
Mathematica Aeterna, Vol. 7, 2017, no. 1, 19 - 56

Reverse engineering Turing Machines

and insights into the Collatz conjecture.

John Nixon

Brook Cottage
The Forge, Ashburnham

Battle, East Sussex
TN33 9PH, U.K.

Abstract

In this paper I have extended my earlier work [3] on small Turing
Machines (TMs) by developing a method for obtaining recursive defi-
nitions of the irreducible regular rules (IRR) for a TM when explicit
formulae for them cannot be obtained. This has been illustrated by
two examples. The first example was randomly chosen and the second
example was designed to simulate the Collatz conjecture. Analysis of
this TM based on the its IRR suggested new approaches that might be
the basis for a proof of this conjecture.

The method involves running the TM backwards from a configura-
tion set (CS). This in general produces a tree of CSs at each step. The
aim is to find CS’s y that are reachable from a CS x that simply spec-
ifies the symbol about to be read and the machine state. This means
that following the computation forward from x by adding some symbols
when needed at the pointer, the CS y can be reached. These CS’s form
the basis of the LHS’s of the IRR.

Mathematics Subject Classification: 68Q25

Keywords: Turing machine, irreducible regular computation rules, Col-
latz conjecture

1 Introduction

In my earlier paper [3] I showed how a set of shortcut computation rules could
be defined for any Turing Machine (TM) that can speed up calculations with it,
and how any computation with the TM can be expressed more briefly in terms
of these rules. By appropriately restricting the set of rules to the Irreducible
Regular Rules (IRR), this desirable property is maintained and redundancy



20 John Nixon

is eliminated. The number of IRR for a TM can be finite or infinite. In
the examples studied in detail where they were infinite in number, general
formulae for them were proved by induction. Powerful general results were
then obtained for the general behaviours of the TMs studied by using their
sets of IRRs.

In this paper, that closely follows on from [3], more complex examples are
studied. Due to the complexity of the work, only two TM’s were chosen. The
TM’s used are one randomly chosen (TM1) and the other (TM2) a TM which
is a trivial modification of one defined by Margenstern [2] to generate sequences
to which the Collatz conjecture [1] applies.

As a result of the increased complexity, the IRR cannot be expressed by
simple formulae in these examples, and the methods needed to generate a
recursive description of the set of IRR became much more complex, but the
same principle seems to apply, namely that finding this recursive description
of the IRR for the TM allows many questions about its general behaviour to
be answered. The recursive descriptions in these examples now take the more
general form of an algorithm for generating from the IRR of length n, IRR(n),
the set IRR(n + 1). This is possible for TM1 because, although the number
of such rules increases with n, the number of patterns in which they fall does
not, and all the rules in a pattern can be handled by the same reasoning.

For TM1, the patterns are determined by a few symbols near the pointer
in the origin for the LHS of the IRR, where the origin of a configuration set
(CS) x is the set of CS’s obtained by tracing back the computation from x as
far as possible. The finding of the origins of a CS played an essential role in
the analysis of TM2 too, and is therefore a major theme of this paper and is
based on running the TM backwards.

The analysis especially for TM1 has proved to be tricky, and the reasoning
used in this paper is a much simplified version of the original reasoning I used.
The inductive hypotheses were arrived at with the aid of the computer program
[4] I developed.

After the complete set of IRR were characterised, the analysis of TM2
provided a very plausible proposition equivalent to the well-known Collatz
conjecture, and it seems that a proof of it might be found based on this result,
or at least new insights into it might arise from similar analyses of TM’s that
simulate it.

The notation for the TM’s is as follows: symbols will be small Latin letters
(possibly capital etc. if needed in future), and states will be integers. Symbols
which are place-holders for TM symbols will be Greek (here α and β,γ and
δ). This is in contrast to the notation in [3] and [4] in which the symbols
were digits and the states were capital letters. The definition of TM’s used in
this paper will also be very slightly different from that in [3] in that halting
is treated differently. Halting (if used) will no longer be associated with a



Turing Machines 21

machine state H but with some lines in the machine table with no movement
of the read-write head and the same state and symbol as the input to the
instruction appearing in its output, so the TM is in an infinite stationary loop
i.e. effectively halting. Halting instructions will then be naturally classified
with other stationary cycling rules with more than one TM step.

There are many advantages for the change of notation which outweigh the
inconvenience of changing it:

(1) The symbols are really just symbols not digits which have another
meaning as integers.

(2) expressions involving superscripts cannot be misinterpreted as numeri-
cal expressions.

(3) The number of symbols available has increased from 10 to 26, and more
if capitals etc. are used.

(4) The number of machine states representable is now unlimited.

(5) These advantages apply to new versions including the current version[5]
of the computer program TIE for analysis of Turing machines.

This program also uses the programming language D (dlang.org) instead
of C++ that also has other advantages.

Apart from these changes, the notation and terminology used in this paper
is the same as that used in [3].

The paper is divided into 2 parts giving the analyses of Turing Machines
TM1 and TM2 each according to the above outline, i.e. (1) introducing the TM
and giving the IRR(n) for a few small values of n followed by (2) approaches
to the recursive definition of the IRR, and finally (3) some general statements
about the behaviour of the TM following from the results in (2). Note that
in step (2) there is no attempt to make this algorithmic i.e. the form of the
recursion has to be correctly guessed before it can be proved by induction. The
two examples are very different so the approach in parts (2) differ greatly. For
TM1 the first approach to part (2) was ultimately unsatisfactory but illustrated
many ideas. This was followed by what I think is a general method based on
searching for origins of CS’s by running the TM backwards over all possible
branches. This allowed the IRR(n + 1) to be obtained from the IRR(n) for
n = 1, 2, 3 and then for n ≥ 4. For TM2, this approach was followed but
the results could be expressed in terms of sub-machines of the TM, so the
arguments look very different. This is presumably the result of the TM being
designed for a specific task. Finally I tried to exploit the connection of TM2
with the Collatz problem to shed some light on it.



22 John Nixon

2 Definition of TM1 and some preliminary re-

sults for the IRR of length n ≤ 4

The TM studied in this section (TM1) is defined by its computation rules of
length 1 which are as follows:

1a→ 2c 1b→ 4 b 1c→ 1d 1d→ 2d

2a→ 3c 2b→ 1 d 2c→ 4a 2d→ 2d

3a→ 3b 3b→ 4 a 3c→ 3d 3d→ 4 c

4a→ 1a 4b→ 2c 4c→ 3 b 4d→ 3c

. (1)

The complete list IRR’s of lengths 2, 3 and 4 are all listed here in equations
2-4 respectively. The order in which they are listed is the same as the order in
which the computer program output is listed. The results are sorted by state,
then by pointer position, then lexicographically (forward or reverse) such that
the symbol away from the pointer changes most quickly:

1ad→ 2cd 1cd→ 2dd 1dd→ 2dd 1ab→ 1ab 1db→ 3 ba

2cb→ 2dd 2db→ 2dd 3ab→ 3cc 3cb→ 3cb 3bb→ 3cc

3cb→ 3 ba 3db→ 3cb 3bd→ 4ca 3cd→ 3 bc 3dd→ 3cd

4aa→ 2ac 4ab→ 4ab 4ac→ 1ad 4ba→ 3cc 4bb→ 2dd

4bc→ 4ca 4da→ 3cb 4db→ 3 ba 4dc→ 3cd 4ac→ 3cc

(2)

1adb→ 3ccb 1ddb→ 4 cba 3aba→ 3ccb 3abb→ 3cbb

3abc→ 3ccd 3cba→ 3cbb 3cbb→ 3ccc 3cbc→ 3cbd

3acb→ 3ccb 3ccb→ 3cbb 3dcb→ 4 cba 3acd→ 3ccd

3ccd→ 3cbd 3dcd→ 4 cbc 4aab→ 2add 4acb→ 3ccb

4bab→ 3cbb 4bbd→ 2ddd 4bcb→ 2cac 4dab→ 3ccc

4dcb→ 3ccb

(3)

1addb→ 3ccbb 1dddb→ 3ccbb 3abab→ 3cccc

3abad→ 4ccca 3abbd→ 4cbca 3abcb→ 3cccb

3cbab→ 3cbcc 3cbad→ 4cbca 3cbbd→ 3ccbd

3cbcb→ 3cbcb 3adcb→ 3ccbb 3ddcb→ 3ccbb

3adcd→ 3ccbd 3ddcd→ 3ccbd 4aaba→ 3addc

4aabb→ 2addd 4aabc→ 4adda 4acba→ 3ccbb

4acbb→ 3cccc 4acbc→ 3ccbd 4baba→ 3cbbb

4babb→ 3cbcc 4babc→ 3cbbd 4bcba→ 3cacc

4bcbb→ 2cadd 4bcbc→ 4caca 4daba→ 3cccb

4dabb→ 3ccbb 4dabc→ 3cccd 4dcba→ 3ccbb

4dcbb→ 3cccc 4dcbc→ 3ccbd

(4)

From Theorem 5.4 in [3] any rule in RR(n + 1), the set of regular rules of
length n + 1, is derived by a sequence (of length ≥ 0) of rules in RR(n) of



Turing Machines 23

types RL and LR alternating, followed by a regular rule of type RR or LL,
with matching R or L symbols as described in [3]. The same therefore applies
to the subset IRR(n + 1) except that the number of derivation steps must be
at least 2 to ensure that the derived rule is irreducible (i.e. no redundant
symbols). The type of the IRR derived of length n+ 1 also follows from the R
and L symbol matching. Therefore the absence of IRR(4) of type RL implies
that the IRR(5) must all be derived in two steps by IRR of types LR followed
by RR and have type LR. This argument can be clearly extended to all longer
IRR. It is therefore useful to list separately in equation (5) the non-halting
IRR of lengths 2-4 that are of type RR for TM1 because these must be the
last rules of length > 1 used to complete the derivations of the IRR:

2cb→ 2dd 3bb→ 3cc 3db→ 3cb 3bd→ 4ca

4ac→ 3cc 3dd→ 3cd 1adb→ 3ccb 3acb→ 3ccb

3ccb→ 3cbb 3acd→ 3ccd 3ccd→ 3cbd 1addb→ 3ccbb

1dddb→ 3ccbb 3adcb→ 3ccbb 3ddcb→ 3ccbb 3adcd→ 3ccbd

3ddcd→ 3ccbd

(5)

2.1 Initial exploration of the irreducible regular rules
for n > 4

After looking at the IRR(4) and the table of all the derivations of the IRR(5)
from these (not shown but easily obtained from the computer program [4]
output), the results can be summarised in Table 1. Table 1 shows that the
state of the LHS of a rule and the symbol (only one in this example) at the
opposite end (i.e. the right hand end) from the pointer in this LHS determine
a set of extra symbols any one of which can be added to both sides of this rule
at the right hand end of the string of symbols, and in each case corresponding
IRRs can be identified to finish the derivation. There could be up to 3 of these,
depending on other symbols. They are listed here in an arbitrary order in the
two sub-columns of the last column of Table 1.



