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Abstract

In this paper, we investigate the properties of right and left closure
on a generalized residuated lattice. In particular, we study the relations
between right (left) closure (interior) operators and residuated , Galois
connetions with isotone and antitone maps.
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1 Introduction

Galois connections and closure operators on fuzzy sets introduced by Bélohlavek
[1,2] are important mathematical tools [1-6]. Recently, Bélohlavek [1-3] inves-
tigate the properties of fuzzy relations and similarities on a residual lattice
which supports part of foundation of theoretic computer science. Georgescu
and Popescue [4.5] introduced non-commutative fuzzy Galois connection in a
generalized residuated lattice which is induced by two implications.

In this paper, we investigate the properties of right and left closure on a
generalized residuated lattice. In particular, we study the relations between
right (left) closure (interior) operators and residuated , Galois connetions with
isotone and antitone maps.
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2 Preliminaries

Definition 2.1 [4,5] A structure (L,V,A,®, —,=-,0,1) is called a gener-
alized residuated lattice if it satisfies the following conditions:

(GR1) (L,V,A,1,0) is a bounded where 1 is the universal upper bound
and 0 denotes the universal lower bound;

(GR2) (L,®,1) is a monoid,;

(GR3) it satisfies a residuation , i.e.

aOb<ciffa<b—ciffb<a=c

We call that a generalized residuated lattice has the law of double negation
if a = (a*)? = (a°)* where @ =a — 0 and a* = a = 0.

Remark 2.2 [4-8] (1) A generalized residuated lattice is a residuated lattice
(—»==) iff ® is commutative.

(2) A left-continuous t-norm ([0, 1], <, ®) defined by a — b= V{c|a®c <
b} is a residuated lattice

(3) Let (L, <,®) be a quantale. For each z,y € L, we define

r—y=\{zel|lz0z<y}, s=>y=\{zel|lzoz<y}

Then it satisfies Galois correspondence, that is,

(xoy) <ziff x <(y— 2)iff y < (z = 2). Hence (L,V,A\,®,—,=-,0,1)
is a generalized residuated lattice.

(4) A pseudo MV-algebra is a generalized residuated lattice with the law
of double negation.

In this paper, we assume (L, A, V, ®, —,=-,0, 1) is a generalized residuated
lattice with the law of double negation and if the family supremum or infumum
exists, we denote \/ and A.

Lemma 2.3 [4-8] For each z,vy, z, z;,y; € L, we have the following proper-
ties.

MHHfy<z (z0y) <(r®z2),r—>y<zx—zand z -z <y — z for
—ec {—,=}.

2)zeoy<zAy<zVy.

(3) z = (MNier ¥i) = Nier(z = vi) and (Vier ;) = y = Aier(z; — y) for

4) = (Vier ¥i) = Vier(r = 4i), for —€ {—,=}.

5) (Nier 7i) = y > Vier(zi — y), for =€ {—=,=}.

6) (x0y)—z=rx—=>(y—2) and (z0y)=2=y= (= 2).
Nr—=(y=z)=y=(r—z2z)andz= (y = 2) =y — (x = 2).
)xz@(xr—y)<yand (r=y)Ozx<y.
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9) (r=y)oy=2)<z=zand (y > 2)0(r—y) <z — =z

(10) (z=2) < (yoz)=(y©2) and (v = 2) < (zOy) = (2 O y).
(1) (z=y)<(y=z2)—=(r=z2z)and (y=2) < (zr=y) = (r = 2)
(12) zi = ¥i < (Nier @) = (Nier yi) for =€ {—,=1}.

(13) i = ¥i < (Vier i) = (Vier i) for =€ {—,=1}.

(14)z —y=1iff x < y.

(15)z wy=y’=2"and z = y = y* — 2*.

(16) Nier 27 = (Vier )" and Vier 27 = (Nier i)™

(17) /\zerx (Vier xZ) and V;er x? = (Aer $i>0-

Definition 2.4 Let X be a set. A function ex : X x X — L is called:
(E1) ex(z,z) =1 forall z € X,

(R) ex(x,y) ®ex(y, 2) <ex(z,z), for all z,y,z € X.

Then ey is called a right preorder. If ex satisfies (E1) and

(L) ex(y, 2) ®ex(z,y) <ex(z,z), for all x,y,z € X.

