

Right and left closure operators

Yong Chan Kim

Department of Mathematics, Gangneung-Wonju National University,
Gangneung, Gangwondo 210-702, Korea
yck@gwnu.ac.kr

Young Sun Kim

Department of Applied Mathematics, Pai Chai University,
Dae Jeon, 302-735, Korea
yskim@pcu.ac.kr

Abstract

In this paper, we investigate the properties of right and left closure on a generalized residuated lattice. In particular, we study the relations between right (left) closure (interior) operators and residuated , Galois connetions with isotone and antitone maps.

Mathematics Subject Classification: 03E72, 03G10, 06A15, 06F07

Keywords:

Generalized residuated lattices, isotone (antitone) maps, residuated (Galois) connections, right (left) closure (interior) operators

1 Introduction

Galois connections and closure operators on fuzzy sets introduced by Bělohlávek [1,2] are important mathematical tools [1-6]. Recently, Bělohlávek [1-3] investigate the properties of fuzzy relations and similarities on a residual lattice which supports part of foundation of theoretic computer science. Georgescu and Popescue [4.5] introduced non-commutative fuzzy Galois connection in a generalized residuated lattice which is induced by two implications.

In this paper, we investigate the properties of right and left closure on a generalized residuated lattice. In particular, we study the relations between right (left) closure (interior) operators and residuated , Galois connetions with isotone and antitone maps.

2 Preliminaries

Definition 2.1 [4,5] A structure $(L, \vee, \wedge, \odot, \rightarrow, \Rightarrow, 0, 1)$ is called a *generalized residuated lattice* if it satisfies the following conditions:

(GR1) $(L, \vee, \wedge, 1, 0)$ is a bounded where 1 is the universal upper bound and 0 denotes the universal lower bound;

(GR2) $(L, \odot, 1)$ is a monoid;

(GR3) it satisfies a residuation , i.e.

$$a \odot b \leq c \text{ iff } a \leq b \rightarrow c \text{ iff } b \leq a \Rightarrow c.$$

We call that a generalized residuated lattice has the law of double negation if $a = (a^*)^0 = (a^0)^*$ where $a^0 = a \rightarrow 0$ and $a^* = a \Rightarrow 0$.

Remark 2.2 [4-8] (1) A generalized residuated lattice is a residuated lattice $(\rightarrow = \Rightarrow)$ iff \odot is commutative.

(2) A left-continuous t-norm $([0, 1], \leq, \odot)$ defined by $a \rightarrow b = \bigvee \{c \mid a \odot c \leq b\}$ is a residuated lattice

(3) Let (L, \leq, \odot) be a quantale. For each $x, y \in L$, we define

$$x \rightarrow y = \bigvee \{z \in L \mid z \odot x \leq y\}, \quad x \Rightarrow y = \bigvee \{z \in L \mid x \odot z \leq y\}.$$

Then it satisfies Galois correspondence, that is,

$(x \odot y) \leq z$ iff $x \leq (y \rightarrow z)$ iff $y \leq (x \Rightarrow z)$. Hence $(L, \vee, \wedge, \odot, \rightarrow, \Rightarrow, 0, 1)$ is a generalized residuated lattice.

(4) A pseudo MV-algebra is a generalized residuated lattice with the law of double negation.

In this paper, we assume $(L, \wedge, \vee, \odot, \rightarrow, \Rightarrow, 0, 1)$ is a generalized residuated lattice with the law of double negation and if the family supremum or infimum exists, we denote \bigvee and \bigwedge .

Lemma 2.3 [4-8] For each $x, y, z, x_i, y_i \in L$, we have the following properties.

- (1) If $y \leq z$, $(x \odot y) \leq (x \odot z)$, $x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$ for $\rightarrow \in \{\rightarrow, \Rightarrow\}$.
- (2) $x \odot y \leq x \wedge y \leq x \vee y$.
- (3) $x \rightarrow (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \rightarrow y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \rightarrow y = \bigwedge_{i \in \Gamma} (x_i \rightarrow y)$ for $\rightarrow \in \{\rightarrow, \Rightarrow\}$.
- (4) $x \rightarrow (\bigvee_{i \in \Gamma} y_i) \geq \bigvee_{i \in \Gamma} (x \rightarrow y_i)$, for $\rightarrow \in \{\rightarrow, \Rightarrow\}$.
- (5) $(\bigwedge_{i \in \Gamma} x_i) \rightarrow y \geq \bigvee_{i \in \Gamma} (x_i \rightarrow y)$, for $\rightarrow \in \{\rightarrow, \Rightarrow\}$.
- (6) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$ and $(x \odot y) \Rightarrow z = y \Rightarrow (x \Rightarrow z)$.
- (7) $x \rightarrow (y \Rightarrow z) = y \Rightarrow (x \rightarrow z)$ and $x \Rightarrow (y \rightarrow z) = y \rightarrow (x \Rightarrow z)$.
- (8) $x \odot (x \rightarrow y) \leq y$ and $(x \Rightarrow y) \odot x \leq y$.