24 John Nixon

LHS of IRR(4) Symbol added IRR used to complete the
State Symbol at at pointer in derivation of the IRR(5), which

opposite(R) end the RHS of depend on other symbols
from pointer(L) the IRR(4)

3 b a 3a→ 3b

3 b b 3ccb→ 3cbb (1) 3bb→ 3cc (2)
3 b c 3c→ 3d

4 a b 3ccb→ 3cbb 3bb→ 3cc

3ddcb→ 3ccbb

4 a d 3ccd→ 3cbd 3bd→ 4ca

3ddcd→ 3ccbd

4 c b 4b→ 2c 3db→ 3cb

4 b d 3ccd→ 3cbd 2d→ 2d

3bd→ 4ca

Table 1: Summary of the derivations of the IRR(5) from the IRR(4)

For example to explain the second line in detail, it is easy to show (e.g.
with the computer program [4]) that

3abab→ 3cccc

3abcb→ 3cccb

3cbab→ 3cbcc

3cbcb→ 3cbcb

. (6)

These are all the IRR(4) for TM1 that have the LHS with state 3 and b at
the right hand end of the tape and the pointer is at the left. In each case
a b can be added to both sides of these IRR on the right hand end to start
the following derivations that are completed by application of one of the IRR
stated in the last column of Table 1 labelled (1) or (2).

3ababb→ 3ccccb→ 3cccbb (1)

3abcbb→ 3cccbb→ 3ccccc (2)

3cbabb→ 3cbccb→ 3cbcbb (1)

3cbcbb→ 3cbcbb→ 3cbccc (2)

(7)

In line 1 of Table 1, the LHSs of the derived rules have the symbol a,
which is the symbol added, at the opposite end from the pointer, therefore the
combination 3a must appear in the first two columns of Table 1 if it were to
be applicable again to generate a member of IRR(6) because the state of the
LHS of a rule r in IRR(n) is the same as the state of the LHS of the member



Turing Machines 25

LHS of IRR(5) Symbol added IRR used to complete the
State Symbol at at pointer in derivation of the IRR(6), which

opposite(R) end the RHS of depend on other symbols
from pointer(L) the IRR(5)

3 a b 3bb→ 3cc

3 a d 3bd→ 4ca

3 b d 3ccd→ 3cbd 3bd→ 4ca

3 c b 3db→ 3cb

4 b a 3a→ 3b 2a→ 3c

4 b b 2cb→ 2dd 3bb→ 3cc

3ccb→ 3cbb

4 b c 2c→ 4a 3c→ 3d

Table 2: Summary of the derivations of the IRR(6) from the IRR(5)

of IRR(n + 1) derived from r. Therefore the same general way of obtaining
all the IRR(6) from the IRR(5) cannot be done as in Table 1. After listing
the derivations of the IRR(6) from the IRR(5) with the help of the computer
program [4], the output suggests the following process (where both symbols
mentioned are again added at the right hand end) for the next extension of
length of the IRR by 1:

Now it looks as if an induction argument could be used, because each state
and symbol-at-the-end (column 2) combination in Table 1 is found in columns
1 and 3 of Table 2 and the same holds with Tables 1 and 2 interchanged.

If the rules derived as summarised in Table 1, are used as inputs to the
summary derivations in Table 2 the result is the set of rule outlines as follows:



26 John Nixon

3 . . . bab→ 3 . . . bb → 3 . . . cc

3 . . . bad→ 3 . . . bd → 4 . . . ca

3 . . . bbd→ 3 . . . ccd → 3 . . . cbd

3 . . . bbd→ 3 . . . cbbd → 4 . . . cbca

3 . . . bcb→ 3 . . . db → 3 . . . cb

4 . . . aba→ 3 . . . cca → 3 . . . ccb

4 . . . abb→ 3 . . . ccb → 3 . . . cbb

4 . . . abc→ 3 . . . ccc → 3 . . . ccd

4 . . . aba→ 3 . . . cbba → 3 . . . cbbb

4 . . . abb→ 3 . . . cbbb → 3 . . . cbcc

4 . . . abc→ 3 . . . cbbc → 3 . . . cbbd

4 . . . cba→ 2 . . . ca → 3 . . . cc

4 . . . cbb→ 2 . . . cb → 2 . . . dd

4 . . . cbc→ 2 . . . cc → 4 . . . ca

4 . . . cba→ 3 . . . cba → 3 . . . cbb

4 . . . cbb→ 3 . . . cbb → 3 . . . ccc

4 . . . cbc→ 3 . . . cbc → 3 . . . cbd

. (8)

For example the rules derived in the first row of Table 1 are of the form
3 . . . ba → 3 . . . b where the pointer is at the left in the LHS and . . . stands
for arbitrary symbols that may be different at each instance of it. This means
3 “some string of symbols ending with ba” with the pointer on the left symbol
leads to 3 “some other string of symbols ending with b” with the pointer to
the immediate right of the b, and will be called a rule outline. Now the first
two rows of Table 2 apply giving the first two rows of (8).

Note that the third rule for the fourth row in column 4 of Table 1 has its
RHS 3ccbb , a subset of the RHS 3cbb of another rule for the same row of
Table 1. Thus 4 . . . ab → 3 . . . cbb and 4 . . . ab → 3 . . . ccbb could both be
derived from Table 1 and the latter is a special case of the former so the latter
will not used in (8). There is another example of this in row 5 of Table 1.

After completing the rest of (8) in this way (noting that the appropriate
rule has to be selected if more than one are given in Table 2), one can deduce
that the rules of Table 1 are almost the same as the ones needed (Table 3)
to complete the derivations of the IRR(7) from the IRR(6) assuming that the
first 3 columns of Table 3 are the same as the first 3 columns of Table 1. This
last assumption can be verified from the computer program [4] output and is
left as an assumption to be proved correct later. For example this assumption
implies that state 3 and symbol b at the right must be followed by the new
symbols a,b, or c on the right. In (8) this applies to rows 1 and 5. For row 1



Turing Machines 27

LHS of IRR(6) Symbol added IRR used to complete the
State Symbol at at pointer in derivation of the IRR(7), which

opposite(R) end the RHS of depend on other symbols
from pointer(L) the IRR(6)

3 b a 3a→ 3b

3 b b 3ccb→ 3cbb 3bb→ 3cc

3 b c 3c→ 3d

4 a b 3ccb→ 3cbb 3bb→ 3cc

4 a d 3ccd→ 3cbd 3bd→ 4ca

4 c b 4b→ 2c 3db→ 3cb

4 b d 3ccd→ 3cbd 2d→ 2d

3bd→ 4ca

Table 3: Summary of the derivations of the IRR(7) from the IRR(6)

this gives the following results

3 . . . baba→ 3 . . . cca → 3 . . . ccb

3 . . . babb→ 3 . . . ccb → 3 . . . cbb

3 . . . babc→ 3 . . . ccc → 3 . . . ccd .

(9)

and the 3 rules to complete the derivations are respectively 3a→ 3b , 3ccb→
3cbb , and 3c→ 3d , which are identified easily. Doing this for all the outline
derivations of rules in (8) gives results which can be summarised in Table 3.
The complete list is given in (10). Column 4 of Tables 1-3 list all the possible
final rules used to complete the derivations, and therefore indicate all the
possible rightmost sequences of symbols in the RHS’s of these derived rules.

The only difference between Table 3 and Table 1 is that in Table 3 the two
rules of length 4 do not appear. It is interesting to note that in only these two
cases is the RHS of the rule a subset of the RHS of another rule for the same
values in columns 1-3. Therefore if the rule outlines indicated as obtained by
the use of Table 3 are extended by one in length where possible according to
Table 2, the result is the same as (8) and every rule in column 4 of Table 2 is
used. When each of the types of rule indicated in (8) is extended by one again
in length where possible according to Table 3, the result is the same as (10).
In this list each of the rules in column 4 of Table 3 is used. This establishes
the following theorem:

Theorem 2.1. If Tables 2 and 3 are applied alternately to increase the
length of the rules by 1 starting with the IRR(5) and using Table 2 to obtain
the IRR(6), then sets of rules of arbitrary length for TM1 can be obtained.



28 John Nixon

Furthermore this argument can be slightly extended to prove by induction
that

Theorem 2.2. Tables 2 and 3 summarise derivations of some of the rules of
length n+ 1 from some of the rules of length n for n even and odd respectively
for n ≥ 4. Column 4 of these Tables contains all the possible rules used to
complete the derivations, and one application of one such rule is sufficient for
each derivation.

The proof for Table 3 follows from (8) by adding the symbol indicated in
column 3 of Table 3 to each line of (8) that matches the state and symbol in
columns 1 and 2 of Table 3, then noticing that one of the rules in column 4
of Table 3 allows the completion of the derivation in each case, and only one
derivation step is required. All the rules in column 4 of Table 3 are used at
least once. The proof for Table 2 is similar but requires the use of (10) in the
place of (8).

