right antitone map with a Galois connection (G,H). Then
(1) H ◦G is a right closure operator.

(2) G ◦H is a left closure operator.

Definition 3.10 For each A ∈ LX and B ∈ LY and R ∈ LX×Y , we define:
(1) R⊙,⊙R : LX → LY is defined as:

R⊙(A)(y) =
∨

x∈X

(R(x, y)⊙A(x)), ⊙R(A)(y) =
∨

x∈X

(A(x)⊙R(x, y)).

(2) R⇑, R↑ : LY → LX is defined as:

R⇑(B)(x) =
∧

y∈Y

(R(x, y) ⇒ B(y)), R↑(B)(x) =
∧

y∈Y

(R(x, y) → B(y)).

Theorem 3.11 (1) R⊙ and R⇑ are right isotone maps with a residuated

connection (R⊙, R⇑).
(2) R⇑ ◦R⊙ is a right closure operator.

(3) R⊙ ◦R⇑ is a right interior operator.

Proof. (1) Since R(x, y)⊙A(x)⊙ (A(x) ⇒ B(x)) ≤ R(x, y)⊙B(x), then
e
⇑

LX (A,B) ≤ e
⇑

LY (R⊙(A), R⊙(B)). Since (R(x, y) ⇒ A(y))⊙ (A(y) ⇒ B(y)) ≤
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R(x, y) ⇒ B(y), then e
⇑

LY (A,B) ≤ e
⇑

LX (R⇑(A), R⇑(B)). By Theorem 3.5(1),
we only show the following statement.

e
⇑

LY (R⊙(A), B) =
∧

y∈Y (R
⊙(A)(y) ⇒ B(y))

=
∧

y∈Y

(

∨

x∈X(R(x, y)⊙ A(x)) ⇒ B(y)
)

=
∧

y∈Y

∧

x∈X

(

(R(x, y)⊙ A(x)) ⇒ B(y)
)

=
∧

x∈X

∧

y∈Y

(

A(x) ⇒ (R(x, y) ⇒ B(y))
)

=
∧

x∈X

(

A(x) ⇒
∧

y∈Y (R(x, y) ⇒ B(y))
)

=
∧

x∈X(A(x) ⇒ R⇑(B)(x))

= e
⇑

LX (A,R⇑(B)).

(2) and (3) follow from Theorem 3.6.

Theorem 3.12 (1) ⊙R and R↑ are left isotone maps with a residuated con-

nection (⊙R,R↑).
(2) R↑ ◦⊙ R is a left closure operator.

(3) ⊙R ◦R↑ is a left interior operator.

Proof. (1) Since (A(x) → B(x))⊙A(x)⊙R(x, y) ≤ B(x)⊙R(x, y), then
e
↑

LX (A,B) ≤ e
↑

LY (⊙R(A),⊙R(B)). Since (A(y) → B(y))⊙ (R(x, y) → A(y)) ≤

R(x, y) → B(y), then e
↑

LY (A,B) ≤ e
↑

LX (R↑(A), R↑(B)). By Theorem 3.3(1),
we only show the following statement.

e
↑

LY (⊙R(A), B) =
∧

y∈Y (
⊙R(A)(y) → B(y))

=
∧

y∈Y

(

∨

x∈X(A(x)⊙ R(x, y)) → B(y)
)

=
∧

y∈Y

∧

x∈X

(

A(x)⊙ (R(x, y)) → B(y)
)

=
∧

x∈X

∧

y∈Y

(

A(x) → (R(x, y) → B(y))
)

=
∧

x∈X

(

A(x) →
∧

y∈Y (R(x, y) → B(y))
)

=
∧

x∈X(A(x) → R↑(B)(x))

= e
↑

LX (A,R↑(B))

(2) and (3) follow from Corollary 3.7.

Example 3.13 Let K = {(x, y) ∈ R2 | x > 0} be a set and we define an
operation ⊗ : K ×K → K as follows:

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + y1).

Then (K,⊗) is a group with e = (1, 0), (x, y)−1 = ( 1
x
,− y

x
).
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We have a positive cone P = {(a, b) ∈ R2 | a = 1, b ≥ 0 , or a > 1} because
P ∩ P−1 = {(1, 0)}, P ⊙ P ⊂ P , (a, b)−1 ⊙ P ⊙ (a, b) = P and P ∪ P−1 = K.
For (x1, y1), (x2, y2) ∈ K, we define

(x1, y1) ≤ (x2, y2) ⇔ (x1, y1)
−1 ⊙ (x2, y2) ∈ P, (x2, y2)⊙ (x1, y1)

−1 ∈ P

⇔ x1 < x2 or x1 = x2, y1 ≤ y2.

Then (K,≤ ⊗) is a lattice-group. (ref. [1])
The structure (L,⊙,⇒,→, (1

2
, 1), (1, 0)) is a generalized residuated lattice

with strong negation where ⊥ = (1
2
, 1) is the least element and ⊤ = (1, 0) is

the greatest element from the following statements:

(x1, y1)⊙ (x2, y2) = (x1, y1)⊗ (x2, y2) ∨ (1
2
, 1) = (x1x2, x1y2 + y1) ∨ (1

2
, 1),

(x1, y1) ⇒ (x2, y2) = ((x1, y1)
−1 ⊗ (x2, y2)) ∧ (1, 0) = (x2

x1

, y2−y1
x1

) ∧ (1, 0),

(x1, y1) → (x2, y2) = ((x2, y2)⊗ (x1, y1)
−1) ∧ (1, 0) = (x2

x1

,−x2y1
x1

+ y2) ∧ (1, 0).

Furthermore, we have (x, y) = (x, y)∗◦ = (x, y)◦∗ from:

(x, y)∗ = (x, y) ⇒ (
1

2
, 1) = (

1

2x
,
1− y

x
),

(x, y)∗◦ = (
1

2x
,
1− y

x
) → (

1

2
, 1) = (x, y).

Let X = {a, b, c} and Y = {u, v} be sets. Define R ∈ LX×Y as

R =







(1, 0) (5
8
, 5

2
)

(5
7
, 30

7
) (5

8
,−5

4
)

(1
2
, 2) (5

6
, 10

3
)







For A = ((2
3
, 1), (1

2
, 2), (2

3
,−1))t,

R⊙(A) = ((
2

3
, 1), (

5

9
,
25

6
))t, ⊙R(A) = ((

2

3
, 1), (

5

9
,
11

9
))t

R→(A) = ((
3

4
,
11

4
), (

15

16
,−

25

16
))t, R⇒(A) = ((

3

4
,
9

2
), (

15

16
,
9

4
))t

R⇑(R⊙(A)) = ((
2

3
, 1), (

8

9
,
26

3
), (

2

3
, 1))t,

R↑(⊙R(A)) = ((
2

3
, 1), (

8

9
,
7

3
), (

2

3
,−1))t

R⇐(R→(A)) = ((
2

3
,
13

3
), (

2

3
,
1

3
), (

2

3
,−1))t,

R←(R⇒(A)) = ((
2

3
,
85

24
), (

2

3
,−

5

24
), (

2

3
,
1

6
))t.

By Theorems 3.11 and 3.12, R⇑◦R⊙ is a right closure operator and R⊙◦R⇑

is a right interior operator. Moreover, R↑ ◦⊙ R is a left closure operator and
⊙R ◦R↑ is a left interior operator.



Right and left closure operators 379

References
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