- (9) $(x \Rightarrow y) \odot (y \Rightarrow z) \leq x \Rightarrow z$ and $(y \rightarrow z) \odot (x \rightarrow y) \leq x \rightarrow z$.
- (10) $(x \Rightarrow z) \leq (y \odot x) \Rightarrow (y \odot z)$ and $(x \rightarrow z) \leq (x \odot y) \rightarrow (z \odot y)$.
- (11) $(x \Rightarrow y) \leq (y \Rightarrow z) \rightarrow (x \Rightarrow z)$ and $(y \Rightarrow z) \leq (x \Rightarrow y) \Rightarrow (x \Rightarrow z)$
- (12) $x_i \rightarrow y_i \leq (\bigwedge_{i \in \Gamma} x_i) \rightarrow (\bigwedge_{i \in \Gamma} y_i)$ for $\rightarrow \in \{\rightarrow, \Rightarrow\}$.
- (13) $x_i \rightarrow y_i \leq (\bigvee_{i \in \Gamma} x_i) \rightarrow (\bigvee_{i \in \Gamma} y_i)$ for $\rightarrow \in \{\rightarrow, \Rightarrow\}$.
- (14) $x \rightarrow y = 1$ iff $x \leq y$.
- (15) $x \rightarrow y = y^0 \Rightarrow x^0$ and $x \Rightarrow y = y^* \rightarrow x^*$.
- (16) $\bigwedge_{i \in \Gamma} x_i^* = (\bigvee_{i \in \Gamma} x_i)^*$ and $\bigvee_{i \in \Gamma} x_i^* = (\bigwedge_{i \in \Gamma} x_i)^*$.
- (17) $\bigwedge_{i \in \Gamma} x_i^0 = (\bigvee_{i \in \Gamma} x_i)^0$ and $\bigvee_{i \in \Gamma} x_i^0 = (\bigwedge_{i \in \Gamma} x_i)^0$.

Definition 2.4 Let X be a set. A function $e_X : X \times X \rightarrow L$ is called:

(E1) $e_X(x, x) = 1$ for all $x \in X$,

(R) $e_X(x, y) \odot e_X(y, z) \leq e_X(x, z)$, for all $x, y, z \in X$.

Then e_X is called a right preorder. If e_X satisfies (E1) and

(L) $e_X(y, z) \odot e_X(x, y) \leq e_X(x, z)$, for all $x, y, z \in X$.

Then e_X is called a left preorder.

The pair (X, e_X) is a right preorder (resp. left-preorder) set.

Example 2.5 (1) We define two functions $e_L^{\uparrow\uparrow}, e_L^{\uparrow\downarrow} : L \times L \rightarrow L$ as $e_L^{\uparrow\uparrow}(x, y) = x \Rightarrow y$ and $e_L^{\uparrow\downarrow}(x, y) = x \rightarrow y$. Then $e_L^{\uparrow\uparrow}$ is a right preorder and $e_L^{\uparrow\downarrow}$ is a left preorder.

(2) We define two functions $e_{L^X}^{\uparrow\uparrow}, e_{L^X}^{\uparrow\downarrow} : L^X \times L^X \rightarrow L$ as

$$e_{L^X}^{\uparrow\uparrow}(A, B) = \bigwedge_{x \in X} (A(x) \Rightarrow B(x)), \quad e_{L^X}^{\uparrow\downarrow}(A, B) = \bigwedge_{x \in X} (A(x) \rightarrow B(x)).$$

Then $e_{L^X}^{\uparrow\uparrow}$ is a right preorder and $e_{L^X}^{\uparrow\downarrow}$ is a left preorder.

Definition 2.6 [1-4] Let X and Y be two sets. Let $F, H : L^X \rightarrow L^Y$ and $G, K : L^Y \rightarrow L^X$ be operators.

(1) The pair (F, G) is called a *residuated connection* between X and Y if for $A \in L^X$ and $B \in L^Y$, $F(A) \leq B$ iff $A \leq G(B)$.

(2) The pair (H, K) is called a *Galois connection* between X and Y if for $A \in L^X$ and $B \in L^Y$, $B \leq H(A)$ iff $A \leq K(B)$.

3 Right and left closure operators

Definition 3.1 (1) A map $G : L^X \rightarrow L^Y$ is a right isotone map if for all $A, B \in L^X$, $e_{L^X}^{\uparrow\uparrow}(A, B) \leq e_{L^Y}^{\uparrow\uparrow}(G(A), G(B))$.

(2) A map $G : L^X \rightarrow L^Y$ is a left isotone map if for all $A, B \in L^X$, $e_{L^X}^{\uparrow\downarrow}(A, B) \leq e_{L^Y}^{\uparrow\downarrow}(G(A), G(B))$.

(3) A map $G : L^X \rightarrow L^Y$ is a right antitone map if for all $A, B \in L^X$, $e_{L^X}^\uparrow(A, B) \leq e_{L^Y}^\uparrow(G(B), G(A))$.