3 . . . baba → 3 . . . cca → 3 . . . ccb

3 . . . babb → 3 . . . ccb → 3 . . . cbb

3 . . . babc → 3 . . . ccc → 3 . . . ccd

3 . . . bcba → 3 . . . cba → 3 . . . cbb

3 . . . bcbb → 3 . . . cbb → 3 . . . ccc

3 . . . bcbc → 3 . . . cbc → 3 . . . cbd

4 . . . abab → 3 . . . ccbb → 3 . . . cccc

4 . . . abad → 3 . . . ccbd → 4 . . . ccca

4 . . . abbd → 3 . . . cbbd → 4 . . . cbca

4 . . . abcb → 3 . . . ccdb → 3 . . . cccb

4 . . . abab → 3 . . . cbbbb → 3 . . . cbbcc

4 . . . abad → 3 . . . cbbbd → 4 . . . cbbca

4 . . . abbd → 3 . . . cbccd → 3 . . . cbcbd

4 . . . abcb → 3 . . . cbbdb → 3 . . . cbbcb

4 . . . cbab → 3 . . . ccb → 3 . . . cbb

4 . . . cbad → 3 . . . ccd → 3 . . . cbd

4 . . . cbbd → 2 . . . ddd → 2 . . . ddd

4 . . . cbcb → 4 . . . cab → 2 . . . cac

4 . . . cbab → 3 . . . cbbb → 3 . . . cbcc

4 . . . cbad → 3 . . . cbbd → 4 . . . cbca

4 . . . cbbd → 3 . . . cccd → 3 . . . ccbd

4 . . . cbcb → 3 . . . cbdb → 3 . . . cbcb

(10)



Turing Machines 29

2.2 General description of reverse computation rules
and their usage

The basic problem with the above arguments is the lack of proofs that using
Tables 2 and 3 as described, all the rules so generated are IRR for TM1 and
that all the LHS’s of the IRR are included. Because the IRR are infinite in
number, a finite recursive description for them is desired if possible. Up to
length 4 these LHS’s have been found and are given in Section 2 in equations
(2),(3) and (4). The computer programs [4] and [5] were used and are in
agreement with these results that can be checked by hand, as will be shown
by the end of this section.

The two requirements for IRR are that they are irreducible and that they
are regular [3]. Irreducibility means that there are no redundant symbols, and
is guaranteed for rules with the pointer starting at one end and ending at the
other end of the string of symbols stated (i.e. rules of types LR or RL) and
regularity means that the rule can be obtained from some rule of length 1 (a
state-symbol pair and its RHS) by repeating a cycle in which (1) some new
symbol is added in the RHS at the pointer at one end of the string of symbols
(CS x) and (2) the computation goes as far as possible without adding a new
symbol giving CS y. The new rule is x→ y. A CS is defined to be reachable if
and only if it is the LHS or RHS of a regular rule as defined above. It is clear
from this definition that for a CS x to be reachable, a reverse computation path
must exist from x with the pointer passing every point in the string of symbols
in x. Following the RHS in the above definition, such a CS is obtainable from
a state-symbol pair by alternately adding symbols one at a time and going as
far as possible with the computation. Reachability is satisfied for any CS that
forms the LHS or the RHS of an IRR.

In this section a method for generating the IRR for TM1 based on these
definitions will be followed. Reachability of a CS x with the pointer at one
end can be checked by searching for backward TM steps, which when followed
forwards satisfy the above definition. At each stage, none, one or more may
be found, so generally a tree structure is formed. The computations going
backwards along each possible branch can be terminated in one of 3 conditions:
(1) the pointer reaches the opposite end of the string of symbols from its
position in x, (2) the pointer reaches again the same end of the string of
symbols as it was in x, or (3) the pointer is not at an end of the string of
symbols and no preceding CS exists.

When condition (1) occurs, a new origin CS y for x has been obtained
demonstrating that x is reachable. For, computing forward from this point
y to x, it must have been the last time that the pointer was opposite where
it is in x. From this a new derivation of reachability of x can be found by
proceeding forward from y, adding the appropriate new symbol at the pointer



30 John Nixon

whenever the pointer reaches a new position it has never reached before since
CS y.

If condition (2) occurs (CS y) without condition (1) having yet occurred
while searching backwards from x, there is no point in continuing the derivation
of that branch of the reverse rule. For suppose one branch of such a derivation
is x← . . .← y← . . . where the CS x has the form sαβγ . . . and y has the form
s′α′β′γ′ . . . then running the computation forwards gives y → x → . . . where
the computation continues beyond x because the pointer still has a symbol
to be read at x so no new origin for x can be obtained from this argument
(though one may exist as shown by another branch).

If in a branch, condition (3) occurs (CS y) first while searching backwards,
then because the pointer has not reached the opposite end of the string from
where it is at x, it cannot be used to prove that x is reachable because not all
the string of symbols in x has been passed by the pointer in the computation
y→ x, and no further searching backwards is possible.

If a CS x is reachable, this method will reveal the proof because there
must be a forward computation path from a CS y of length 1 to x (adding
symbols as needed) which has the pointer at every position in x at some point
in the computation, so there is a point in this computation going backwards
where the pointer first reaches the opposite point from where it was in x i.e.
condition (1) has occurred. Because all branches have been followed in this
search procedure, if no such proof of reachability can be obtained, then x is
not reachable.

To avoid as much repetition as possible while carrying out many such
derivations, small “equations” in the form of trees should be developed as
above from short CS’s and reused when possible to develop larger trees de-
rived from longer CS’s. For brevity for adding a single extra symbol to x at
the opposite end from the pointer, it will be convenient to add a Greek symbol
(e.g. α, β, γ, δ) to stand for any single symbol, in this example i.e. a,b,c, or d.
Conditions on the Greek symbol can then be added on the relevant left facing
arrows.

For any CS of length n, let S(x) be the set of all the starting CS’s which
lead to it in condition (1) i.e. those that demonstrate the reachability of x.
The CS x is reachable if and only if S(x) 6= ∅. Then extend this as follows to
length n + 1 by adding each single symbol at the opposite end of the string
of symbols from the pointer in x i.e. xα. The CS xα is reachable if and only
if there exists a member of S(x)α that is reachable. The procedure is then to
obtain from this the set of CS’s that lead to S(x)α i.e. S(xα). This of course
depends on α and may or may not be empty. (The last step can usually be
obtained using shorter reverse rules that are often needed repeatedly in the set
of derivations as the examples will show.) To demonstrate this, in the proof
that xα is reachable, there must be a branch that ends (going backwards with



Turing Machines 31

the TM) with the pointer at the position of α so there is a first time (going
backwards) that the pointer was next to α. The CS at this point is in S(x)α
for each such branch. Therefore the proof of reachability of xα must involve
reaching S(x)α at some point in the derivation and the forward computation
is in outline S(xα)→ S(x)α→ xα.

For a reverse rule of length n with the pointer at one end on the LHS,
the branches ending in condition (2) will not lead to any irreducible rules of
length n+1 by adding a symbol to each side etc. as above. In general however
re-usable reverse rules do not necessarily start with the pointer at one end of
the string, so the terms condition (1) and condition (2) do not apply, but if
such a branch ends in condition (3), as part of a longer derivation, this is still
the case and this branch cannot contribute to a proof of reachability. In order
to be sure that, in a derivation of reachability of which a re-usable reverse
rule forms a part, the computation will not continue beyond the point where
either condition (1) or condition (2) first occurs, it is necessary that re-usable
reverse rules will terminate when the pointer reaches either end of the string
of symbols.

To illustrate all these concepts consider the reachability of x = 3abab.
This can be reached from only 4acab which can be reached from 2ccab (this
branch now ends in condition 2) and 3acbb. 3acbb can be reached from
2aabb (this branch now ends in condition 3), 4adbb and 4acbc (this branch
now ends in condition 1). 4adbb can be reached from 2cdbb (this branch
now ends in condition 2) and 1adbb, which can be reached from only 4acbb

(condition 2) after 2 steps. This shows that x is reachable uniquely from 4acbc

(after the branches that end in conditions 2 and 3 are deleted) as indicated
in the third result of (26) for β = a. Running the computation forwards we
have 4c → 3bb → 4cab → 3abab after adding the extra symbols b,c and
a respectively at the pointer demonstrating the reachability of 3abab. This
complete result can be expressed in the following “equation”

3abab←


2ccab

4acbc

2cdbb

4acbb

(11)

in which only branches ending in condition 3 have been deleted. Note that
the other three “origins” listed here do not count (condition 2) because their
computations going forward have the pointer going beyond the right hand end.
For example using the first result of (11) in condition 2, 2ccab → 3abab →
3cccc , and this much computation would be done in one step in the definition
of reachability, so this cannot be used to show that 3abab is reachable. The
same argument would have also worked if there had been some other CS with
the pointer at the right hand end that was an origin for 2ccab.



32 John Nixon

Now try using (11) and the general method to look for symbols α such that
3ababα is reachable. Clearly such an extra symbol added will not affect the
status of any of these branches, so for example going back from 3ababa we come
to 4acbca, which can be reached from 3acbcb in one step, so this is an origin
demonstrating the reachability of 3ababa. Thus 3acbcb ∈ S(3ababa). That
this is the only element follows from the fact that the branches in condition (2)
in (11) cannot lead to any more ways in which reachability can be arrived at
after adding extra symbols on the right. For example 2ccab→ 3abab in (11)
implies 2ccaba → 3ababa and trying to go back from 2ccaba without going
“off the end” is impossible for the same reason that going back from 2ccab is
i.e. 2 c has no preceding CS. Likewise 3ababb and 3ababc are both reachable
from only 1acbcb and 3acbcd respectively. However after putting symbol d
on the right, we have 4acbcd → 3ababd and 4acbcd is not reachable from a
state-symbol pair because neither is 4b (already obvious from (11)) or 4 d,
therefore 3ababd is not reachable.

Now TM1 will be systematically investigated to obtain the IRR(n) for all
n > 0 in a recursive description.

