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Abstract 

The effect of non-homogeneity on wave propagation in four parameter 

viscoelastic model is investigated analytically as well as numerically. The non-

homogeneity parameters in viscoelastic rods are taken as dependent of space 

coordinates. The consecutive equation of four parameter viscoelastic model is 

developed and then it is solved with the help of Friedlander series and Eikonal 

equation of optics. The asymptotic equation of wave front for harmonic waves in 

non-homogeneous viscoelastic rods are obtained by reducing the linear partial 

differential equation into ordinary differential equation. The problem is illustrated 

graphically in detail. 
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1. Introduction 

Modeling problems actually is a study of mechanical properties of materials.  The 

polymer models have specific characteristics which distinguish them from elastic 

models. The elastic materials store maximum of the energy (100%) due to 

deformation but viscoelastic materials do not do this. The dissipation of energy in 

polymer materials is known as hysteresis. Nearly, all materials behave like some 

viscoelastic response. However, some common materials such as steel or quartz 
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do not deviate much from linear elasticity at room temperature. But synthetic 

rubber, wood, and biological tissue and metals at high temperature show 

significant viscoelastic effects [1].   

The theory of elasticity is formulated and developed by Alfrey [2], Barberan [3], 

Achenbach [4], Bhattacharya [5] and Acharya [6]. Further, Bert [7], Biot [8], 

Batra [9] successfully applied this theory to wave-propagation in homogeneous, 

elastic media. On the basis of the theory of elasticity, the propagation of harmonic 

waves in isotropic or anisotropic materials has been evaluated numerically by 

White [10], Mirsky [11] and Tsai [12]. To explain the soil behaviour, Murayama 

[13] and Schiffman et al. [14] developed  five and seven parameter models. 

Moodie [15] presented research paper on propagation, reflection and transmission 

of transient cylindrical shear waves in non-homogeneous four-parameter 

viscoelastic media.  

The authors have studied four and five parameter viscoelastic models for wave 

propagation and dynamic loading [16-21]. But in this study, we consider, the 

specimen is non-homogeneous i.e.  density, rigidity and viscosity
 
of the rod is 

space dependent In this paper, the wave equation is approximated by using WKB 

theory. The displacements are assumed to be small under isothermal conditions, 

the linear constitutive laws hold.  Time dependent displacement and stress 

boundary conditions are employed for calculating the relations for displacement 

and stress. The rods are assumed to be initially unstressed and at rest. In this 

study, it is assumed that density ' ' , rigidity ' 'G
 

and viscosity ' '
 

of the 

specimen i.e. rod are space dependent and obey the harmonic laws 

as 31 2 2  2   2  

0 0 0    , ,
i xi x i xe k k e e
       . The various graphs are plotted to show 

the effect of non-homogeneity on the velocity of waves. 

2. Formulation of Problem  

Let us consider wave is propagating in one dimensional non-homogeneous semi-

infinite rod, the end of the rod is kept at x=0. We consider the four parameter 

model with two springs 1 1 2 2( ), ( )S G S G  and two dash-pots    1 1 2 2,D D   with 

viscoelasticity 1  and 2  respectively (Fig.1). The springs represent recoverable 

elastic response and dash pot represents elements in the structure giving rise to 

viscous drag. Here 1G and 2G are elastic parameters, 1 and 2 are viscoelastic 

parameters. Let   be the stress and a be the strain in the model. Let 1a be the 

strain in 1 1( )S G
 
, 2a be the strain along dashpot  1 1D   and 3a be the strain in the 

Kelvin model. Fig. 1 represents the sketch of the standard four parameter 

viscoelastic models. The stress v/s strain behavior for constant stress ( ) with 

time ( at ) has been shown in fig. 1. Here, 1  1 1 2 G    , 2  2 2 2   G      are the 

modulli of elasticity, 1 2,   are Newtonian viscosities coefficients and taken as 

functions of ‘x’ in the non-homogeneous case.  
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Fig. 1 Rheological model and its response 