(4) A map $G : L^X \rightarrow L^Y$ is a left antitone map if for all $A, B \in L^X$, $e_{L^X}^\uparrow(A, B) \leq e_{L^Y}^\uparrow(G(B), G(A))$.

Theorem 3.2 (1) A map $G : L^X \rightarrow L^Y$ is a left isotone map iff $\alpha \odot G(A) \leq G(\alpha \odot A)$ and $G(A) \leq G(B)$ for $A \leq B$ iff $G(\alpha \Rightarrow A) \leq \alpha \Rightarrow G(A)$ and $G(A) \leq G(B)$ for $A \leq B$.

(2) A map $G : L^X \rightarrow L^Y$ is a right isotone map iff $G(A) \odot \alpha \leq G(A \odot \alpha)$ and $G(A) \leq G(B)$ for $A \leq B$ iff $G(\alpha \rightarrow A) \leq \alpha \rightarrow G(A)$ and $G(A) \leq G(B)$ for $A \leq B$.

(3) A map $G : L^X \rightarrow L^Y$ is a right antitone map iff $G(\alpha \odot A) \leq \alpha \rightarrow G(A)$ and $G(B) \leq G(A)$ for $A \leq B$ iff $G(A) \odot \alpha \leq G(\alpha \Rightarrow A)$ and $G(B) \leq G(A)$ for $A \leq B$.

(4) A map $G : L^X \rightarrow L^Y$ is a left antitone map iff $G(A \odot \alpha) \leq \alpha \Rightarrow G(A)$ and $G(B) \leq G(A)$ for $A \leq B$ iff $\alpha \odot G(A) \leq G(\alpha \rightarrow A)$ and $G(B) \leq G(A)$ for $A \leq B$.

(5) If $G : L^X \rightarrow L^Y$ is a left isotone map, then $G^0 : L^X \rightarrow L^Y$ is a right antitone map.

(6) If $G : L^X \rightarrow L^Y$ is a right isotone map, then $G^* : L^X \rightarrow L^Y$ is a left antitone map.

(7) If $G : L^X \rightarrow L^Y$ is a right antitone map, then $G^* : L^X \rightarrow L^Y$ is a left isotone map.

(8) If $G : L^X \rightarrow L^Y$ is a left antitone map, then $G^0 : L^X \rightarrow L^Y$ is a right isotone map.

Proof (1) First, we show that $G : L^X \rightarrow L^Y$ is a left isotone map iff $\alpha \odot G(A) \leq G(\alpha \odot A)$ and $G(A) \leq G(B)$ for $A \leq B$. Let $G : L^X \rightarrow L^Y$ be a left isotone map. Then $e_{L^X}^\uparrow(A, B) \leq e_{L^Y}^\uparrow(G(A), G(B))$. Put $B = \alpha \odot A$. Then

$$\alpha \leq e_{L^X}^\uparrow(A, \alpha \odot A) \leq e_{L^Y}^\uparrow(G(A), G(\alpha \odot A)).$$

Hence $\alpha \odot G(A) \leq G(\alpha \odot A)$.

Conversely, put $\alpha = e_{L^X}^\uparrow(A, B)$.

$$e_{L^X}^\uparrow(A, B) \odot G(A) \leq G(e_{L^X}^\uparrow(A, B) \odot A) \leq G(B).$$

Hence $e_{L^X}^\uparrow(A, B) \leq e_{L^Y}^\uparrow(G(A), G(B))$.

Second, we show that $\alpha \odot G(A) \leq G(\alpha \odot A)$ and $G(A) \leq G(B)$ for $A \leq B$ iff $G(\alpha \Rightarrow A) \leq \alpha \Rightarrow G(A)$ and $G(A) \leq G(B)$ for $A \leq B$.

Since $\alpha \odot G(\alpha \Rightarrow A) \leq G(\alpha \odot (\alpha \Rightarrow A)) \leq G(A)$, then $G(\alpha \Rightarrow A) \leq \alpha \Rightarrow G(A)$.

Conversely, since $G(\alpha \Rightarrow \alpha \odot A) \leq \alpha \Rightarrow G(\alpha \odot A)$ iff $\alpha \odot G(\alpha \Rightarrow \alpha \odot A) \leq G(\alpha \odot A)$, we have

$$\alpha \odot G(A) \leq \alpha \odot G(\alpha \Rightarrow \alpha \odot A) \leq G(\alpha \odot A).$$

(2) First, we show that $G : L^X \rightarrow L^Y$ is a right isotone map iff $G(A) \odot \alpha \leq G(A \odot \alpha)$ and $G(A) \leq G(B)$ for $A \leq B$. Let $G : L^X \rightarrow L^Y$ be a right isotone map. Then $e_{L^X}^{\uparrow\uparrow}(A, B) \leq e_{L^Y}^{\uparrow\uparrow}(G(A), G(B))$. Put $B = A \odot \alpha$. Then

$$\alpha \leq e_{L^X}^{\uparrow\uparrow}(A, A \odot \alpha) \leq e_{L^Y}^{\uparrow\uparrow}(G(A), G(A \odot \alpha)).$$

Hence $G(A) \odot \alpha \leq G(A \odot \alpha)$.