2.3 Systematic application of reverse computation rules
to obtain the IRR for TM1

The first obvious step is to express the machine table in terms of reverse com-
putation rules and summarised using place-holder Greek symbols as follows:

1 α
α=d← 2b 1α

{
α=a← 4a
α=d← 1c

2 α← ∅ 2α


α=c←

{
1a

4b
α=d← 1d

3 α
α=b← 4c 3α


α=b← 3a

α=c←
{

2a

4d
α=d← 3c

4 α


α=a← 3b
α=b← 1b
α=c← 3d

4α
α=a← 2c

(12)



Turing Machines 33

2.3.1 Obtaining the LHS’s of the IRR(2)

Extending this to longer rules first needs symbols to be added at the pointer.
Starting with 1 α add an arbitrary symbol to get 1βα. Under what conditions
is this both reachable and generating an irreducible rule? Reachability requires
α = d. Irreducibility of the rule generated by it happens only if the first forward
TM step from there is to the right, so this requires β ∈ {a, c, d}. Likewise the
CS 1αβ is reachable if and only if α ∈ {a, d} and leads to an irreducible rule
if only if β = b. This argument is easily extended to each LHS of (12) to give
7 sets of LHS’s of IRR(2) which are listed together with their origins in (13).
The origins are the final CS’s in the search described above (trivial in these
cases) that ends in condition (1):

1βd← 2βb for β ∈ {a, c, d}

1αb

{
α=a← 4ab
α=d← 1cb

2αb


α=c←

{
1ab

4bb
α=d← 1db

3βb← 4βc for β ∈ {a, c}

3αβ


α=b← 3aβ

α=c←
{

2aβ
4dβ

α=d← 3cβ

for β ∈ {b, d}

4βα


α=a← 3βb
α=b← 1βb
α=c← 3βd

for β ∈ {a, b, d}

4ac← 2cc

(13)

2.3.2 Obtaining the LHS’s of the IRR(3)

The RHS’s resulting from forward computation from each of the LHS CS’s in
(13) are obtained using TM1 giving the IRR in (2) of type LR or RL. Only
these can generate irreducible rules for the next value of n by adding the an
arbitrary symbol at the opposite end from the pointer in their LHS’s and then
checking for reachability of the resulting LHS’s. The first set of CS’s to be
considered is 1βd that generates a rule of type RL or LR if and only if 1βd→
a CS with the pointer just beyond the right hand end. From (1) and (2)
this happens only if β = c. Tracing back the computation after adding the
arbitrary symbol α to check for reachability gives the following:



34 John Nixon

1cdα← 2cbα←
{

1abα
4bbα

. (14)

Note that both the branches end in condition (2) and because the search is
exhaustive, the LHS is not reachable. From (13) the next set is 1αb with
α ∈ {a, d}. RL or LR type for the rule generated requires using (2) α = d (the
other case cycles) so the CS becomes 1db and from (12)

1βdb← 1βcb

{
β=a← 4acb
β=d← 1ccb

(15)

which shows that 1βdb is reachable if and only if β ∈ {a, d}. The next set to
be considered in (13) is 2αb for α ∈ {c, d} neither of which generate a rule
of type RL or LR using (2). The CS’s 3βb with β ∈ {a, c}, from (13), both
generate rules of type RL or LR. Checking for reachability after adding the
extra arbitrary symbol gives

3βbα← 4βcα


β=a← 2ccα
α=a← 3βcb
α=b← 1βcb
α=c← 3βcd

(16)

so for each β ∈ {a, c} this gives 3 reachable CS’s for α ∈ {a, b, c} i.e. 6
members of IRR(3). Of the CS’s 3αβ with α ∈ {b, c, d} and β ∈ {b, d},
only 3cb and 3cd can generate rules of type RL or LR. Combining these and
checking them for reachability gives, after adding one extra symbol α at the
opposite end from the pointer gives,

3αcβ


← 2αaβ


α=c←

{
1aaβ
4baβ

α=d← 1daβ

← 4αdβ

{
α=a← 2cdβ
β=b← 1αdb

for β ∈ {b, d} (17)

where only the cases β ∈ {b, d} are to be considered. What has to be done now
is to find every value of α such that there is a branch that ends in condition (1)
thus establishing the reachability of 3αcβ. It is easy to see that this condition
is independent of β. So for each α ∈ {a, c, d}, 3αcβ is reachable for β ∈ {b, d}
and these therefore all generate IRR. Repeating a similar argument starting
from 4αβ for α ∈ {a, b, d} and β ∈ {a, b, c} in (13) shows that only 4aa, 4ac
4ba, 4bb, 4bc, 4da, and 4dc generate rules of type RL or LR, and reachability



Turing Machines 35

of CS’s of the form 4αβγ for α ∈ {a, b, d}, β ∈ {a, b, c}, γ ∈ {a, b, c, d} is
obtained from

4αβγ



β=a← 3αbγ


α=b← 3abγ
α=d← 3cbγ
γ=b← 4αbc

β=b← 1αbγ


α=a← 4abγ
α=d← 1cbγ
γ=d← 2αbb

β=c← 3αdγ


α=b← 3adγ
α=d← 3cdγ
γ=b← 4αdc

(18)

which follows from (12) using the general method described at the beginning
of section 2.2. This shows that reachability only holds for the following LHS’s
(their origins are shown on the right): 4αab ← 4αbc, 4αbd ← 2αbb and
4αcb ← 4αdc for α ∈ {a, b, d}. Combining these conditions shows that the
LHS’s of these IRR found are (with their origins on the right) 4aab ← 4abc,
4acb ← 4adc, 4bab ← 4bbc, 4bbd ← 2bbb, 4bcb ← 4bdc, 4dab ← 4dbc,
4dcb ← 4ddc in agreement with (3). Finally 4ac goes right showing that
4αac cannot be the LHS of an IRR.

Collecting all these results for LHS’s of the IRR(3) shows that they are in
agreement with the results in (3) and can be expressed (including their origins
i.e. only branches ending in condition (1)) by

1adb← 4acb

1ddb← 1ccb

3βba← 3βcb
3βbb← 1βcb
3βbc← 3βcd

 for β ∈ {a, c}

3acβ ← 2cdβ

3ccβ ←
{

1aaβ
4baβ

3dcβ ← 1daβ

 for β ∈ {b, d}

4αβb← 4α

{
b if β = a

d if β = c

}
c for α ∈ {a, b, d} and β ∈ {a, c}

4bbd← 2bbb

. (19)

2.3.3 Obtaining the LHS’s of the IRR(4)

From the LHS’s in (19), the corresponding RHS’s in (3) of the IRR(3) can be
obtained, noting which lead to IRR of type RL or LR. As before only these



36 John Nixon

can be extended to LHS’s of members of IRR(4) by the addition of a symbol
at the opposite end of the string from the pointer in their LHS’s.

In (3) 1adb→ 3ccb in IRR(3) has type RR therefore the rule derived from
the LHS 1αadb is reducible, but 1ddb goes left in (3) so it could generate an
IRR. From (19) and (12),

1αddb← 1αccb

{
α=a← 4accb
α=d← 1cccb

(20)

so both these are reachable and so are LHS’s of IRR(4).
The next set 3βbα all go right in (3) and from (19),

3βbαγ


α=a← 3βcbγ
α=b← 1βcbγ
α=c← 3βcdγ

for β ∈ {a, c}. (21)

The search for origins continues from the RHS’s in (21) in the next set of
equations that are obtained by repeatedly using (12):

3βcbγ



← 2βabγ


β=c←

{
1aabγ
4babγ

β=d← 1dabγ

← 4βdbγ


β=a← 2cdbγ

← 1βdbγ


γ=d← 2βdbb

← 1βcbγ

{
β=a← 4acbγ
β=d← 1ccbγ

γ=b← 4βcbc

1βcbγ
γ=d← 2βcbb

3βcdγ


← 2βadγ


β=c←

{
1aadγ
4badγ

β=d← 1dadγ

← 4βddγ
β=a← 2cddγ

γ=b← 4βcdc

. (22)

Therefore a CS of the form 3βbαγ is reachable if and only if α = a and γ ∈
{b, d} or α = b and γ = d or α = c and γ = b i.e. only the following sets of

CS’s of the form 3βbαγ are reachable: 3βba

{
b

d

}
, 3βbbd, and 3βbcb, and



Turing Machines 37

the condition β ∈ {a, c} comes from (19). Extending the 3γcβ for γ ∈ {a, c, d}
and β ∈ {b, d} to be LHS’s of IRR(4) members, note that of these only the
following generate IRR(3) of type RL in (3): 3dcb and 3dcd. With the extra
arbitrary symbol, tracing these back from the result in (19) to find which are
reachable gives

3δdcβ ← 1δdaβ

{
δ=a← 4adaβ
δ=d← 1cdaβ

for β ∈ {b, d} (23)

which shows that 3δdcβ for β ∈ {b, d} and δ ∈ {a, d} are LHS’s of IRR(4).
All the CS’s 4αβb for α ∈ {a, b, d} and β ∈ {a, c} go right in (3) and using
(19)

4αβbγ ← 4αxcγ


γ=a← 3αxcb
γ=b← 1αxcb
γ=c← 3αxcd

for β ∈ {a, c} and α ∈ {a, b, d} (24)

where

x =

{
b if β = a

d if β = c

}
. (25)

Therefore 4αβbγ are LHS’s of IRR(4) for α ∈ {a, b, d} and β ∈ {a, c} and
γ ∈ {a, b, c}. Finally in (3) 4bbd goes to the halting CS 2ddd so cannot
generate any IRR(4). This explains all the LHS’s of IRR(4). These are all
listed here with their origins of which there is now only one in each case:

1addb← 4accb

1dddb← 1cccb

3βbaγ

{
γ=b← 4βcbc
γ=d← 2βdbb

3βbbd← 2βcbb
3βbcb← 4βcdc

 for β ∈ {a, c}

3adcβ ← 4adaβ
3ddcβ ← 1cdaβ

}
for β ∈ {b, d}

4αβba← 3αxcb
4αβbb← 1αxcb
4αβbc← 3αxcd

 for α ∈ {a, b, d} and β ∈ {a, c}
and x is given by (25)

(26)

2.3.4 Obtaining the LHS’s of the IRR(n) for n > 4

The results in this section are not written in the order that they were found
because during the calculations it was found that short re-usable reverse rules
could be used to efficiently complete all the proofs in a manner similar to



38 John Nixon

the methods of the preceding sections. Therefore in this list of reverse rules,
it is not obvious which symbols were to be added in the several stages of
elongation. They were chosen only when necessary to complete the proofs of
the main results for the IRR for length > 4 at the end of this section.