The stress-strain relation for the four parameter viscoelastic models are 

constituted by the equations [18] 

1 1 1 2 2 3 2 3, , , .G a a G a a           
                                                                 (1)              

Eliminating 1 2 3, ,a a a  from Eq. (1) we get the constitute equation for the four 

parameter model: 

1 2 1 1 2 1 2
1

2 2 1 1 2 2

G G G G G G G
G a a  

    

   
        
   

                                               (2) 

The stress strain equation for four parameter model is of general form: 

1 0 2 1B B A a Aa                                                                                          (3) 

Where 'iB s  and 'iA s are the coefficients made up of combinations of the 1G , 2G  

and 1 , 2 and depend upon the specific arrangement of the elements in the model. 

In operator form the Eq. (2) can be written as 

   2 2

1 0 2 1t t t tB B A A a                                                                              (4) 

The equation of motion and strain-displacement relation is given by 

2

2
 

U

x t




 


 
                                                                                                          (5) 

 
U

a
x





                                                                                                                 (6) 

Where   ( )x   is the variable density of the material. 

Differentiating Eq.(5) w.r.t x ,we get 

2

,2 2

1 1
xttu

x x x

  

 

  
  

  
                                                                                   (7) 
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Differentiating Eq.(6) w.r.t. t  ,we get 

a u

t t x

   
  

   
  

Again differentiating w.r.t. t , 

2

, ,2 ttx xtt

a u
u u

t t t x

     
    

     
                                                                           (8) 

Using Eq. (7) and Eq. (8), Eq. (3) gives 

,ttt  ,   1 , 0 , 2 , 2 , 1 , 1 , ,,

1
      ( )tt t xxt xt xx x xx
B B A log A A logA       


              (9)                                

3. Method of Solution 

Let the solution ( , )x t  of Eq. (9) may be represented by the series [14] 

        0

0

, ,           0n n

n

x t A x F t h x A




                                                        (10) 

Where, 

  
1'  n nF F    (where, n = 1, 2, 3………….)   with , 1n t nF F   and 

, , 1n x x nF h F     (11) 

and for 0n  assume that 0 nA   and the derivatives of  may be obtained by 

term-wise differentiation of  Eq. (10), the prime in  Eq. (11) denotes 

differentiation with respect to the argument concerned, and by using  Eq. (10) and 

Eq.(11) we relate all '

nF s to 0F  by successive integrations. 

The Solution of equation Eq. (9) in the form of Eq. (10) can be obtained by taking 

a phase function ( )h x , ( )h x satisfies the Eikonal equation of geometrical optics 

[15] 

2

2

1

( ) 1
 

dh x

d Gx c

 
  

 
                                                                                            (12) 

Where c = c(x) is the variable wave speed for elastic longitudinal waves in a 

medium whose modulus of elasticity 1G  .Using, Eq.(10), Eq.(11) and the 

successive derivatives of  ,x t   w.r.t.  ‘t’ and ‘x’  in equation Eq.(9), we get  

1 2 1 1 2
3 2 1

2 2 1 1 2

n n n n n n

G G G G G
A F A F A F

   
  

   
      
   

  

 

    
'

2
" ' ' ' " ' '1 1

1 2 3 2 1 22
2n n n n n n n n n n n n

G G
A F A F h A F h A F h A F A F h



 
            

    
2

" ' ' ' " ' '1 2 1 2
1 2 1 12

2 2

'
2n n n n n n n n n n n n

G G G G
A F A F h A F h A F h A F A F h



   
           (13)   
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 On simplifying the Eq. (13) using Eq. (11), we get the amplitude function satisfy 

the equation 

         ' ' '

,
1 2

,
1 1

2     "( )   0,1( ,2 )n n nx
h x A x log h x h x A x Q n 

 

   
        
         (14)

 

Where,    

 
     

2 21
1 1 , 12 ,

2 1

2

2 2

2

2 2
, 2

2 2

1
  " 2 ' ' ( ) ' 2 "

'