Conversely, put $\alpha = e_{L^X}^{\uparrow\uparrow}(A, B)$.

$$G(A) \odot e_{L^X}^{\uparrow\uparrow}(A, B) \leq G(A \odot e_{L^X}^{\uparrow\uparrow}(A, B)) \leq G(B).$$

Hence $e_{L^X}^{\uparrow\uparrow}(A, B) \leq e_{L^Y}^{\uparrow\uparrow}(G(A), G(B))$.

Second, we show that $G(A) \odot \alpha \leq G(A \odot \alpha)$ and $G(A) \leq G(B)$ for $A \leq B$ iff $G(\alpha \rightarrow A) \leq \alpha \rightarrow G(A)$ and $G(A) \leq G(B)$ for $A \leq B$.

Since $G(\alpha \rightarrow A) \odot \alpha \leq G((\alpha \rightarrow A) \odot \alpha) \leq G(A)$, then $G(\alpha \rightarrow A) \leq \alpha \rightarrow G(A)$.

Conversely, since $G(\alpha \rightarrow A \odot \alpha) \leq \alpha \rightarrow G(A \odot \alpha)$ iff $G(\alpha \rightarrow A \odot \alpha) \odot \alpha \leq G(A \odot \alpha)$, we have

$$G(A) \odot \alpha \leq G(\alpha \rightarrow A \odot \alpha) \odot \alpha \leq G(A \odot \alpha).$$

(3) Let $G : L^X \rightarrow L^Y$ be a right antitone map. Then $e_{L^X}^{\uparrow}(A, B) \leq e_{L^Y}^{\uparrow\uparrow}(G(B), G(A))$. Put $B = \alpha \odot A$. Then $\alpha \leq e_{L^X}^{\uparrow}(A, \alpha \odot A) \leq e_{L^Y}^{\uparrow\uparrow}(G(\alpha \odot A), G(A))$. Then $G(\alpha \odot A) \leq \alpha \rightarrow G(A)$.

Conversely, since $G(e_{L^X}^{\uparrow}(A, B) \odot A) \leq e_{L^X}^{\uparrow}(A, B) \rightarrow G(A)$ and $G(e_{L^X}^{\uparrow}(A, B) \odot A) \geq G(B)$ for $e_{L^X}^{\uparrow}(A, B) \odot A \leq B$, we have

$$e_{L^X}^{\uparrow}(A, B) \leq G(e_{L^X}^{\uparrow}(A, B) \odot A) \Rightarrow G(A) \leq G(B) \Rightarrow G(A)$$

Second, we show that $G(\alpha \odot A) \leq \alpha \rightarrow G(A)$ and $G(B) \leq G(A)$ for $A \leq B$ iff $G(A) \odot \alpha \leq G(\alpha \Rightarrow A)$ and $G(B) \leq G(A)$ for $A \leq B$.

Let $G(\alpha \odot A) \leq \alpha \rightarrow G(A)$ and $G(B) \leq G(A)$ for $A \leq B$. Then $G(\alpha \odot A) \odot \alpha \leq G(A)$. Thus

$$G(A) \odot \alpha \leq G(\alpha \odot (\alpha \Rightarrow A)) \odot \alpha \leq G(\alpha \Rightarrow A).$$

Let $G(A) \odot \alpha \leq G(\alpha \Rightarrow A)$ and $G(B) \leq G(A)$ for $A \leq B$. Then $G(A) \leq \alpha \rightarrow G(\alpha \Rightarrow A)$. Put $A = \alpha \odot B$. $G(\alpha \odot B) \leq \alpha \rightarrow G(\alpha \Rightarrow \alpha \odot B) \leq \alpha \rightarrow G(B)$.

(4) It is proved a similar method as in (3).

(5) Let $G : L^X \rightarrow L^Y$ be a left isotone map. By Lemma 2.3 (15), $e_{L^X}^\uparrow(A, B) \leq e_{L^Y}^\uparrow(G(A), G(B)) = e_{L^Y}^\uparrow(G^0(B), G^0(A))$. Hence $G^0 : L^X \rightarrow L^Y$ is a right antitone map.

(6) Let $G : L^X \rightarrow L^Y$ be a right isotone map. By Lemma 2.3 (15), $e_{L^X}^\uparrow(A, B) \leq e_{L^Y}^\uparrow(G(A), G(B)) = e_{L^Y}^\uparrow(G^*(B), G^*(A))$. Hence $G^* : L^X \rightarrow L^Y$ is a left antitone map.

(4), (7) and (8) are proved similar methods as in (3), (5) and (6), respectively.

Definition 3.3 A map $C : L^X \rightarrow L^X$ is called a right (resp. left) closure operator if it satisfies the following conditions:

(C1) $A \leq C(A)$, for all $A \in L^X$.