The first step is to note that from (4), the only LHS’s in (26) leading to
IRR of type LR or RL are 3βbaγ, 3βbbd, 3βbcb, for all the values of β and γ,
and all the LHS’s starting in state 4.

Starting from the first of these LHS’s, the reachability of the CS 3ababα
must be derived from the reachability of 4acbcα. From (12) using the reach-
ability of 4 α it follows that

4bcα


α=a← 3bcb
α=b← 1bcb
α=c← 3bcd

. (27)

where the b on the left implies that a reverse TM step to the left is not possible.
From (26) and (27), the result for the origins for 3ababα is given by

3ababα← 4acbcα


α=a← 3acbcb
α=b← 1acbcb
α=c← 3acbcd

. (28)

Equation (27) is the first of the re-usable reverse rules to be derived.
Proceeding in the same way, the next available result of (26) for β = a is
3abad ← 2adbb, so for each symbol α, 3abadα ← 2adbbα and 2adbbα is
not reachable because from (12), 2b and 2 α for each α ∈ {a, b, c, d} are not
reachable from any state-symbol pair, i.e.

2bbα← ∅, (29)

and 3abadα is not reachable for every α. The following reverse rule was likewise
obtained using the other available results in (26) as the starting points, during
the derivations of all the LHS’s of the IRR(5):

4dcα


α=a← 3dcb
α=b← 1dcb
α=c← 3dcd

. (30)

Note that this derivation requires checking from (12) that 4d is not reachable.
Similarly for the following

3cbα


← 2abα
α=b← 4cbc

← 4dbα← 1dbα

(31)



Turing Machines 39

from which follows again using (12) repeatedly

3bcbα

{
α=b← 4bcbc
α=d← 2bdbb

(32)

and similarly

3dcbα


← 1dabα
α=b← 4dcbc
α=d← 2ddbb

← 1ccbα

. (33)

From (12)

1bα
α=d← 2bb (34)

which implies

1cbα
α=d← 2cbb. (35)

Again

3cdα


← 2adα
← 4ddα
α=b← 4cdc

(36)

which implies

3bcdα
α=b← 4bcdc (37)

and

3dcdα

{
α=b← 4dcdc

← 2dadα← 1dadα
(38)

and
3cdcdα

α=b← 4cdcdc (39)

because 1c and 1 a are both unreachable and the lower branch of (38) now
ends in condition (3).

A summary of the derivations of the LHS’s of the IRR(5) from those of the
IRR(4) is contained in Table 4. Each row of the table represents one or more
separate derivations starting with a CS having the specified state and symbols
at its right hand end. The number of symbols indicated is not necessarily
the minimum needed to show which reverse rule applies. Extra symbols were
added by reference to the computer-generated list of IRR so that the general
induction argument to be described below works, thus the first two columns
of Table 4 are part of a theorem to be proved by induction on n. The last
column has all the symbols that can be added on the right, i.e. the α above.
For example the first row of Table 4 starts with any CS of the form 3 . . . ab
(each of these has an origin of the form 4 . . . bc), as the LHS of an IRR of even



40 John Nixon

length and shows how it can be extended in length by 1 by adding a symbol
α ∈ {a, b, c} to generate reachable CS’s using the reverse rule (27):

3 . . . abα← 4 . . . bcα


α=a← 3 . . . bcb
α=b← 1 . . . bcb
α=c← 3 . . . bcd

. (40)

Then the result for α = a, b, c are consistent with the first three rows of Table 5
respectively.

LHS of IRR(n) Origin Reverse rule Set of Condition
Symbols

3 . . . ab 4 . . . bc (27) {a, b, c}
3 . . . ad 2 . . . bb (29) ∅
3 . . . bd 2 . . . bb (29) ∅
3 . . . bcb 4 . . . cdc (30) {a, b, c}
4 . . . aba 3 . . . bcb (32) {b, d}
4 . . . abc 3 . . . bcd (37) {b}
4 . . . bb 1 . . . cb (35) {d}
4 . . . cbc 3 . . . dcd (38) {b}
4 . . . cba 3 . . . dcb (33) {b, d}

Table 4: Summary of the derivations of the LHS’s of the IRR(n + 1) from the
LHS’s of the IRR(n) for n ≥ 4 and n even

The corresponding table for n odd is as follows:

LHS of IRR(n) Origin Reverse rule Set of
Symbols

3 . . . aba 3 . . . bcb (32) {b, d}
3 . . . bb 1 . . . cb (35) {d}
3 . . . abc 3 . . . bcd (37) {b}
3 . . . cba 3 . . . dcb (33) {b, d}
3 . . . cbc 3 . . . dcd (38) {b}
4 . . . ab 4 . . . bc (27) {a, b, c}
4 . . . ad 2 . . . bb (29) ∅
4 . . . bcb 4 . . . cdc (30) {a, b, c}
4 . . . bd 2 . . . bb (29) ∅

.

Table 5: Summary of the derivation of the IRR(n + 1) from the LHS’s of the
IRR(n) for n ≥ 5 and n odd

Let T3(n) be an abbreviation for Table 3 applied to rules of length n and
mean the following:



Turing Machines 41

For each line of Table 3 defined by state S, symbols α and β and
the set of rules R respectively, if a rule r1 of type LR and length n

has state S in its LHS, symbol at the right hand end α, then it can
be used to derive a rule r2 of type LR and length n + 1 by adding
the symbol β to the left and right of r1 on its right hand end and
then applying in a single step one of the rules of R to this RHS.

The meaning of T2(n) is likewise and refers to Table 2. The meaning of T4(n)
is as follows:

For each line of Table 4 the first two columns are the CS outlines
and will be denoted by c1, c2 respectively. If c1 matches the LHS
of an IRR r of type LR and length n then c2 matches the unique
origin of r with the pointer at the right (condition 1) according
to the method above for searching for origins. There can be other
origins with the pointer at the left but these end in condition 2
and do not lead to reachability arguments because new symbols
are being added only at the right.

The meaning of T5(n) is likewise and refers to Table 5.
The importance of this is that, using the remaining elements in the lines

of Tables 4 and 5 i.e. the reverse rule rr and set of symbols s respectively,
according to the reverse rule rr and the origin c2, s is the set of all symbols
any one of which can be applied to the LHS of r on its right to obtain the
LHS of r1, a rule of length n+1 that must be regular i.e. its LHS is reachable
because an origin for it has been found.

Theorem 2.3. If T3(n) and T4(n) then the rule outlines and added symbols
of Table 4 determine the set of LHS’s of all the IRR(n + 1) from the set of
LHS’s of all the IRR(n). This is done by extending on the right by any one
symbol in column 4 of Table 4, the LHS’s of any member of IRR(n) that match
the LHS outline in column 1 of the same row of Table 4.

The same is true with Table 3 (T3) replaced by Table 2 (T2) and Table 4
(T4) replaced by Table 5 (T5).

Proof. For example if 3 . . . ab matches the LHS of an IRR r of length n and
type LR then by T4(n), 4 . . . bc matches the unique origin in condition 1 of
r and by adding symbols on the right of r and using (27), c1 = 3 . . . aba,
c2 = 3 . . . abb and c3 = 3 . . . abc (and only these extensions of 3 . . . ab) match
reachable LHS’s of rules of length n+ 1, because an origin was found for each.
Also by T3(n), (actually the first 3 rows of Table 3) the CS outlines c1,c2 and
c3 each lead to a final CS giving a rule which is irreducible (of type LR). Thus
c1, c2 and c3 generate IRR of length n + 1 and are the only IRR obtainable
by extending r by a single symbol.



42 John Nixon

To verify this for all cases it is simply necessary to note that every triple
consisting of (1) the state in column 1 of Table 4, (2) the rightmost symbol in
column 1 of Table 4 and (3) any of the added symbols in column 4 of Table 4
appear in columns 1, 2 and 3 of Table 3 respectively, and likewise with Table 3
replaced by Table 2, and Table 4 replaced by Table 5.

Theorem 2.4.

[T3(n) and T4(n)]⇒ T5(n + 1) (41)

Proof. Roughly stated, each line of Table 5 must be consistent with every
line of Table 4 with the addition of each applicable symbol and use of the
appropriate reverse rule. In this proof I will describe in detail the argument
for proving that one that line of T5(n+1) follows from T4(n). To complete the
proof, similar arguments must be made for all the other lines of T5(n + 1).

First note that the conclusion of Theorem 2.3 applies. Consider showing
3 . . . bb← 1 . . . cb, the second line of T5 for rules of length n + 1. The LHS of
this arises from adding the symbol b to 3 . . . b of length n, and this matches the
following LHS’s in Table 4: 3 . . . ab, 3 . . . bcb, so using Theorem 2.3, any CS in
3 . . . bb of length n+1 that is the LHS of an IRR must arise from adding b to a
CS in either 3 . . . ab or 3 . . . bcb of length n. For both cases (for this argument
to work, at least one of these two statements must be true), the symbol b
can be added to generate a reachable CS according to the reverse rule used to
derive the origins. Actually we have 3 . . . abb ← 4 . . . bcb ← 1 . . . bcb by (27)
and 3 . . . bcbb ← 4 . . . cdcb ← 1 . . . cdcb by (30) and in each case the origin
matches 1 . . . cb. Note that all preceding CS’s are always given on the RHS’s
of the left arrows and only a single origin in condition (1) is possible in each
case. Therefore the pattern 1 . . . cb matches all possible origins in condition
(1) of LHS’s of IRR matching 3 . . . bb of length n + 1.

Theorem 2.5.

[T2(n) and T5(n)]⇒ T4(n + 1) (42)

Proof. The proof is exactly as above with T4 and T5 exchanged and T3 and T2

exchanged.