" ( ) '

n n n x nx

n x n

G
A log A h log h h A

h

A

G G

og
G

A

Q

G
l

 




 

 

  

 

    
       

   

 



Which is a linear partial differential equation and its solution is obtained by 

reducing it into ordinary differential equation using an asymptotic method. The 

origin of this method is the ray optics and central feature of this method is the 

motion of rays which are curves or straight lines. The rays are of the fundamental 

importance because all the functions which make up the various terms of the 

asymptotic expansion can be shown to satisfy ordinary differential equations 

along these curves. Thus, this is the one of the method which reduces partial 

differential equation to ordinary differential equation. Also on using asymptotic 

method,  it is very important to choose the proper signs in the solution of equation 

(12) so that the direction of the propagation of the wave is taken into 

consideration. 

On integrating Eq.  (12), we get 

   
0

0  
( )

x
ds

h x h
c s

                                                                                              (15)           

The plus sign shows the wave travelling along positive direction of x-axis and 

negative sign shows the waves travelling along negative direction of x-axis.                                                                                                                                     

Therefore the solution of Eq.  (14) can be obtained as 

     '

',
1 2

1 1 1 "( )
      0,1,2 )
2 ( )

,
2

(n n nx

h x c
A x c log A x Q n

h x
 

 

   
        

   
 

 

     '

,
1 2

,
1 1 1
    (log , ),   0,1,2 )
2 2

(n n nx

c
A x c log h x x A x Q n 

 

   
        

   
  

     '

,
1 2

1 1 1
      0, ,2 )
2 2

, 1(n n nx

c
A x c log c A x Q n 

 

   
       

     
 

 

 

     '

,

1
  ( ) log ( )     0,1,2,( )

2 2
n n nx

c
A x m x l s A x Q n

 
     
 
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Integrating Factor    

 
 

,

0

1 2

0

1
  ( ) log ( )  

2 (0)
log exp ( )

( )

x

x

m x l s ds x
l

e m s ds
l x

 
 

    
   

   
   

And its solution is 

 
1 2 1 2

0 0 0

(0) 1 (0)
( ) log exp ( ) ( ) ( ).log exp ( )

( ) 2 ( )

x x x

n n

l l
A x m s ds c s Q s m s ds ds r

l x l x

      
       

      
  

  

Where r  is constant of integration. 

At 0, (0)x r A    

 
 

 
 

 

 
 

 

 
   

1 1 1

2 2 2

0 0 0

1
0 ( )  Q

0

0
(

2
)

0

x x x z

nn n

x

l x l x l
A exp m s ds exp m s ds c s exp m z dz s dsA x

l l l s


               

              
              




   

(16) 

Which is the expression for wave travelling in the positive  direction of x-axis. 

The expression for wave travelling in positive and negative direction of x-axis is 

as   

   
 

 
 

 

 
   

1 1

2 2

0 0

1
0 ( )  Q

0 2

x x z

n n n

x

l x l x
A x A exp m s ds c s exp m z dz s ds

l l s


             

         
            
  

 
( 0,1,2n  ) 

Where,        l x c  and   
1 2

1 1
.

2

c
m x







 
  

                                                

 (17) 

The upper signs are associated with wave traveling in the positive direction of x 

and the lower signs   are associated with the waves travelling in the negative 

direction of x. At the end 0x   ,the impulse of magnitude 0  is suddenly applied 

and thereafter steadily maintained , that is  

   00, ( )t H t                                                                                                  (18) 

From Eq. (11) and Eq.  (18), we have 

     0

0

0 0 ( )n n

n

A F t h H t




 
                                                    

                      (19) 

Thus we choose [15] 

  0

0

  0
0

    0    0
n

n
A

if n

i

o

f

r n

 

 
                                                                        (20) 

 0 0 h   and 0 ( )F H t                                                                                       (21) 
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The solution of Eq.  (9), for the waves travelling in the positive direction of x is 

generated by boundary stress Eq. (20), is 

   
  

    
  

0 0 0

,  
! ! ( )

n n
x

n n

n n

t h x t h x ds
x t A x H t h x A x H t

n n c s


 

 

    
    

  
      (22) 

Where,    

 
0

 
( )

x
ds

h x
c s

                                                                                                        (23) 

Where,  nA x  are given recursively by Eq. (16) (with upper signs) in 

combination with Eq. (20). 