(C2) $C(C(A)) = C(A)$, for all $A \in L^X$.

(C3) C is a right (resp. left) isotone map.

A map $I : L^X \rightarrow L^X$ is called a right (resp. left) interior operator if it satisfies the following conditions:

(I1) $I(A) \leq A$, for all $A \in L^X$.

(I2) $I(I(A)) = I(A)$, for all $A \in L^X$.

(I3) I is a right (resp. left) isotone map.

Theorem 3.4 (1) Let $C : L^X \rightarrow L^X$ be a right closure operator. Define a map $I : L^X \rightarrow L^X$ as $I(A) = C(A^0)^*$. Then I is a left interior operator.

(2) Let $C : L^X \rightarrow L^X$ be a left closure operator. Define a map $I : L^X \rightarrow L^X$ as $I(A) = C(A^*)^0$. Then I is a right interior operator.

Proof. (1)

$$\begin{aligned} e_{L^X}^\uparrow(A, B) &= e_{L^X}^\uparrow(B^0, A^0) \leq e_{L^X}^\uparrow(C(B^0), C(A^0)) \\ &= e_{L^X}^\uparrow(C(A^0)^*, C(B^0)^*) = e_{L^X}^\uparrow(I(A), I(B)). \end{aligned}$$

(2) It is proved by a similar method as in (1).

Theorem 3.5 Let $G : L^X \rightarrow L^Y$ and $H : L^Y \rightarrow L^X$ be two maps.

(1) A pair (G, H) is a residuated connection with two right isotone maps G and H iff for all $A \in L^X$ and $B \in L^Y$, $e_{L^Y}^\uparrow(G(A), B) = e_{L^X}^\uparrow(A, H(B))$.

(2) A pair (G, H) is a residuated connection with two left isotone maps G and H iff for all $A \in L^X$ and $B \in L^Y$, $e_{L^Y}^\uparrow(G(A), B) = e_{L^X}^\uparrow(A, H(B))$.

(3) A pair (G, H) is a Galois connection with right antitone map G and left antitone map H iff for all $A \in L^X$ and $B \in L^Y$, $e_{L^X}^\uparrow(A, H(B)) = e_{L^Y}^\uparrow(B, G(A))$.

(4) A pair (G, H) is a Galois connection with left antitone map G and right antitone map H iff for all $A \in L^X$ and $B \in L^Y$, $e_{L^X}^\uparrow(A, H(B)) = e_{L^Y}^\uparrow(B, G(A))$.

Proof. (1) Let (G, H) be a residuated connection. Then $G(A) \leq G(A)$ iff $A \leq H(G(A))$ and $H(B) \leq H(B)$ iff $G(H(B)) \leq B$. Hence $e_{LY}^{\uparrow}(G(A), B) = e_{LX}^{\uparrow}(A, H(B))$ from

$$\begin{aligned} e_{LY}^{\uparrow}(G(A), B) &\leq e_{LX}^{\uparrow}(H(G(A)), H(B)) \leq e_{LX}^{\uparrow}(A, H(B)) \\ e_{LX}^{\uparrow}(A, H(B)) &\leq e_{LY}^{\uparrow}(G(A), G(H(B))) \leq e_{LY}^{\uparrow}(G(A), B). \end{aligned}$$

Conversely, since $e_{LY}^{\uparrow}(G(A), B) = e_{LX}^{\uparrow}(A, H(B))$ for all $A \in L^X$ and $B \in L^Y$, $A \leq H(B)$ iff $G(A) \leq B$. Thus, (G, H) is a residuated connection. Put $B = G(A)$, then $\top = e_{LY}^{\uparrow}(G(A), G(A)) = e_{LX}^{\uparrow}(A, H(G(A)))$. So, $A \leq H(G(A))$. Put $A = H(B)$, we similarly obtain $G(H(B)) \leq B$. Thus we obtain two right isotone maps G and H from:

$$\begin{aligned} e_{LY}^{\uparrow}(G(A), G(B)) &= e_{LX}^{\uparrow}(A, H(G(B))) \geq e_{LX}^{\uparrow}(A, B) \\ e_{LX}^{\uparrow}(H(A), H(B)) &= e_{LY}^{\uparrow}(G(H(A)), B) \geq e_{LY}^{\uparrow}(A, B). \end{aligned}$$

(3) Let (G, H) be a Galois connection. Then $G(A) \leq G(A)$ iff $A \leq H(G(A))$ and $H(B) \leq H(B)$ iff $B \leq G(H(B))$. Moreover, since G is a right antitone map and H is a left antitone map, we have

$$\begin{aligned} e_{LY}^{\uparrow}(B, G(A)) &\leq e_{LX}^{\uparrow}(H(G(A)), H(B)) \leq e_{LX}^{\uparrow}(A, H(B)) \\ e_{LX}^{\uparrow}(A, H(B)) &\leq e_{LY}^{\uparrow}(G(H(B)), G(A)) \leq e_{LY}^{\uparrow}(B, G(A)). \end{aligned}$$

Hence $e_{LX}^{\uparrow}(A, H(B)) = e_{LY}^{\uparrow}(B, G(A))$.