Then ey is called a left preorder.

The pair (X, ey) is a right preorder (resp. left-preorder) set.

Example 2.5 (1) We define two functions el el : Lx L — L as el (z,y) =

z = y and e} (z,y) =  — y. Then el is a right preorder and e is a left
preorder.

(2) We define two functions el v, el v : LX x LX — L as

elx(A B) = A (Al2) = B(x)), ¢jx(4,B) = A (Az) = B(x)).

rzeX zeX
Then eT]EX is a right preorder and €Ex is a left preorder.

Definition 2.6 [1-4] Let X and Y be two sets. Let F, H : L* — LY and
G,K : LY — L* be operators.

(1) The pair (F,G) is called a residuated connection between X and Y if
for Ae LX and Be LY, F(A) < Biff A < G(B).

(2) The pair (H, K) is called a Galois connection between X and Y if for
AelX*and Be LY, B< H(A)iff A< K(B).

3 Right and left closure operators

G : L* — LY is a right isotone map if for all
G(A) G(B)).
Y is a left isotone map if for all A,B € L¥,

Definition 3.1 (1) A

ABeILX el (A B)<e
(2) A map G : LX

) «(4, B) < el (G(4).G(B)).

==
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(3) Amap G : LY — LY is a right antitone map if for all A, B € LX,
e;x(A,B) < el (G(B),G(A)).

(4) A map G : L* — LY is a left antitone map if for all A, B € LX,
epx (A, B) < ¢y (G(B),G(4)).

Theorem 3.2 (1) A map G : L — LY is a left isotone map iff a©G(A) <
Gla® A) and G(A) < G(B) for A < B iff Gla = A) < a = G(A) and
G(A) < G(B) for A< B.

(2) A map G : L* — LY is a right isotone map iff G(A) ®a < G(A® «)
and G(A) < G(B) for A< B iff Gla = A) <a — G(A) and G(A) < G(B)
for A< B.

(3) A map G : L — LY is a right antitone map iff G(a® A) < a — G(A)
and G(B) < G(A) for A< B iff G(A) ®a < G(la = A) and G(B) < G(A)
for A< B.

(4) A map G : L — LY s a left antitone map iff G(A® o) < a = G(A)
and G(B) < G(A) for A< B iff a® G(A) < Gla — A) and G(B) < G(A)
for A< B.

(5) If G : L* — LY is a left isotone map, then G° : L* — LY is a right
antitone map.

(6) If G : LX — LY is a right isotone map, then G* : L — LY is a left
antitone map.

(7) If G : L — LY is a right antitone map, then G* : L — LY s a left
1sotone map.

(8) If G : L* — LY is a left antitone map, then G® : LX — LY is a right
1so0tone map.

Proof (1) First, we show that G : LX — LY is a left isotone map iff
a®G(A) <Gla® A) and G(A) < G(B) for A< B. Let G : L* — LY be a
left isotone map. Then €Ex (A, B) < eEY(G(A), G(B)). Put B=a® A. Then

a<ely(A a0 A) <l (G(A),Glao A)).

Hence a © G(A) < G(a ® A).
Conversely, put o = eEX (A, B).

el x(A, B) ® G(A) < G(el < (A, B) ® A) < G(B).

Hence e} x (A4, B) < el (G(A),G(B)).

Second, we show that « ©® G(A) < G(a® A) and G(A) < G(B) for A< B
iff G(a= A) <a= G(A) and G(A) < G(B) for A < B.

Since a ©® G(a = A) < G(a® (a = A)) < G(A), then G(a= A) < a =
G(A).
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Conversely, since G(a = a0 A) <a=Ga0A) iffaoGla= a0 A) <
G(a® A), we have

aOGA)<a0Gla=a0A) <GaoA).

(2) First, we show that G : LX — LY is a right isotone map iff G(A) ® a <
G(A® ) and G(A) < G(B) for A< B. Let G : L — LY be a right isotone
map. Then eTLTX(A, B) < eTLTy(G(A),G(B)). Put B=A® a. Then

a<el (A A®a) <l (G(A),G(A®a)).

Hence G(A) © a < G(A G «).
Conversely, put o = eTLTX (A, B).