The first–term approximation leads to Eq. (23) as  

 
 

 
 

1

2

0

0 0

,    
0 ( )

x xl x ds
x t exp m s ds H t

l c s
 

          
       

         
                                          (24) 

The Eq. (24) represents a transient stress wave which starts from the end 

' 0 'x  with amplitude 0' '  and moves in the positive direction of ‘x’ with velocity 

c(x). Hence, it is modulated by the factor  

 

 
 

1

2

0
0

xl x
exp m s ds

l

      
   
     
                                                                                    (25) 

Further terms in the approximate solution may be obtained recursively from Eq. 

(19) 

4. Viscoelastic Model Applied to a Particular Case 

For the sake of concreteness and for studying the qualitative effect of non-

homogeneity on the longitudinal wave propagation in non-homogeneous four 

parameter viscoelastic rods, it is assumed that density ' ' , rigidity ' 'G
 

and 

viscosity ' '
 
of the specimen i.e. rod are space dependent and obey the harmonic  

laws  
31 2 2  2   2  

0 0 0    , ,
i xi x i xe G G e e
                                                                                     (26) 

If, 1 2 3           i.e. density   rigidity viscosity                                            (27) 

 

Case-1 

 When, 1 2 3      , then from Eq. (26), we get 
2   2   2  

0 0 0    , ,i x i x i xe G G e e                                                                          (28) 
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Therefore, from Eikonal equation of geometric optics  

2 2  

0 0

2   2

1 10 10 0

( ) 1
   

i x

i x

edh x

G Gdx G e c





  
    

 
  = constant.                                             (29) 

or  10
0

0

c
G




                                                                                                      

(30) 

Since, the harmonic variation of modulus of rigidity  G  and density    is similar, 

therefore sound speed is constant i.e. non-homogeneous has no effect on speed 

and phase of the wave is given  
0

        
x

h x
c

 . So it becomes the case of semi non-

homogeneous medium (a medium when characteristics are space dependent while 

the speed is independent of space variable). 

The amplitude function  nA x  satisfies the equation 

       ' ' '

0

10 20

1 1
2 2     ' , n n nh x A x i h x A x Q 

 

   
     
      

( 0,1,2 )n                                                                                                  (31) 

Where,

  
 

   ' 20 20 22 210
1 1 1 2

02

2

22

20 10 20 20

1
  " 2 2 ' ' (2 ) ' " (2 ) '

'
n n n n nn

G
A i A h i h A A i A

h

G G GG
Q   

  
    

    
        

   

  

As the amplitude function is given by Eq.(15), For this case

 

  2

0 10( ) i xl x G e 
 

0 10

0

10 20

1 1
( )

2

G
m x m



 

 
   

   

0

0

( )

x

m x dx m x
                                                                                                   

(32) 

Hence, 

       0 00

1
0 exp e exp '

2

s

i x i x

n n n

x

A x A e c m dz sx dsm Q  
  

   
 




                     (33) 

For this case the value of first term approximation, the stress function is given by 
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    0 0

0

,  i

x

xx t exp m ds t xe H h 
  

   
  
        

' "( , )x t i                                                                                                      (34) 

Where '  and "  represents the real and imaginary parts respectively when 

, , ,G   obeys harmonic laws. 

The expression for the wave front at ( )t h x  is as 

     0 0 0 0(cos ) (sin,   )  x xx t ex x xp m i exp m      

                                   

(35) 

The progressive harmonic wave which starts from the end 0x   with amplitude 

0  and moves with constant velocity 10
0

0

G
c




 

in the positive direction of x is 

modulated by the factor  0 0(cos )  expx xm   and attenuation by the 

factor  0 0(sin )  expx xm   .                           