Conversely, since $e_{LX}^{\uparrow}(A, H(B)) = e_{LY}^{\uparrow}(B, G(A))$, $A \leq H(B)$ iff $B \leq G(A)$. Moreover,

$$\begin{aligned} e_{LY}^{\uparrow}(G(A), G(B)) &= e_{LX}^{\uparrow}(B, H(G(A))) \geq e_{LX}^{\uparrow}(B, A) \\ e_{LX}^{\uparrow}(H(A), H(B)) &= e_{LY}^{\uparrow}(B, G(H(A))) \geq e_{LY}^{\uparrow}(B, A). \end{aligned}$$

(2) and (4) are similarly proved as (1) and (3), respectively.

Theorem 3.6 Let $G : L^X \rightarrow L^Y$ and $H : L^Y \rightarrow L^X$ be right isotone maps with a residuated connection (G, H) . Then the following statements hold:

- (1) $H \circ G$ is a right closure operator.
- (2) $G \circ H$ is a right interior operator.

Proof. (1) Since $A \leq H(G(A))$, $H(G(A)) \leq H(G(H(G(A))))$ for all $A \in L^X$. Since $B \geq G(H(B))$, $G(A) \geq G(H(G(A)))$ and $H(G(A)) \geq H(G(H(G(A))))$. Thus $H(G(A)) = H(G(H(G(A))))$. Since G and H are right isotone maps, $e_{LX}^{\uparrow}(A, B) \leq e_{LX}^{\uparrow}(H(G(A)), H(G(B)))$.

(2) It is similarly proved as in (1).

Corollary 3.7 Let $G : L^X \rightarrow L^Y$ and $H : L^Y \rightarrow L^X$ be left isotone maps with a residuated connection (G, H) . Then the following statements hold:

- (1) $H \circ G$ is a left closure operator.
- (2) $G \circ H$ is a left interior operator.

Theorem 3.8 Let $G : L^X \rightarrow L^Y$ be a right antitone map and $H : L^Y \rightarrow L^X$ be a left antitone map with a Galois connection (G, H) . Then

- (1) $H \circ G$ is a left closure operator.
- (2) $G \circ H$ is a right closure operator.

Proof. (1) Since $A \leq H(G(A))$, then $H(G(A)) \leq H(H(G(A)))$ for all $A \in L^X$. Since $B \leq G(H(B))$, then $G(A) \leq G(H(G(A)))$ and $H(G(A)) \geq H(H(G(A)))$ because H is a left antitone map. So, $H(G(A)) = H(H(G(A)))$.

Since G is a right antitone map and H is a left antitone map, $e_{L^X}^\uparrow(A, B) \leq e_{L^X}^\uparrow(G(B), G(A)) \leq e_{L^X}^\uparrow(H(G(A)), H(G(B)))$.

(2) It is proved by a similar method as in (1).

Corollary 3.9 Let $G : L^X \rightarrow L^Y$ be a left antitone map and $H : L^Y \rightarrow L^X$ be a right antitone map with a Galois connection (G, H) . Then

- (1) $H \circ G$ is a right closure operator.
- (2) $G \circ H$ is a left closure operator.

Definition 3.10 For each $A \in L^X$ and $B \in L^Y$ and $R \in L^{X \times Y}$, we define:

(1) $R^\odot, {}^\odot R : L^X \rightarrow L^Y$ is defined as:

$$R^\odot(A)(y) = \bigvee_{x \in X} (R(x, y) \odot A(x)), \quad {}^\odot R(A)(y) = \bigvee_{x \in X} (A(x) \odot R(x, y)).$$

(2) $R^\uparrow, R^\uparrow : L^Y \rightarrow L^X$ is defined as:

$$R^\uparrow(B)(x) = \bigwedge_{y \in Y} (R(x, y) \Rightarrow B(y)), \quad R^\uparrow(B)(x) = \bigwedge_{y \in Y} (R(x, y) \rightarrow B(y)).$$

Theorem 3.11 (1) R^\odot and R^\uparrow are right isotone maps with a residuated connection (R^\odot, R^\uparrow) .

- (2) $R^\uparrow \circ R^\odot$ is a right closure operator.
- (3) $R^\odot \circ R^\uparrow$ is a right interior operator.