G(A) el (A, B) <G(Ao el (A, B)) <G(B),

Hence eTLTX(A, B) < eTLTY(G(A), G(B)).

Second, we show that G(A) ®a < G(A® «a) and G(A) < G(B) for A< B
iff G(a - A) <a—G(A) and G(A) < G(B) for A< B.

Since G(a - A) ®©a < G((a - A) ®a) < G(A), then G(a — A) < a —
G(A).

Conversely, since G(a - A0 o) <a— GAGa)iff Gla - A0 a)0a <
G(A® a), we have

GA)Oa<Gla—A0a)oa<GAG ).

(3) Let G : LX — LY be a right antitone map. Then el (4, B) <
eTLTy(G(B),G(A)). Put B = a® A. Then a < eEX(A,a ©A < eEy(G(a ©)
A),G(A)). Then G(a® A) < a — G(A).

Conversely, since G(eEX (A,B)®A) < eEX (A, B) = G(A) and G(eEX (A, B)®
A) > G(B) for el « (A, B) ® A < B, we have

ehx(A, B) < Gle)x(4,B) © A) = G(A) < G(B) = G(A)

Second, we show that G(a®A) < a — G(A) and G(B) < G(A) for A < B
if G(A) ©a < G(a= A) and G(B) < G(A) for A < B.

Let Gla® A) < a = G(A) and G(B) < G(A) for A < B. Then G(a ®
A)®a < G(A). Thus

GA)oa<Gao(a=A4)0a<Gla=A).
Let G(A) ®a < G(a = A) and G(B) < G(A) for A < B. Then G(A) <

a—Gla=A). PuA=a060B. Gla®B)<a—-Gla=aGB)<a—
G(B).
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(4) It is proved a similar method as in (3).

(5) Let G : LY — LY be a left isotone map. By Lemma 2.3 (15),
el x(A, B) < el (G(A),G(B)) = el (G°(B),G°(A)).. Hence G° : LX — LY is
a right antitone map.

(6) Let G : LX — LY be a right isotone map. By Lemma 2.3 (15),
el (A, B) < el (G(A),G(B)) = el (G*(B),G*(A)).. Hence G* : LX — LY is
a left antitone map.

(4), (7) and (8) are proved similar methods as in (3), (5) and (6), respec-
tively.

Definition 3.3 A map C : LX — L¥ is called a right (resp. left) closure
operator if it satisfies the following conditions:

(C1) A< C(A), for all A e L.

(C2) C(C(A)) = C(A), for all A € L*.

(C3) C is a right (resp. left) isotone map.

A map I : X — L is called a right (resp. left) interior operator if it
satisfies the following conditions:

(I1) I(A) < A, for all A € L.

(I2) I(I(A)) = I(A), for all A € L.

(I3) I is a right (resp. left) isotone map.

Theorem 3.4 (1) Let C' : LX — LX be a right closure operator. Define a
map I : L — L as [(A) = C(A°)*. Then I is a left interior operator.

(2) Let C : L* — LX be a left closure operator. Define a map I : LX — LX
as [(A) = C(A*)°. Then I is a right interior operator.

Proof. (1)

eLx(4,B) = efx(B, A) < e]x (C(B"), C(4"))
= epx (C(A%), C(BY)) = epx(1(A), I(B)).
(2) It is proved by a similar method as in (1).

Theorem 3.5 Let G : LX — LY and H : LY — LX be two maps.

(1) A pair (G, H) is a residuated connection with two right isotone maps
G and H iff for all A€ LY and B € LY, el (G(A), B) = el « (A, H(B)).

(2) A pair (G, H) is a residuated connection with two left isotone maps G
and H iff for all A€ LX and B € LY, e}y (G(A), B) = el «(A, H(B)).

(3) A pair (G, H) is a Galois connection with right antitone map G and
left antitone map H iff for all A € LX and B € LY, e} «(A,H(B)) =
el (B,G(A)).