The main results in subsection 2.1 can be written as

T3(4) and T2(5), (43)

[T3(n) and T2(n + 1)]⇒ T3(n + 2) for n ≥ 4, (44)

and

[T3(n) and T2(n + 1) and T3(n + 2)]⇒ T2(n + 3) for n ≥ 4. (45)



Turing Machines 43

From (43), (44) and (45) it is easy to show that both

T3(n) for n even and ≥ 4, and (46)

T2(n) for n odd and ≥ 5. (47)

The result
T4(4) (48)

is Table 4 for n = 4 and is easily seen to follow from (26). Putting n even and
≥ 4 into (41) gives

T4(n)⇒ T5(n + 1) for n even and ≥ 4, (49)

and putting n odd and ≥ 5 into (42) gives

T5(n)⇒ T4(n + 1) for n odd and ≥ 5. (50)

Finally from (48) and (49) and (50) it is easy to show that

T4(n) for n even and ≥ 4 (51)

and
T5(n) for n odd and ≥ 5. (52)

The final results of this section are (46), (47), (51), and (52).

2.4 Global analysis of the TM

After some IRR have been applied to an initial tape configuration of any TM,
let k be the length of the next IRR to be applied to continue the computation
and let n be the length of the tape read by the TM including the last symbol
read to determine the next IRR to be applied. Then in general n ≥ k.

In the following argument for simplicity I shall ignore the possibility of the
TM halting or entering into a stationary cycle. At any time these events could
happen if an appropriate IRR rule (2 halting and and 2 stationary cycles for
k = 2, and one halting for each of k = 3 and k = 4) is required to continue
the computation.

Suppose that in a computation of TM1 at some point n ≥ 3 and a right-
moving IRR is needed to continue the computation. After this IRR has been
applied, the length read is n+1 and suppose that k < 4 for the next IRR. The
movement resulting from applying this second IRR must also be to the right
because the pointer starts at the right hand end of the read part of the tape
and if it was to have a net left movement, k would have to be the length of
the read part of the tape prior to the second IRR i.e. n + 1 ≥ 4 because the



44 John Nixon

IRR would have to take the pointer to the left end of the tape. Alternatively
if k ≥ 4, this must lead to a right movement as a result of the second IRR
because all IRR(k) with k ≥ 4 are right-moving (Tables 2 and 3). Therefore
the argument can be repeated indefinitely, showing that after a right-moving
IRR is applied to a TM computation with TM1 with n ≥ 3, TM1 always goes
to the right after each IRR is applied. These non-halting IRR must be of
type RR and do not exist for length k > 4 (they do not exist for k = 5 and
section 2.2 shows that they do not exist for any larger k either) therefore the
TM moves after this using only the IRR of length ≤ 4 i.e it moves only in
a moving window of length 4 that moves one place to the right when a new
symbol is read where the tape has not been read before.

It only remains to show its behaviour if n ≥ 3 and the TM continually
takes left-moving IRR steps. These must be left-moving IRR(k) with k ≤ 3 of
which only 5 for k = 1 and 3 of type RL and 1 of type LL for k = 2, and 3 of
type RL for k = 3 exist. Taking into account the rule types needed, only the
5 k = 1 rules and the rule 4db→ 3 ba of type LL could be involved.

This implies that the TM moves in sequences of steps in IRR of lengths up
to 2 only so it moves in a moving window of length 2. This behaviour could
of course be permanently altered to a right-moving behaviour if at some point
a right-moving IRR was required which of course depends on the next symbol
read. Probably this is best characterised by the failure of the above conditions
for a left-moving IRR.

3 Analysis of a TM simulating the Collatz prob-

lem

3.1 The origin of TM2.

The TM defined in this section is a trivial modification of one [2] chosen to
simulate the Collatz [1] iteration. This reference is probably the most thorough
introduction to it (there referred to as the 3x + 1 problem) containing the
most important research papers on it, and is a pleasure to read because of the
many connections with other fields and other fascinating simply stated but
intractable conjectures.

This problem is easily stated as follows: For a positive integer n, if n is
even, replace it by n/2 and if n is odd, replace it by 3n + 1. It is well known
that when this function is repeatedly applied to a positive integer the result
seems to always eventually lead to 1, and then an infinite cycle 2,1,2, etc..
The problem can be stated formally (actually this is Terras’s modification
combining the n→ 3n+1 with n→ n/2 because 3n+1 is even when n is odd)
as follows:



Turing Machines 45

If the function f(n) is defined from positive integers (N+) to themselves as
follows:

f(n) =

{
n/2 if n is even
(3n + 1)/2 if n is odd

. (53)

the problem is to show that

∀n ∈ N+∃k ∈ N+ such that g(n, k) = 1 (54)

where g(n, k) is the kth iterate of f applied to n defined by

∀n, k ∈ N+g(n, k + 1) = f(g(n, k)) (55)

and g(n, 1) = f(n).
TM2 was obtained by changing Margenstern’s TM (Figure 7 of [2]) thus:

the symbols 0 and 1 were replaced by a and b respectively and the symbol
was replaced by c and the quintuples left blank were replaced by halting

computation rules (for 1c and 2c). TM2 is defined by the following rules:

1a→ 1c 2a→ 2a 3a→ 2b 4a→ 3a 5a→ 5 a

1b→ 4c 2b→ 3b 3b→ 4a 4b→ 4b 5b→ 5 b

1c→ 1c 2c→ 2c 3c→ 5 b 4c→ 3a 5c→ 1c

Table 6: Rules of length 1 defining TM2 which simulates the 3n + 1 problem

In the following analysis, the same method used for TM1 is applied to TM2.
This TM is a little more complex in some ways than the TM1 and a little
more notation is needed to describe the IRR’s. While developing this I have
become aware that I have been developing a simple language for describing
sets of rules, and more notations may be needed in future. The IRR’s will
be defined in terms of other sub-machines going in a single direction on the
tape obtained directly from TM2 going either forward or backward. Braces
will be used to indicate a set of symbols from which strings can be constructed
e.g. {a, b}n means the set of all strings of a’s and b’s, and the exponent n

indicates the length of the string, and the pointer indicated under the first or
last brace indicates the pointer at the first or respectively last symbol in the
string indicated by the expression in braces. Such strings can be embedded
in others, and where one of several symbols or states is, the options will be
listed vertically within large braces. Also the notation | will be introduced to
indicate the subset of the set indicated on the left with the condition indicated
on the right. This subset will be the default argument in any functions. The
name of any TM related to TM2 used as a function, will refer to that TM
applied through as many cycles as possible to its argument. A related comment
is appropriate here in relation to sets of CS’s i.e. sets of sets of machine



46 John Nixon

configurations. Without too much risk of ambiguity I have been using set
theory terminology at the the upper level i.e. treating CS’s as indivisible
entities, which I will continue to do. However occasionally it may be necessary
to work at the lower level for example talking about subsets or supersets of a
CS.

3.2 Obtaining a recursive definition of the IRR for TM2

The IRR(n) for n = 2, 3, and 4 are as follows respectively

3ac→ 5 ab 3bc→ 5 bb 5ca→ 1cc 5cb→ 4cc (56)

3aac→ 5 aab 3bac→ 5 bab 3cac→ 4ccc 3abc→ 5 abb

3bbc→ 5 bbb 5caa→ 1ccc 5cab→ 4ccc 5cba→ 3cca

5cbb→ 4ccb

(57)

3aaac→ 5 aaab 3baac→ 5 baab 3abac→ 5 abab 3bbac→ 5 bbab

3cbac→ 4ccaa 3aabc→ 5 aabb 3babc→ 5 babb 3abbc→ 5 abbb

3bbbc→ 5 bbbb 5caaa→ 1cccc 5caab→ 4cccc 5caba→ 3ccca

5cabb→ 4cccb 5cbaa→ 2ccab 5cbab→ 4ccaa 5cbba→ 3ccba

5cbbb→ 4ccbb

.

(58)
A quick look at these rules as generated by the new program [5] for n up to 7
shows that every LHS of the form 5c{a, b}∗ and 3{a, b}∗c is present together
with increasing numbers of LHS’s of the form 3c{a, b}∗c. The latter form
about 1/7 of the LHS’s having state 3 and occur precisely once every 7 rules
listed in the way they are ordered. Also these rules are derived in 3 substitution
steps and all the others are derived in just 2. Experience analysing small TM’s
this way shows that for n larger than about 5 or 6, the pattern of the IRR(n)
for large n is clear, so I expect these statements to be true for all n.



Turing Machines 47

Directly from Table 6, the reverse rules of length 1 are

1α
α=c← 1a, 5c

2α

{
α=a← 2a
α=b← 3a

3α

{
α=a← 4a, 4c
α=b← 2b

4α


α=a← 3b
α=b← 4b
α=c← 1b

5α ← ∅
st α← ∅ for st ∈ {1, 2, 3, 4}

5 α

{
α=a← 5a
α=b← 3c, 5b



for α ∈ {a, b, c} (59)

Now adding single symbols at the pointer to these LHS’s such that the forward
computation generates an irreducible rule (i.e. a left moving step if the pointer
is at the right and vice versa) yields just the 4 LHS’s in (56) with their origins
in (60).

3ac

{
← 4ac

← 4cc
3bc← 2bc 5ca← 5ca 5cb

{
← 3cc

← 5cb
(60)

For the reverse rules of length 3, because all the rules in (56) are of type
LR or RL they can all be extended by 1 symbol opposite the pointer giving
irreducible rules with their origins (condition 1 only) thus:

3αac



← 4αac


α=a← 3bac
α=b← 4bac
α=c← 1bac

← 4αcc


α=a← 3bcc
α=b← 4bcc
α=c← 1bcc

(61)

3αbc← 2αbc

{
α=a← 2abc
α=b← 3abc

(62)

5caα← 5caα


α=a← 5caa
α=b← 5cab
α=b← 3cac

(63)



48 John Nixon

5cbα← 5cbα


α=a← 5cba
α=b← 5cbb
α=b← 3cbc

(64)

This accounts for the list of 9 IRR(3) obtained from the program (α = a, b, c
from (61), α = a, b from (62), α = a, b from (63) and α = a, b from (64)).
Extending the length of those that are of type RL or LR again by 1 in the same
way gives results that can be summarised by the following sets of equations:

3aaac← 4αbβc 3bbac← 4bbβc

3abbc← 4αabc 3baac← 2bbβc

3aabc← 2aabc 3bbbc← 2babc

3abac← 3bbβc 3babc← 3aabc

 for α, β ∈ {a, c}, (65)

3cbac← 1bbβc for β ∈ {a, c}, (66)

and

5cαβa← 5cαβa 5cαβb

{
← 5cαβb
← 3cαβc

for α, β ∈ {a, b}. (67)

Equations (65) (66) and (67) account for the 17 IRR(4) obtained from the
program.