Case II 

1 2 3        i.e. density   rigidityviscosity,  then from Eq. (25), we get  

31 2 2  2   2  

0 0 0    , ,
i xi x i xe G G e e
            

From Eikonal equation of geometric optics  

 
1

1 2

2

2 2  
20 0

2   2

1 10 10

( ) 1
   

i x
i x

i x

edh x
e

dx G G e G c


 



   
    

 
 , Here, 

 2 110

0

   
i xG

c e
 






          

 (36) 

The amplitude function  nA x  satisfies the equation 

     1 3)2 (' ' ''

0 1

10 2

'

0

2   "( )   , ( 0,1,
1 1

( 2) )2xi

n n ni hh x A x e h x A nx x Q
 

 
 

  


  
     
 


  



  

(37) 

Where,  

 
       1 3

2 22' ' ' "10
1 1 1 1 1 12

'
10

1 2 1 1 2

' 1
  " 2 2 ' 2 2

" 2 ' ( 0,1,2 )

i x

n n n

n n

n

G
A i K A K h i e h h A

h

K A K n

Q

i A

 
 







  

 



 
  

       
   

   

and  2 3 10

2

2

1

0

i x
K

G

G
e

 
 .  Amplitude function ( )nA x is given by Eq.(16). 

For this case  

 1 2

10 0( )
i x

l x G e
 




  = 1( )l x  and 
 1 2 3210 0

1

10 20

1 1
( ) ( )

2

i xG
m x e m x

  

 

   
   

 
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    1 2 3 1 2

10 0

210 20 ( ) 1

1 2 3 10

1 1

2 ( )( )
( ) 1 ,

( 2 ) (0) (0)

x
i i x

G

l xl x
m x dx e e

i l l

    



 

  

  

 
 

    
 

        

(38) 

Therefore  

   
 

 
   1 2

1

2
1 ''

1 1

10 0

1
( ) 2

1
( )  Q

2
( ) (0)

x x z

n

x

i x

n n

l x
exp m s ds c s exp m z dz s ds

l s
A x A e   

         
      

        

       (39) 

For this case the value of first term approximation, the stress function is given by 

         1 2

0

1

2
2 1, ir x ir xx t expe i e H t hp x     

           1 1
2 2 2 20 2 2exp sin cos sin cos co, s 1 sin cos 1

2 2

r r
p r x x i xx t H t h xp r x i p r x 

 
     





        

' "( , )x t i                                                                                                      (40) 

The equation of wave front at ( )t h x  is given by 

     

   

1
2 2 2 2

1
2

0

0 2 2 2

exp sin cos cos 1
2

exp sin sin cos 1
2

,
r

p r x x p r x

r
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r x x p ri x
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

  
    

  

  
    

 






                                (41) 
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The progressive harmonic wave which starts from the end 0x   with amplitude 0  

and moves with constant  velocity 
 2 110

0

   
i xG

c e
 




  in the positive direction of x  

is modulated by the factor    1
2 2 20 2exp sin cos cos 1

2

r
p r x x p r x

  
    

  
and 

attenuation by the factor    1
2 2 20 2exp sin sin cos 1

2

r
p r x x p r x

  
    

  
  .    
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Where   
0

1

10 1
1 2 2 1 3 1 2

10 20 2

1 1
, 2 , ,

2

G p
r r r p p

r


  

 

 
       

 
. 

5. Numerical Analysis 

Here, all the mechanical properties obey harmonic laws. As x  lies between 

0 x  and also x  depends upon  .Two distinct cases are considered for 

taking  1   and 1   . 