(4) A pair (G, H) is a Galois connection with left antitone map G and
right antitone map H iff for all A € L* and B € LY, eTLTX(A,H(B)) =
ely(B,G(A)).
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Proof. (1) Let (G, H) be a residuated connection. Then G(A) G(A) iff
A < H(G(A)) and H(B) < H(B) iff G(H(B)) < B. Hence eLy( (A),B) =
eTLTX(A,H(B)) from

ejv (G(A), B) <
epx (A, H(B)) <

x(H(G(A)), H(B)) < €]« (A, H(B))

(G ( ),G(H(B))) < ¢} (G(A), B).
Conversely, since el (G(A),

Ty ) = (A H(B)) for all A€ L* and B € LY,
A < H(B) iff G(A) < B. Thus, (G ) is a residuated connection. Put B =
G(A), then T = ¢}y (G(A),G(A)) = ¢jx (A, H(G(A)). So, A < H(G(A)).
Put A = H(B), we similarly obtain G(H(B)) < B. Thus we obtain two right
isotone maps G and H from:

e}y (G(A),G(B)) = e} x (A, H(G(B))) = €] x (A, B)

e
€rx
el
€L
B

epx (H(A), H(B)) = e}y (G(H(A)), B) > e}y (A, B).
(3) Let (G,H) be a Galois connection. Then G(A) < G(A) iff A <
H(G(A)) and H(B) < H(B) iff B < G(H(B)). Moreover, since G is a right
antitone map and H is a left antitone map, we have

el (B, G(A)) < e« (H(G(A)), H(B)) < €} x (A, H(B))

el (A, H(B)) < el (G(H(B)),G(A)) < el (B, G(A)).
Hence eEX(A,H(B)) = eLY(B G(A)).

Conversely, since eLX(A H(B)) = eTLTY(B,G(A)), A< H(B)iff B<G(A).
Moreover,

e}y (G(A),G(B)) = ¢} x (B, H(G(A))) = €] x (B, A)
el (H(A), H(B)) = ey (B,G(H(A))) = ¢ (B, A).

(2) and (4) are similarly proved as (1) and (3), respectively.

Theorem 3.6 Let G : LX — LY and H : LY — L be right isotone maps
with a residuated connection (G, H). Then the following statements hold:

(1) H o G is a right closure operator.

(2) G o H 1is a right interior operator.

Proof. (1) Since A < H(G(A)), H (H(G(A)))) for all
A € L*. Since B > G(H(B)), G(A) H(G(A))) and H(G(A)) >
H(G(H(G(A)))). Thus H(G(A)) = H(G(H(G(A)))). Since G and H are
right isotone maps, eT]{X (A,B) < eLX (H(G(A)),H(G(B))
(2) It is similarly proved as in (1).

T~
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Corollary 3.7 Let G : LX — LY and H : LY — LX be left isotone maps
with a residuated connection (G, H). Then the following statements hold:

(1) H o G is a left closure operator.

(2) G o H is a left interior operator.

Theorem 3.8 Let G : L* — LY be a right antitone map and H : LY — LX
be a left antitone map with a Galois connection (G, H). Then

(1) H oG is a left closure operator.

(2) G o H is a right closure operator.

Proof. (1) Since A < H(G(A)), then H(G(A)) < H(G(H(G(A)))) for all
A € L. Since B < G(H(B)), then G(A) < G(H(G(A))) and H(G(A)) >
H(G(H(G(A)))) because H is a left antitone map. So, H(G(A)) = (G(H( (A)))).

Since G is a right antitone map and H is a left antitone map, el x(A,B) <
¢px(G(B), G(A)) < epx(H(G(A)), H(G(B))).

(2) It is proved by a similar method as in (1).

Corollary 3.9 Let G : L* — LY be a left antitone map and H : LY — LX
be a right antitone map with a Galois connection (G, H). Then

(1) H o G is a right closure operator.

(2) G o H is a left closure operator.

Definition 3.10 For each A € LX and B € LY and R € LX*Y, we define:
(1) R°° R: L* — LY is defined as:

R(A)(y) = V (R(z,y) © A(x)), “R(A)(y) = V (Az) © R(z,y)).

zeX zeX

(2) R" RT: LY — L¥ is defined as:

RY(B)(z) = A\ (R(z,y) = B(y)), R'(B)(x)= A (R(z,y) = B(y)).

yey yey

Theorem 3.11 (1) R® and R" are right isotone maps with a residuated
connection (R®, R™).

(2) R" o R® is a right closure operator.

(3) R® o R is a right interior operator.