3.3 Setting up hypotheses to be proved by induction

For TM2 it appears to be true that

Un = 3Wn−1c (68)

plays an important role in its IRR where

Wn = {a, b}n (69)

i.e. any string of a’s and b’s of length n. The origin of every member of Un
is obtained from Un by using reverse TM steps in the same direction i.e. from
the left. For each reversed computation path, this results in a CS in

2

3

4

 {a, b, c}n−1c (70)

obtained from Un by a repeated application of the reverse of TM2 (RTM2)
restricted to states in {2, 3, 4} and input symbols in {a, b}. RTM2 has a non-
unique output in general and goes from right to left using Table 7 derivable



Turing Machines 49

from equations (59). The body of this table has the state-symbol pair(s)
preceding the CS Sα in TM2:

state symbol α
S a b

2 {2a} {3a}
3 {4a, 4c} {2b}
4 {3b} {4b}

Table 7: The definition of RTM2, the reverse of TM2 restricted to a subset of
states and symbols

This situation will be indicated by

3Wn−1c← RTM2 (3Wn−1c) (71)

where RTM2 is used as a function to indicate the application of RTM2 through
as many cycles as possible to its argument.

The LHS’s of the IRR(n) appear to be the following forms: 3Wn−1c, some
subset of 3cWn−2c, and 5cWn−1. The calculation of the IRR(5) was carried out
(not shown) which agreed with this and suggested the following forms for the
LHS’s of the IRR(n) together with their hypothesised origins:

Un ← RTM2 (Un) where Un = 3Wn−1c

Vn|S(RTM2(.))=4 ← (4c ← 1b)
(
RTM2 (Vn) |S(.)=4

)
where Vn = 3cWn−2c and S means “state of”

5cWn−2α

{
α∈{a,b}←−−−− 5cWn−2α
α=b← 3cWn−2c

(72)

The LHS of the second line can be expressed as the subset of Vn = 3c{a, b}n−2c
such that the state of RTM2(Vn) is 4 and its origin is the single reverse TM
step 4c ← 1b applied to the subset of RTM2(Vn) that has state 4. Note that
although RTM2 can give many outputs for one input, the state of these is the
same because this holds for a single reverse computation step in Table 7. It is
straightforward to verify that (72) defines the IRR(n) for n = 2, 3, and 4.

3.4 Proof of (72) by induction on n

Now apply the argument to extend the IRR to one extra symbol to start the
proof of (72) by induction on n. For (72).1 consider αUn = 3αWn−1c as possible



50 John Nixon

LHS’s of IRR(n+1). Their origins are the origins of αRTM2(Un) which are all
subsets of one of 

2

3

4

α (73)

whose origin can be traced back one further step using Table 7 (RTM2) pro-
vided α ∈ {a, b} resulting in RTM2(αRTM2(Un)) = RTM2(αUn). This results
in termination under condition (1) of the procedure for tracing origins, so the
new origin has been found. There are no other origins to be found by trying
to go back in the other direction because the state is now 2, 3 or 4 and there
is no possible preceding (in the sense of TM2) pointer position one place to
the right because of (59).6

For the case α = c, using (59), an origin for cRTM2(Un) requires state 4 in
(73). Therefore CS’s of the form 3cWn−1c are reachable if and only if RTM2
run to the leftmost but one symbol (i.e. as far as possible) results in state 4.
Combining the results for α ∈ {a, b} using Un+1 = aUn ∪ bUn gives that Un+1

are reachable LHS’s with origins obtainable via RTM2.
To check that these LHS’s do all generate irreducible rules hence IRR’s,

note that the forward computation has the pointer passing every symbol in
the string:

3α{a, b}nc→ 5α{a, b}nb→ 5α{a, b}n → . . . (74)

which follows simply from the machine table for TM2. This completes the
proof of (72) parts 1 and 2 with length n + 1. Equation (74) follows from the
behaviour of state 5, which is simply to move to the left leaving the symbols
unchanged provided they are all a or b:

5{Wn} → 5 Wn. (75)

This can be considered as behaviour of the trivial sub-machine of TM2 that
has just state 5 and symbols a and b. There is another behaviour of this sort
that can be expressed by

1{Wn} → TM2*(1{Wn}) . (76)

because starting with state 1 with symbols a and b on the right, TM2 can reach
state 1,2,3, or 4 and continually go right unless a c is encountered. Here TM2*
stands for TM2 restricted to the right-moving state and symbols combinations.

Next consider trying to extend the LHS’s of the form in (72).2 to form
LHS’s of IRR(n + 1). This is easily proved impossible because, using (76) for
the last step, the following is easily deduced:

3αcWn−2c→ 5αc{Wn−2}b→ 5αcWn−2b→ 1αc{Wn−2}b→ 1αcTM2*(1{Wn−2}b) ,
(77)



Turing Machines 51

which shows that the pointer does not reach the symbol α, before reaching the
RHS of the string of symbols, so the resulting rule is reducible.

It is easy to show that from (72).3 applying the same method to extend
the reachability argument using (71) gives

5cWn−2αβ


α∈{a,b}←−−−− 5cWn−2αβ

{
β∈{a,b}←−−−− 5cWn−2αβ
β=b← 3cWn−2αc

α=b← 3cWn−2cβ ← c{Tn−1}β
S(Tn−1)=4←−−−−− 1bT∗n−1β

. (78)

In this last equation, T∗ indicates T with the state information deleted so that
the new state can be given (in this case 1). Summarising this and deleting the
bottom branch that ends in condition (2) gives the following

5cWn−2αβ

{
α and β∈{a,b}←−−−−−−−− 5cWn−2αβ
α∈{a,b} and β=b←−−−−−−−−−− 3cWn−2αc

(79)

i.e.

5cWn−1β

{
β∈{a,b}←−−−− 5cWn−1β
β=b← 3cWn−1c

(80)

Checking for irreducibility of the rule using (76) gives

5cWn−1β → 1c{Wn−1}β → cTM2*
(
1{Wn−1}

)
β → . . . (81)

showing that the the rules generated from (72).3 by extension are irreducible
for n > 0 and therefore are IRR for β ∈ {a, b}. Note that because all pos-
sible extensions of the LHS’s of the IRR(n) to one extra symbol have been
considered, the set of LHS’s of the IRR(n + 1) obtained here is complete on
the assumption that the set of LHS’s of the IRR(n) is complete. Thus (72)
has been demonstrated with n replaced by n + 1, and because (72) is true for
n = 2, (72) is true for all n ≥ 2 by induction.

Using the above results, it is now straightforward to derive the complete
IRR(n) for TM2 as follows:

3Wn−1c→ 5{Wn−1}b→ 5 Wn−1b [by (75)]

5cWn−1 → 1c{Wn−1} → cTM2*(1{Wn−1}) [by (76)]{
3cWn−2c→ 5cWn−2b→ cTM2*(1{Wn−2}b)

}
|S(RTM2(3cWn−2c))=4

(82)

where the result (82).3 follows from (82).1 and (82).2. These together with the
original TM Table 6 characterise its behaviour. Note that the rules in (82).3
are valid without the restriction S(RTM2(3cWn−2c)) = 4 which only serves to
remove redundant rules from the list.



52 John Nixon

3.5 Global analysis of TM2 based on its IRR and the
Collatz conjecture

In an attempt to understand this TM further, the list of the IRR from (82).3
up to length 7 were obtained from the program and are as follows:

3cac→ 4ccc 3cbac→ 4ccaa 3caaac→ 4ccccc

3cbbac→ 4ccbaa 3cabbc→ 4cccbb 3cbaaac→ 3ccabab

3caabac→ 4ccccaa 3cbbbac→ 4ccbbaa 3cababc→ 4cccaab

3cbabbc→ 4ccaabb 3caaaaac→ 4ccccccc 3cbbaaac→ 3ccbabab

3cabbaac→ 3cccbabb 3cbaabac→ 3ccabbbb 3caabbac→ 4ccccbaa

3cbbbbac→ 4ccbbbaa 3cabaabc→ 4cccabba 3cbababc→ 4ccaaaab

3caaabbc→ 4cccccbb 3cbbabbc→ 4ccbaabb 3cabbbbc→ 4cccbbbb

.

(83)
These are useful for hand calculations with TM2.

The behaviour of TM2 based on (82) can be described as follows. If TM2
starts from 3c it enters state 5 going left over a’s and b’s, which are left
unchanged ((82).1). Then if a c is encountered (82).2 applies leaving that c

in place. This c reverses the TM and takes it to state 1, after which the next
symbol printed must also be a c. TM2 then continues in TM2* mode and going
to the right. TM2* mode is entered from state 1, and state 1 is maintained
only as long as a’s are present and shifting to state 4 as soon as the first b is
encountered. c’s are being printed at this time so the configuration is here in
4ca or 4cb. Note that TM2* cannot print a c unless it is in state 1 or 5 which
cannot be reached from other states within TM2*. If a c is again encountered
in state 3 a cycle has been completed because 3c is then reentered (and a c

is required to get TM2 out of TM2* mode). The c cannot be encountered in
state 1 if at least one b is present in Wn and it cannot be encountered in state
2 because by (82).3 the last symbol in the string to be processed by TM2* is
a b, so the state entered after this must be 3 or 4. Therefore the cases when
the TM effectively halts (remains perpetually stationary) cannot occur when
starting from any configuration in 3cWn−2c. If a c is encountered in state 3,
TM2 completes the cycle, and if a c is encountered in state 4, one extra TM
step with input symbol c will bring it back to a configuration in 3c. If the
input symbol here is not a c the computation remains in TM2* mode searching
for the next c’s. For TM2, c’s can be created or deleted going right, but going
left in state 5 a c results in two successive c’s being printed, hence in general
TM2’s behaviour is to move the leftmost point in its cycle to the right by at
least one place per cycle, in cycles of arbitrary length.