Proof. (1) Since $R(x, y) \odot A(x) \odot (A(x) \Rightarrow B(x)) \leq R(x, y) \odot B(x)$, then $e_{L^X}^\uparrow(A, B) \leq e_{L^Y}^\uparrow(R^\odot(A), R^\odot(B))$. Since $(R(x, y) \Rightarrow A(y)) \odot (A(y) \Rightarrow B(y)) \leq$

$R(x, y) \Rightarrow B(y)$, then $e_{LY}^{\uparrow\uparrow}(A, B) \leq e_{LX}^{\uparrow\uparrow}(R^{\uparrow\uparrow}(A), R^{\uparrow\uparrow}(B))$. By Theorem 3.5(1), we only show the following statement.

$$\begin{aligned}
e_{LY}^{\uparrow\uparrow}(R^{\odot}(A), B) &= \bigwedge_{y \in Y} (R^{\odot}(A)(y) \Rightarrow B(y)) \\
&= \bigwedge_{y \in Y} \left(\bigvee_{x \in X} (R(x, y) \odot A(x)) \Rightarrow B(y) \right) \\
&= \bigwedge_{y \in Y} \bigwedge_{x \in X} \left((R(x, y) \odot A(x)) \Rightarrow B(y) \right) \\
&= \bigwedge_{x \in X} \bigwedge_{y \in Y} \left(A(x) \Rightarrow (R(x, y) \Rightarrow B(y)) \right) \\
&= \bigwedge_{x \in X} \left(A(x) \Rightarrow \bigwedge_{y \in Y} (R(x, y) \Rightarrow B(y)) \right) \\
&= \bigwedge_{x \in X} (A(x) \Rightarrow R^{\uparrow\uparrow}(B)(x)) \\
&= e_{LX}^{\uparrow\uparrow}(A, R^{\uparrow\uparrow}(B)).
\end{aligned}$$

(2) and (3) follow from Theorem 3.6.

Theorem 3.12 (1) ${}^{\odot}R$ and R^{\uparrow} are left isotone maps with a residuated connection $({}^{\odot}R, R^{\uparrow})$.

(2) $R^{\uparrow} \circ {}^{\odot}R$ is a left closure operator.

(3) ${}^{\odot}R \circ R^{\uparrow}$ is a left interior operator.

Proof. (1) Since $(A(x) \rightarrow B(x)) \odot A(x) \odot R(x, y) \leq B(x) \odot R(x, y)$, then $e_{LX}^{\uparrow}(A, B) \leq e_{LY}^{\uparrow}({}^{\odot}R(A), {}^{\odot}R(B))$. Since $(A(y) \rightarrow B(y)) \odot (R(x, y) \rightarrow A(y)) \leq R(x, y) \rightarrow B(y)$, then $e_{LY}^{\uparrow}(A, B) \leq e_{LX}^{\uparrow}(R^{\uparrow}(A), R^{\uparrow}(B))$. By Theorem 3.3(1), we only show the following statement.

$$\begin{aligned}
e_{LY}^{\uparrow}({}^{\odot}R(A), B) &= \bigwedge_{y \in Y} ({}^{\odot}R(A)(y) \rightarrow B(y)) \\
&= \bigwedge_{y \in Y} \left(\bigvee_{x \in X} (A(x) \odot R(x, y)) \rightarrow B(y) \right) \\
&= \bigwedge_{y \in Y} \bigwedge_{x \in X} \left(A(x) \odot (R(x, y)) \rightarrow B(y) \right) \\
&= \bigwedge_{x \in X} \bigwedge_{y \in Y} \left(A(x) \rightarrow (R(x, y) \rightarrow B(y)) \right) \\
&= \bigwedge_{x \in X} \left(A(x) \rightarrow \bigwedge_{y \in Y} (R(x, y) \rightarrow B(y)) \right) \\
&= \bigwedge_{x \in X} (A(x) \rightarrow R^{\uparrow}(B)(x)) \\
&= e_{LX}^{\uparrow}(A, R^{\uparrow}(B))
\end{aligned}$$

(2) and (3) follow from Corollary 3.7.

Example 3.13 Let $K = \{(x, y) \in R^2 \mid x > 0\}$ be a set and we define an operation $\otimes : K \times K \rightarrow K$ as follows:

$$(x_1, y_1) \otimes (x_2, y_2) = (x_1 x_2, x_1 y_2 + y_1).$$

Then (K, \otimes) is a group with $e = (1, 0)$, $(x, y)^{-1} = (\frac{1}{x}, -\frac{y}{x})$.

We have a positive cone $P = \{(a, b) \in R^2 \mid a = 1, b \geq 0 \text{, or } a > 1\}$ because $P \cap P^{-1} = \{(1, 0)\}$, $P \odot P \subset P$, $(a, b)^{-1} \odot P \odot (a, b) = P$ and $P \cup P^{-1} = K$. For $(x_1, y_1), (x_2, y_2) \in K$, we define

$$\begin{aligned} (x_1, y_1) \leq (x_2, y_2) &\Leftrightarrow (x_1, y_1)^{-1} \odot (x_2, y_2) \in P, (x_2, y_2) \odot (x_1, y_1)^{-1} \in P \\ &\Leftrightarrow x_1 < x_2 \text{ or } x_1 = x_2, y_1 \leq y_2. \end{aligned}$$

Then (K, \leq, \otimes) is a lattice-group. (ref. [1])