Proof. (1) Since R(z,y) ® A(z) ® (A(z) = B(x)) < R(x,y) ® B(z), then
el < (A, B) < el (RO(A), RO(B)). Since (R(z,y) = A(y)) © (A(y) = B(y)) <
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R(r,y) = B(y), then e, (4, B) < el (R"(A), R"(B)). By Theorem 3.5(1),
we only show the following statement.

elly (R2(A), B) = Nyey (RO(A)(y) = B(y))

= Ner (Veex(R(z,9) © A(z)) = B(y)
= Ayer Avex ((R(z,9) © A(x)) = B(y)
= Neex Ayev (A(2) = (R(z,y) = B(y)))
= Nvex (A@@) = Aoy (R(z,y) = B(y)))
= Neex(A(z) = R (B)(x))

= ¢} < (A, R1(B)).

(2) and (3) follow from Theorem 3.6.

Theorem 3.12 (1) R and R are left isotone maps with a residuated con-
nection (°R, R").

(2) R" o® R is a left closure operator.

(3) ®Ro R' is a left interior operator.

Proof. (1) Since (A(x) — B(z)) ® A(x) ® R(x,y) < B(z) ® R(z,y), then
¢hx (A, B) < e}y (“R(A).® R(B)). Since (A(y) — B(y)) © (R(z,y) = A(y)) <
R(r,y) — B(y), then el, (A, B) < e} «(R'(A), R"(B)). By Theorem 3.3(1),
we only show the following statement.

= Ayey | Vaex(A(z) © R(z,y)) — B(y)

= Ayev Avex (A(®) @ (R(z,9)) — B(y)

= Auex Ayer (A(z) = (R(z,y) = B(y)))
z,y) = B(y)))

= /\:BEX (A(I‘) — /\yEY(R<
= Asex(A(z) = RY(B)(x))
=el (A, R'(B))

(2) and (3) follow from Corollary 3.7.

Example 3.13 Let K = {(x,y) € R* | # > 0} be a set and we define an
operation ® : K x K — K as follows:

(21, 91) ® (22, 2) = (1172, T1Y2 + 1).

Then (K, ®) is a group with e = (1,0), (z,y)~! = (3, -2).

z’? T
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We have a positive cone P = {(a,b) € R?> |a=1,b> 0 ,or a > 1} because
PnPt={1,00},PoPcCP,(a,b)'®©P®(a,b)=Pand PUP ' =K.
For (z1,11), (z2,92) € K, we define

(z1,91) < (22,92) < (@1,01) " © (22,42) € P, (22,y2) © (x1,y1)" " € P
<1 < Ty OF Ty = T2,Y1 < Yo.

Then (K, < ®) is a lattice-group. (ref. [1])

The structure (L, ®, =, —, (3,1),(1,0)) is a generalized residuated lattice
with strong negation where L = (%, 1) is the least element and T = (1,0) is
the greatest element from the following statements:

(z1,51) © (2,42) = (#1,51) @ (22,92) V (5, 1) = (2122, 2132 + 1) V (5, 1),
(T1,91) = (22,92) = ((71,91) 7" @ (w2,92)) A (1,0) = (2, 278) A (1,0),

1 z1

(w1, 91) = (22,52) = ((22,2) ® (21, 51) ™) A (1,0) = (32, =24 + 1) A (1,0).

x1’?
Furthermore, we have (z,y) = (z,y)* = (z,y)°* from:

(z,y)" = (z,y) = (%,1) — (%’ 1;?;

);
1 1—y

*0 1 .
Let X = {a,b,c} and Y = {u,v} be sets. Define R € LX*Y as
1y (6
R= (—1> 7) (§5> —101)
2 & 3)

For A= ((2,1),(%,2), (3, -1),

2

RO(A) = (G0, ) R = (G 1. (. 5))
R2(A) = (52, (G~ 1) B () = (G5 (12 )
RYRO(A) = (5.1, (5, 3 (G 1)
RICR(A) = ((5.1).(5.2), G, ~1)
RER(A) = (5,5, (o3 G~ 1)

2 85, 2 ) 21

< = A — - -~ - _ - - - t.
RO (A) = (G G —50) (o 2))
By Theorems 3.11 and 3.12, RTo R® is a right closure operator and R®o R"
is a right interior operator. Moreover, R' o® R is a left closure operator and

©Ro R'is a left interior operator.
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