  Let the parameters are as 

 

 0    10G    10   20  

1.8 1.6 1.2 1.3 
 

Case: 1 

 For 1   , Let 01/ 2, 8.12m    

The equation of wave front at ( ) 1.06t h x x   is as 

   
0

8.12  (cos ) (sin 8.12
2

 )
2

x x
exp i expx x




                                                             (42) 

The wave is modulated by the factor 

    (cos )
2

8.12ex xp
x

                                                                                          (43) 

and attenuated by the factor 

 (sin )
2

8.12ex xp
x

                                                                                                                (44)                                                              

For 1   , Let 02, 8.12m    

The equation of wave front at ( ) 1.06t h x x   is as 

   0

0

8.12   8.12  (cos 2 ) (sin 2 )exp x ix x xexp





                                                     (45) 

The wave is modulated by the factor 

 8.12(cos2 )ex xpx                                                                                                               (46) 

And attenuated by the factor 

 8.12(sin 2 )ex xpx                                                                                                               (47) 

Case: 2 
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For non-homogeneous case 

 

  

   
1  

2
  

3   
1r  2r  

1p  2p  

 <1 1/2 1/4 1/6 ¾ ½ 8.12 16.24 

 >1 8 4 2 12 8 8.12 1.015 

 

For 1    

The equation of wave front at ( ) 2.12sin 2.12 cos 1
2 2

x x
t h x i

 
    

 
 is as 

0

3 3
exp 16.24sin cos 16.24 cos 1 exp 16.24sin sin 16.24 cos 1

2 8 2 2 8 2

x x
i

x x
x x





             
                  
            





 

The modulated factor is given by  

0

3
exp 16.24sin cos 16.24 cos 1

2 8 2

x x
x





     
       
   


 

                                    (48) 

The attenuation is given by the factor 

3
exp 16.24sin sin 16.24 cos 1

2 8 2

x x
x

     
       
     

                                              (49) 

For 1    

The equation of wave front at  ( ) 0.26sin (0.26) cos 4 1
2

x
t h x i x     is as 

    

    
0

exp 1.015sin8 cos 6 (1.015) cos8 1

exp 1.015sin8 sin 6 1.015 cos8 1

x x

x xi

x

x




    

  



 

                                   (50) 

The modulated factor is given by  

    exp 1.015sin8 cos 6 (1.015) cos8 1x x x                                                 (51) 

The attenuation is given by the factor 

    exp 1.015sin8 sin 6 1.015 cos8 1x x x                                                    (52) 

To see qualitative effect of non-homogeneity on the harmonic wave propagation 

in non-homogeneous four parameter viscoelastic rods, the various graphs are 
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plotted between
0




 and x . For the semi homogeneous cases Fig.2 represents the 

plot for Eq.(43) and Fig.(3) represents the plot for Eq.(44).It shows that there is 

slight variation in the wave in the neighborhood of 0x   As x  increases the wave 

becomes constant. Fig.(2) represents the wave in progress and fig.(3) represents 

its attenuation. It is also observed that for 1  ,the wave progression is near the 

origin and not along the x  apart. The Fig.(4) and (5) also represents the similar 

result for 1   . So it can be concluded that the value of   does not impact more 

in the semi homogeneous case and also that the wave progression is at near the  

starting point only.  For the non-homogeneous cases, Fig.(6) and Fig.(7) 

represents the plot for Eq.(48) and Eq.(49) respectively. Fig.(8) and Fig.(9) 

represents the plot for Eq.(51) and Eq.(52) respectively For 1   and for 1   

harmonic wave is in progress but with unequal interval of times. Thus the effect 

of non-homogeneity is clearly observed for the harmonic waves in non-

homogeneous four parameter viscoelastic model. 

 

 
Fig. 2 
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Fig. 9                                                         

                                                                         

6. Conclusions 

1. When the density, rigidity and viscosity all are equal for the first material 

specimen, the sound speed is constant i.e. non-homogeneous has no effect 

on speed and phase of the wave is given  
0

        
x

h x
c

 . So it becomes the 

case of semi non-homogeneous medium (a medium when characteristics 

are space dependent while the speed is independent of space variable). The 

longitudinal speed will be equal to 10

0

 
G

c


  

2. When the density, rigidity and viscosity are not equal for the second 

material specimen, the speed of sound varies exponential as 

 2 110

0

   
i xG

c e
 




  
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