The structure $(L, \odot, \Rightarrow, \rightarrow, (\frac{1}{2}, 1), (1, 0))$ is a generalized residuated lattice with strong negation where $\perp = (\frac{1}{2}, 1)$ is the least element and $\top = (1, 0)$ is the greatest element from the following statements:

$$\begin{aligned} (x_1, y_1) \odot (x_2, y_2) &= (x_1, y_1) \otimes (x_2, y_2) \vee (\frac{1}{2}, 1) = (x_1 x_2, x_1 y_2 + y_1) \vee (\frac{1}{2}, 1), \\ (x_1, y_1) \Rightarrow (x_2, y_2) &= ((x_1, y_1)^{-1} \otimes (x_2, y_2)) \wedge (1, 0) = (\frac{x_2}{x_1}, \frac{y_2 - y_1}{x_1}) \wedge (1, 0), \\ (x_1, y_1) \rightarrow (x_2, y_2) &= ((x_2, y_2) \otimes (x_1, y_1)^{-1}) \wedge (1, 0) = (\frac{x_2}{x_1}, -\frac{x_2 y_1}{x_1} + y_2) \wedge (1, 0). \end{aligned}$$

Furthermore, we have $(x, y) = (x, y)^{* \odot} = (x, y)^{\circ *}$ from:

$$\begin{aligned} (x, y)^* &= (x, y) \Rightarrow (\frac{1}{2}, 1) = (\frac{1}{2x}, \frac{1-y}{x}), \\ (x, y)^{* \odot} &= (\frac{1}{2x}, \frac{1-y}{x}) \rightarrow (\frac{1}{2}, 1) = (x, y). \end{aligned}$$

Let $X = \{a, b, c\}$ and $Y = \{u, v\}$ be sets. Define $R \in L^{X \times Y}$ as

$$R = \begin{pmatrix} (1, 0) & (\frac{5}{8}, \frac{5}{2}) \\ (\frac{5}{7}, \frac{30}{7}) & (\frac{5}{8}, -\frac{5}{4}) \\ (\frac{1}{2}, 2) & (\frac{5}{6}, \frac{10}{3}) \end{pmatrix}$$

For $A = ((\frac{2}{3}, 1), (\frac{1}{2}, 2), (\frac{2}{3}, -1))^t$,

$$\begin{aligned} R^\odot(A) &= ((\frac{2}{3}, 1), (\frac{5}{9}, \frac{25}{6}))^t, \quad {}^\odot R(A) = ((\frac{2}{3}, 1), (\frac{5}{9}, \frac{11}{9}))^t \\ R^\rightarrow(A) &= ((\frac{3}{4}, \frac{11}{4}), (\frac{15}{16}, -\frac{25}{16}))^t, \quad R^\Rightarrow(A) = ((\frac{3}{4}, \frac{9}{2}), (\frac{15}{16}, \frac{9}{4}))^t \\ R^\uparrow(R^\odot(A)) &= ((\frac{2}{3}, 1), (\frac{8}{9}, \frac{26}{3}), (\frac{2}{3}, 1))^t, \\ R^\uparrow({}^\odot R(A)) &= ((\frac{2}{3}, 1), (\frac{8}{9}, \frac{7}{3}), (\frac{2}{3}, -1))^t \\ R^\leftarrow(R^\rightarrow(A)) &= ((\frac{2}{3}, \frac{13}{3}), (\frac{2}{3}, \frac{1}{3}), (\frac{2}{3}, -1))^t, \\ R^\leftarrow(R^\Rightarrow(A)) &= ((\frac{2}{3}, \frac{85}{24}), (\frac{2}{3}, -\frac{5}{24}), (\frac{2}{3}, \frac{1}{6}))^t. \end{aligned}$$

By Theorems 3.11 and 3.12, $R^\uparrow \circ R^\odot$ is a right closure operator and $R^\odot \circ R^\uparrow$ is a right interior operator. Moreover, $R^\uparrow \circ {}^\odot R$ is a left closure operator and ${}^\odot R \circ R^\uparrow$ is a left interior operator.

References

- [1] R. Bělohlávek, Fuzzy Galois connection, *Math. Log. Quart.*, **45** (2000), 497-504.
- [2] R. Bělohlávek, Fuzzy closure operator, *J. Math. Anal. Appl.*, **262** (2001), 473-486.
- [3] R. Bělohlávek, Lattices of fixed points of Galois connections, *Math. Logic Quart.*, **47** (2001), 111-116.
- [4] G. Georgescu, A. Popescu, Non-commutative Galois connections, *Soft Computing*, **7**(2003), 458-467.
- [5] G. Georgescu, A. Popescu, Non-dual fuzzy connections, *Arch. Math. Log.* **43**(2004), 1009-1039.
- [6] U. Höhle, E. P. Klement, *Non-classical logic and their applications to fuzzy subsets*, Kluwer Academic Publisher, Boston, 1995.
- [7] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, *Int. J. Approx. Reasoning*, **50** (2009), 695-707.
- [8] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.