The cycle is in fact an almost completely general description because every
state-symbol pair can be included somewhere in the cycle, 5a and 5b in the
left-moving part, and {1, 2, 3, 4} × {a, b} ∪ {4, 5} × {c} in the right-moving
part, and all the other cases with symbol c are included too. Thus whatever



Turing Machines 53

the starting condition of the TM, it can be mapped onto a point in this cycle.
This behaviour is simple enough that it could have been obtained directly from
the TM in this example. The exceptions implied above are (1) when in TM2*
mode the machine happens to reach a c in state 2 when it halts and (2) when
it reaches a c in state 1 leading to a halt. The latter can only result from
1ac and 5cc. These cannot happen as part of the cycle described above and
were found by manual calculation, so the algorithm described above is ignoring
these somewhat trivial cases.

This analysis is somewhat paradoxical in that previous analyses have always
led to a systematic “unravelling” of the effect of back and forth movements of
the TM, but in this example so far, the analysis has led to just the description
of a cycle rather than summarising its total effect, which seems to be because
cycles of arbitrary length can occur for the TM. Another clue to the fact that
something very different is happening in this example is that a subset of the
set of IRR deducible from the the IRR for the previous value of n are included
i.e. (82).3.

For an analysis of any TM that can simulate any other one, the description
of its interpretive cycle must be its analysis in general because anything else
will depend on the TM being simulated, and because this is a cycle, in general
any analysis beyond a cyclic description cannot be obtained. This suggests
that any further analysis with this example must be analysis of special cases
rather than the general theory above, for example analysis starting from CS’s
of the form

3c∞{Wn−1}cc∞ (84)

where c∞ means an infinite string of c’s. The choice (84) was made suggested
by the LHS of (82).3 and its close correspondence with

1c∞{Wn−1}bc∞ (85)

via (82).1 and the first step of (82).2, but moreover (85) are the CS’s describing
the initial configuration defined in [2] in which a number is given as input to
TM2 in reversed binary i.e. with the most significant digits at the right, where
a and b represent 0 and 1 respectively, and the c’s represent blanks. The
effect of the c∞ at each end of the configuration will be implemented simply
by adding an extra c at the pointer whenever it goes beyond the existing
symbols. Extra c’s at the ends may be dropped or added arbitrarily to the
right hand side and → will be written like

c→ to take on this meaning.
To show that this can be repeated indefinitely, what needs to checked is

that (1) the RHS of (82).3, with the extra step done if needed (T) is again of
the form of the LHS of (82).3 and (2) the extra condition in (82).3 is always
satisfied i.e. S(RTM2(T)) = 4.

Start by finding the most explicit expressions for T. If X = cTM2*(1{Wn−2}b)c
is in state 3 then T = X and if X is in state 4, T is obtained from X by going



54 John Nixon

forward one step to get T
c
= cTM2*(1{Wn−2}b)ac not forgetting that c’s need

to be added at the pointer. Here I introduce the notation
c
= to indicate equal-

ity with an arbitrary number of c’s added or subtracted from either end of the
string. Thus

T
c
= cTM2*

(
1{Wn−2}b

){
c

ac

}
= f(cTM2*

(
1{Wn−2}b

)
), (86)

depending on whether the state was 3 or 4 respectively at the penultimate step
and f indicates the final step indicated above if required. The state of T is 3.
Separating out the first row of a’s, one can write

Wn−2 =

{
akbW∗n−k−3 for some k such that 0 ≤ k ≤ n− 3 or
an−2

. (87)

Assuming first (87).1 the typical case, notice that state 1 is maintained under
TM2* only as long as a’s are present. After the first b, state 4 is entered so

T
c
= f(cTM2*

(
4{W∗}b

)
). (88)

Only a and b can be written in this application of TM2* after this point. State
1 cannot be reentered in this application of TM2* and the b at the end shows
that the state after TM2* has finished is 3 or 4, and f finally takes it to 3.
Here W∗ is another string ∈ {a, b}∗. Notice that here c’s have been deleted
from the left hand end of the string. Therefore T is indeed of the form 3cWn−2c

where Wn−2 is not necessarily the same as given by (87). If however (87).2 holds
then, provided n ≥ 2,

T = f(cTM2*
(
1{an−2}b

)
)

c
= f(4cn−1c)

c
= 3cac (89)

This result is again of the form 3cWn−2c and completes part (1) of the proof.
Returning to (2), it must be shown that the state of RTM2(T) = 4. RTM2
takes the CS back to what it was before, except that c’s can appear where

a’s were before because 3a ←
{

4a

4c
and this does not affect anything else

because the state is not dependent on which of these different actions in RTM2
is taken. The c on the left stops RTM2 because it gets back to 4ca or 4cb that
come from 1b, but state 1 is not included in RTM2, so RTM2 stops before
going back this step and stops in state 4 as required. In case (87).2, RTM2
undoes the final step of (89) leaving it in state 4. This completes the proof of
the following theorem

Theorem 3.1. For computation with TM2 starting from a CS of the form
(84), the following cycle can be repeated indefinitely: (1) Use of a member



Turing Machines 55

of (82).3 to make a substitution followed by (2) a single TM step after the
inclusion of a symbol c at the pointer. Step (2) is to be implemented only if
the result of step (1) was in state 4.

An example of this is as follows starting from the representation of the
number 27 just showing the CS’s in state 3:

3cbbabbc

3ccbaabbac

3cccabbaaaac

3cccccbabaabc

3ccccccaaabbaac

3ccccccccccbabbc

3cccccccccccaabbac

3ccccccccccccccbaaac

3cccccccccccccccababc

3cccccccccccccccccaabac

3ccccccccccccccccccccaaac

3ccccccccccccccccccccccccac

(90)

which is easy to derive using (83) extended to length 9. Thereafter it is easy
to show that the pattern just moves to the right because

3cac→ 5cab→ 1cab→ 1ccb
c→ 4cccc

c→ 3cccac. (91)

The obvious question is to determine whether the following statement is true
or not:

Hypothesis 1. Every computation of TM2 starting from a configuration in
(84) leads to the cycle defined by (91).

When executing the cycle in Theorem (3.1) using (82).1 and (82).2, (82).1
does not alter any symbol between the two c’s, but then 5c→ 1c , 1a→ 1c

and 1b → 4c ensure that the existing c at the left is kept and one more is
added to its right, so that the number of c’s at the left increases by at least
one per cycle. Actually because 5canb→ 4cn+2 , the number of c’s at the left
must in general increase at a rate of more than one per cycle. In addition,
the information in the Wn must move by just one space per cycle given by
TM2*, therefore eventually all the information in the Wn would be erased as
the c’s advance from the left if it were not for the effect of the state, which
when equal to 4 behaves a bit like a carry and has the effect of putting an
extra a on the tape before returning to state 3. Using this idea, if iterations
like (90) are split into chunks where all the previous “information” has just
been deleted, and new “information” resulting from the “carries” appears, a



56 John Nixon

map exists describing this. If some property of this information defined by a
non-negative integer strictly decreases as a result of the map and is zero only
in the case (91) then this would establish Hypothesis 1.

Hypothesis 1 implies that the corresponding sequence of numbers defined by
the iteration of (53) in the reverse binary form in Wn in state 1 always eventually
get to 1 and 2 alternating indefinitely, because any starting configuration of
the form (85) corresponding to any initial value in the sequence will give rise to
a configuration in (84) as a result of part of the cycle defined in Theorem 3.1,
which then leads to the behaviour in (91) which indicates in state 1 the numbers
2 and 1 in reverse binary notation. Therefore Hypothesis 1 implies that the
Collatz conjecture is true.

To end on a philosophical point, referring to page 20 of [1], I don’t think it
makes sense to say that a single yes/no question such as the Collatz conjecture
is unsolvable. Provability within a formal system is another matter. This
requires the proof to be of the type that can be stated formally within the
system. Proofs can sometimes be made outside the system for statements that
cannot be proved within it, such as in the proof of Gödels first incompleteness
theorem. The following statement is I think a matter of faith (to which I
adhere), i.e. not capable of proof: “Every true statement of mathematics has
a proof” thus the Collatz conjecture can be definitely proved true or false and
presumably eventually a proof will be found.

References

[1] J.C. Lagarias (Editor), The ultimate challenge: The 3x+1 problem, The
American Mathematical Society(Providence RI U.S.A., 2010).

[2] M. Margenstern, Theoretical Computer Science, 231(2000),217-251.

[3] J.H. Nixon, Mathematica Aeterna, 3(2013),709-738.

[4] J.H. Nixon, A computer program written in C++ for the analysis of
Turing Machines

[5] J.H. Nixon, The updated version in D of the computer program for anal-
ysis of Turing Machines

Received: January 11, 2017

http://e-hilaris.com/MA/2013/tie_v1.0.txt
http://e-hilaris.com/MA/2013/tie_v1.0.txt
http://www.bluesky-home.co.uk/tie_v1.2.txt
http://www.bluesky-home.co.uk/tie_v1.2.txt

	Introduction
	Definition of TM1 and some preliminary results for the IRR of length n4
	Initial exploration of the irreducible regular rules for n>4
	General description of reverse computation rules and their usage
	Systematic application of reverse computation rules to obtain the IRR for TM1
	Obtaining the LHS's of the IRR(2)
	Obtaining the LHS's of the IRR(3)
	Obtaining the LHS's of the IRR(4)
	Obtaining the LHS's of the IRR(n) for n>4

	Global analysis of the TM

	Analysis of a TM simulating the Collatz problem
	The origin of TM2.
	Obtaining a recursive definition of the IRR for TM2
	Setting up hypotheses to be proved by induction
	Proof of (72) by induction on n
	Global analysis of TM2 based on its IRR and the Collatz conjecture


